/* * Copyright (C) 2003 - 2009 NetXen, Inc. * All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * The full GNU General Public License is included in this distribution * in the file called LICENSE. * * Contact Information: * info@netxen.com * NetXen Inc, * 18922 Forge Drive * Cupertino, CA 95014-0701 * */ #include #include #include "netxen_nic.h" #include "netxen_nic_hw.h" #include "netxen_nic_phan_reg.h" struct crb_addr_pair { u32 addr; u32 data; }; #define NETXEN_MAX_CRB_XFORM 60 static unsigned int crb_addr_xform[NETXEN_MAX_CRB_XFORM]; #define NETXEN_ADDR_ERROR (0xffffffff) #define crb_addr_transform(name) \ crb_addr_xform[NETXEN_HW_PX_MAP_CRB_##name] = \ NETXEN_HW_CRB_HUB_AGT_ADR_##name << 20 #define NETXEN_NIC_XDMA_RESET 0x8000ff static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter, struct nx_host_rds_ring *rds_ring); static void crb_addr_transform_setup(void) { crb_addr_transform(XDMA); crb_addr_transform(TIMR); crb_addr_transform(SRE); crb_addr_transform(SQN3); crb_addr_transform(SQN2); crb_addr_transform(SQN1); crb_addr_transform(SQN0); crb_addr_transform(SQS3); crb_addr_transform(SQS2); crb_addr_transform(SQS1); crb_addr_transform(SQS0); crb_addr_transform(RPMX7); crb_addr_transform(RPMX6); crb_addr_transform(RPMX5); crb_addr_transform(RPMX4); crb_addr_transform(RPMX3); crb_addr_transform(RPMX2); crb_addr_transform(RPMX1); crb_addr_transform(RPMX0); crb_addr_transform(ROMUSB); crb_addr_transform(SN); crb_addr_transform(QMN); crb_addr_transform(QMS); crb_addr_transform(PGNI); crb_addr_transform(PGND); crb_addr_transform(PGN3); crb_addr_transform(PGN2); crb_addr_transform(PGN1); crb_addr_transform(PGN0); crb_addr_transform(PGSI); crb_addr_transform(PGSD); crb_addr_transform(PGS3); crb_addr_transform(PGS2); crb_addr_transform(PGS1); crb_addr_transform(PGS0); crb_addr_transform(PS); crb_addr_transform(PH); crb_addr_transform(NIU); crb_addr_transform(I2Q); crb_addr_transform(EG); crb_addr_transform(MN); crb_addr_transform(MS); crb_addr_transform(CAS2); crb_addr_transform(CAS1); crb_addr_transform(CAS0); crb_addr_transform(CAM); crb_addr_transform(C2C1); crb_addr_transform(C2C0); crb_addr_transform(SMB); crb_addr_transform(OCM0); crb_addr_transform(I2C0); } int netxen_init_firmware(struct netxen_adapter *adapter) { u32 state = 0, loops = 0, err = 0; /* Window 1 call */ state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE); if (state == PHAN_INITIALIZE_ACK) return 0; while (state != PHAN_INITIALIZE_COMPLETE && loops < 2000) { msleep(1); /* Window 1 call */ state = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE); loops++; } if (loops >= 2000) { printk(KERN_ERR "Cmd Peg initialization not complete:%x.\n", state); err = -EIO; return err; } /* Window 1 call */ adapter->pci_write_normalize(adapter, CRB_NIC_CAPABILITIES_HOST, INTR_SCHEME_PERPORT); adapter->pci_write_normalize(adapter, CRB_NIC_MSI_MODE_HOST, MSI_MODE_MULTIFUNC); adapter->pci_write_normalize(adapter, CRB_MPORT_MODE, MPORT_MULTI_FUNCTION_MODE); adapter->pci_write_normalize(adapter, CRB_CMDPEG_STATE, PHAN_INITIALIZE_ACK); return err; } void netxen_release_rx_buffers(struct netxen_adapter *adapter) { struct netxen_recv_context *recv_ctx; struct nx_host_rds_ring *rds_ring; struct netxen_rx_buffer *rx_buf; int i, ring; recv_ctx = &adapter->recv_ctx; for (ring = 0; ring < adapter->max_rds_rings; ring++) { rds_ring = &recv_ctx->rds_rings[ring]; for (i = 0; i < rds_ring->num_desc; ++i) { rx_buf = &(rds_ring->rx_buf_arr[i]); if (rx_buf->state == NETXEN_BUFFER_FREE) continue; pci_unmap_single(adapter->pdev, rx_buf->dma, rds_ring->dma_size, PCI_DMA_FROMDEVICE); if (rx_buf->skb != NULL) dev_kfree_skb_any(rx_buf->skb); } } } void netxen_release_tx_buffers(struct netxen_adapter *adapter) { struct netxen_cmd_buffer *cmd_buf; struct netxen_skb_frag *buffrag; int i, j; struct nx_host_tx_ring *tx_ring = &adapter->tx_ring; cmd_buf = tx_ring->cmd_buf_arr; for (i = 0; i < tx_ring->num_desc; i++) { buffrag = cmd_buf->frag_array; if (buffrag->dma) { pci_unmap_single(adapter->pdev, buffrag->dma, buffrag->length, PCI_DMA_TODEVICE); buffrag->dma = 0ULL; } for (j = 0; j < cmd_buf->frag_count; j++) { buffrag++; if (buffrag->dma) { pci_unmap_page(adapter->pdev, buffrag->dma, buffrag->length, PCI_DMA_TODEVICE); buffrag->dma = 0ULL; } } if (cmd_buf->skb) { dev_kfree_skb_any(cmd_buf->skb); cmd_buf->skb = NULL; } cmd_buf++; } } void netxen_free_sw_resources(struct netxen_adapter *adapter) { struct netxen_recv_context *recv_ctx; struct nx_host_rds_ring *rds_ring; struct nx_host_tx_ring *tx_ring; int ring; recv_ctx = &adapter->recv_ctx; for (ring = 0; ring < adapter->max_rds_rings; ring++) { rds_ring = &recv_ctx->rds_rings[ring]; if (rds_ring->rx_buf_arr) { vfree(rds_ring->rx_buf_arr); rds_ring->rx_buf_arr = NULL; } } tx_ring = &adapter->tx_ring; if (tx_ring->cmd_buf_arr) vfree(tx_ring->cmd_buf_arr); return; } int netxen_alloc_sw_resources(struct netxen_adapter *adapter) { struct netxen_recv_context *recv_ctx; struct nx_host_rds_ring *rds_ring; struct nx_host_sds_ring *sds_ring; struct nx_host_tx_ring *tx_ring = &adapter->tx_ring; struct netxen_rx_buffer *rx_buf; int ring, i, num_rx_bufs; struct netxen_cmd_buffer *cmd_buf_arr; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; tx_ring->num_desc = adapter->num_txd; cmd_buf_arr = (struct netxen_cmd_buffer *)vmalloc(TX_BUFF_RINGSIZE(tx_ring)); if (cmd_buf_arr == NULL) { dev_err(&pdev->dev, "%s: failed to allocate cmd buffer ring\n", netdev->name); return -ENOMEM; } memset(cmd_buf_arr, 0, TX_BUFF_RINGSIZE(tx_ring)); tx_ring->cmd_buf_arr = cmd_buf_arr; recv_ctx = &adapter->recv_ctx; for (ring = 0; ring < adapter->max_rds_rings; ring++) { rds_ring = &recv_ctx->rds_rings[ring]; switch (ring) { case RCV_RING_NORMAL: rds_ring->num_desc = adapter->num_rxd; if (adapter->ahw.cut_through) { rds_ring->dma_size = NX_CT_DEFAULT_RX_BUF_LEN; rds_ring->skb_size = NX_CT_DEFAULT_RX_BUF_LEN; } else { rds_ring->dma_size = RX_DMA_MAP_LEN; rds_ring->skb_size = MAX_RX_BUFFER_LENGTH; } break; case RCV_RING_JUMBO: rds_ring->num_desc = adapter->num_jumbo_rxd; if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) rds_ring->dma_size = NX_P3_RX_JUMBO_BUF_MAX_LEN; else rds_ring->dma_size = NX_P2_RX_JUMBO_BUF_MAX_LEN; rds_ring->skb_size = rds_ring->dma_size + NET_IP_ALIGN; break; case RCV_RING_LRO: rds_ring->num_desc = adapter->num_lro_rxd; rds_ring->dma_size = RX_LRO_DMA_MAP_LEN; rds_ring->skb_size = MAX_RX_LRO_BUFFER_LENGTH; break; } rds_ring->rx_buf_arr = (struct netxen_rx_buffer *) vmalloc(RCV_BUFF_RINGSIZE(rds_ring)); if (rds_ring->rx_buf_arr == NULL) { printk(KERN_ERR "%s: Failed to allocate " "rx buffer ring %d\n", netdev->name, ring); /* free whatever was already allocated */ goto err_out; } memset(rds_ring->rx_buf_arr, 0, RCV_BUFF_RINGSIZE(rds_ring)); INIT_LIST_HEAD(&rds_ring->free_list); /* * Now go through all of them, set reference handles * and put them in the queues. */ num_rx_bufs = rds_ring->num_desc; rx_buf = rds_ring->rx_buf_arr; for (i = 0; i < num_rx_bufs; i++) { list_add_tail(&rx_buf->list, &rds_ring->free_list); rx_buf->ref_handle = i; rx_buf->state = NETXEN_BUFFER_FREE; rx_buf++; } spin_lock_init(&rds_ring->lock); } for (ring = 0; ring < adapter->max_sds_rings; ring++) { sds_ring = &recv_ctx->sds_rings[ring]; sds_ring->irq = adapter->msix_entries[ring].vector; sds_ring->adapter = adapter; sds_ring->num_desc = adapter->num_rxd; for (i = 0; i < NUM_RCV_DESC_RINGS; i++) INIT_LIST_HEAD(&sds_ring->free_list[i]); } return 0; err_out: netxen_free_sw_resources(adapter); return -ENOMEM; } void netxen_initialize_adapter_ops(struct netxen_adapter *adapter) { switch (adapter->ahw.port_type) { case NETXEN_NIC_GBE: adapter->enable_phy_interrupts = netxen_niu_gbe_enable_phy_interrupts; adapter->disable_phy_interrupts = netxen_niu_gbe_disable_phy_interrupts; adapter->macaddr_set = netxen_niu_macaddr_set; adapter->set_mtu = netxen_nic_set_mtu_gb; adapter->set_promisc = netxen_niu_set_promiscuous_mode; adapter->phy_read = netxen_niu_gbe_phy_read; adapter->phy_write = netxen_niu_gbe_phy_write; adapter->init_port = netxen_niu_gbe_init_port; adapter->stop_port = netxen_niu_disable_gbe_port; break; case NETXEN_NIC_XGBE: adapter->enable_phy_interrupts = netxen_niu_xgbe_enable_phy_interrupts; adapter->disable_phy_interrupts = netxen_niu_xgbe_disable_phy_interrupts; adapter->macaddr_set = netxen_niu_xg_macaddr_set; adapter->set_mtu = netxen_nic_set_mtu_xgb; adapter->init_port = netxen_niu_xg_init_port; adapter->set_promisc = netxen_niu_xg_set_promiscuous_mode; adapter->stop_port = netxen_niu_disable_xg_port; break; default: break; } if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) { adapter->set_mtu = nx_fw_cmd_set_mtu; adapter->set_promisc = netxen_p3_nic_set_promisc; } } /* * netxen_decode_crb_addr(0 - utility to translate from internal Phantom CRB * address to external PCI CRB address. */ static u32 netxen_decode_crb_addr(u32 addr) { int i; u32 base_addr, offset, pci_base; crb_addr_transform_setup(); pci_base = NETXEN_ADDR_ERROR; base_addr = addr & 0xfff00000; offset = addr & 0x000fffff; for (i = 0; i < NETXEN_MAX_CRB_XFORM; i++) { if (crb_addr_xform[i] == base_addr) { pci_base = i << 20; break; } } if (pci_base == NETXEN_ADDR_ERROR) return pci_base; else return (pci_base + offset); } static long rom_max_timeout = 100; static long rom_lock_timeout = 10000; static int rom_lock(struct netxen_adapter *adapter) { int iter; u32 done = 0; int timeout = 0; while (!done) { /* acquire semaphore2 from PCI HW block */ netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_LOCK), &done); if (done == 1) break; if (timeout >= rom_lock_timeout) return -EIO; timeout++; /* * Yield CPU */ if (!in_atomic()) schedule(); else { for (iter = 0; iter < 20; iter++) cpu_relax(); /*This a nop instr on i386 */ } } netxen_nic_reg_write(adapter, NETXEN_ROM_LOCK_ID, ROM_LOCK_DRIVER); return 0; } static int netxen_wait_rom_done(struct netxen_adapter *adapter) { long timeout = 0; long done = 0; cond_resched(); while (done == 0) { done = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_GLB_STATUS); done &= 2; timeout++; if (timeout >= rom_max_timeout) { printk("Timeout reached waiting for rom done"); return -EIO; } } return 0; } static void netxen_rom_unlock(struct netxen_adapter *adapter) { u32 val; /* release semaphore2 */ netxen_nic_read_w0(adapter, NETXEN_PCIE_REG(PCIE_SEM2_UNLOCK), &val); } static int do_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp) { netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ADDRESS, addr); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 3); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_INSTR_OPCODE, 0xb); if (netxen_wait_rom_done(adapter)) { printk("Error waiting for rom done\n"); return -EIO; } /* reset abyte_cnt and dummy_byte_cnt */ netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_ABYTE_CNT, 0); udelay(10); netxen_nic_reg_write(adapter, NETXEN_ROMUSB_ROM_DUMMY_BYTE_CNT, 0); *valp = netxen_nic_reg_read(adapter, NETXEN_ROMUSB_ROM_RDATA); return 0; } static int do_rom_fast_read_words(struct netxen_adapter *adapter, int addr, u8 *bytes, size_t size) { int addridx; int ret = 0; for (addridx = addr; addridx < (addr + size); addridx += 4) { int v; ret = do_rom_fast_read(adapter, addridx, &v); if (ret != 0) break; *(__le32 *)bytes = cpu_to_le32(v); bytes += 4; } return ret; } int netxen_rom_fast_read_words(struct netxen_adapter *adapter, int addr, u8 *bytes, size_t size) { int ret; ret = rom_lock(adapter); if (ret < 0) return ret; ret = do_rom_fast_read_words(adapter, addr, bytes, size); netxen_rom_unlock(adapter); return ret; } int netxen_rom_fast_read(struct netxen_adapter *adapter, int addr, int *valp) { int ret; if (rom_lock(adapter) != 0) return -EIO; ret = do_rom_fast_read(adapter, addr, valp); netxen_rom_unlock(adapter); return ret; } #define NETXEN_BOARDTYPE 0x4008 #define NETXEN_BOARDNUM 0x400c #define NETXEN_CHIPNUM 0x4010 int netxen_pinit_from_rom(struct netxen_adapter *adapter, int verbose) { int addr, val; int i, n, init_delay = 0; struct crb_addr_pair *buf; unsigned offset; u32 off; /* resetall */ rom_lock(adapter); netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET, 0xffffffff); netxen_rom_unlock(adapter); if (verbose) { if (netxen_rom_fast_read(adapter, NETXEN_BOARDTYPE, &val) == 0) printk("P2 ROM board type: 0x%08x\n", val); else printk("Could not read board type\n"); if (netxen_rom_fast_read(adapter, NETXEN_BOARDNUM, &val) == 0) printk("P2 ROM board num: 0x%08x\n", val); else printk("Could not read board number\n"); if (netxen_rom_fast_read(adapter, NETXEN_CHIPNUM, &val) == 0) printk("P2 ROM chip num: 0x%08x\n", val); else printk("Could not read chip number\n"); } if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) { if (netxen_rom_fast_read(adapter, 0, &n) != 0 || (n != 0xcafecafe) || netxen_rom_fast_read(adapter, 4, &n) != 0) { printk(KERN_ERR "%s: ERROR Reading crb_init area: " "n: %08x\n", netxen_nic_driver_name, n); return -EIO; } offset = n & 0xffffU; n = (n >> 16) & 0xffffU; } else { if (netxen_rom_fast_read(adapter, 0, &n) != 0 || !(n & 0x80000000)) { printk(KERN_ERR "%s: ERROR Reading crb_init area: " "n: %08x\n", netxen_nic_driver_name, n); return -EIO; } offset = 1; n &= ~0x80000000; } if (n < 1024) { if (verbose) printk(KERN_DEBUG "%s: %d CRB init values found" " in ROM.\n", netxen_nic_driver_name, n); } else { printk(KERN_ERR "%s:n=0x%x Error! NetXen card flash not" " initialized.\n", __func__, n); return -EIO; } buf = kcalloc(n, sizeof(struct crb_addr_pair), GFP_KERNEL); if (buf == NULL) { printk("%s: netxen_pinit_from_rom: Unable to calloc memory.\n", netxen_nic_driver_name); return -ENOMEM; } for (i = 0; i < n; i++) { if (netxen_rom_fast_read(adapter, 8*i + 4*offset, &val) != 0 || netxen_rom_fast_read(adapter, 8*i + 4*offset + 4, &addr) != 0) { kfree(buf); return -EIO; } buf[i].addr = addr; buf[i].data = val; if (verbose) printk(KERN_DEBUG "%s: PCI: 0x%08x == 0x%08x\n", netxen_nic_driver_name, (u32)netxen_decode_crb_addr(addr), val); } for (i = 0; i < n; i++) { off = netxen_decode_crb_addr(buf[i].addr); if (off == NETXEN_ADDR_ERROR) { printk(KERN_ERR"CRB init value out of range %x\n", buf[i].addr); continue; } off += NETXEN_PCI_CRBSPACE; /* skipping cold reboot MAGIC */ if (off == NETXEN_CAM_RAM(0x1fc)) continue; if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) { /* do not reset PCI */ if (off == (ROMUSB_GLB + 0xbc)) continue; if (off == (ROMUSB_GLB + 0xa8)) continue; if (off == (ROMUSB_GLB + 0xc8)) /* core clock */ continue; if (off == (ROMUSB_GLB + 0x24)) /* MN clock */ continue; if (off == (ROMUSB_GLB + 0x1c)) /* MS clock */ continue; if (off == (NETXEN_CRB_PEG_NET_1 + 0x18)) buf[i].data = 0x1020; /* skip the function enable register */ if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION)) continue; if (off == NETXEN_PCIE_REG(PCIE_SETUP_FUNCTION2)) continue; if ((off & 0x0ff00000) == NETXEN_CRB_SMB) continue; } if (off == NETXEN_ADDR_ERROR) { printk(KERN_ERR "%s: Err: Unknown addr: 0x%08x\n", netxen_nic_driver_name, buf[i].addr); continue; } init_delay = 1; /* After writing this register, HW needs time for CRB */ /* to quiet down (else crb_window returns 0xffffffff) */ if (off == NETXEN_ROMUSB_GLB_SW_RESET) { init_delay = 1000; if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) { /* hold xdma in reset also */ buf[i].data = NETXEN_NIC_XDMA_RESET; buf[i].data = 0x8000ff; } } adapter->hw_write_wx(adapter, off, &buf[i].data, 4); msleep(init_delay); } kfree(buf); /* disable_peg_cache_all */ /* unreset_net_cache */ if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) { adapter->hw_read_wx(adapter, NETXEN_ROMUSB_GLB_SW_RESET, &val, 4); netxen_crb_writelit_adapter(adapter, NETXEN_ROMUSB_GLB_SW_RESET, (val & 0xffffff0f)); } /* p2dn replyCount */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0xec, 0x1e); /* disable_peg_cache 0 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_D + 0x4c, 8); /* disable_peg_cache 1 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_I + 0x4c, 8); /* peg_clr_all */ /* peg_clr 0 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_0 + 0xc, 0); /* peg_clr 1 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_1 + 0xc, 0); /* peg_clr 2 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_2 + 0xc, 0); /* peg_clr 3 */ netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0x8, 0); netxen_crb_writelit_adapter(adapter, NETXEN_CRB_PEG_NET_3 + 0xc, 0); return 0; } int netxen_initialize_adapter_offload(struct netxen_adapter *adapter) { uint64_t addr; uint32_t hi; uint32_t lo; adapter->dummy_dma.addr = pci_alloc_consistent(adapter->pdev, NETXEN_HOST_DUMMY_DMA_SIZE, &adapter->dummy_dma.phys_addr); if (adapter->dummy_dma.addr == NULL) { printk("%s: ERROR: Could not allocate dummy DMA memory\n", __func__); return -ENOMEM; } addr = (uint64_t) adapter->dummy_dma.phys_addr; hi = (addr >> 32) & 0xffffffff; lo = addr & 0xffffffff; adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_HI, hi); adapter->pci_write_normalize(adapter, CRB_HOST_DUMMY_BUF_ADDR_LO, lo); if (NX_IS_REVISION_P3(adapter->ahw.revision_id)) { uint32_t temp = 0; adapter->hw_write_wx(adapter, CRB_HOST_DUMMY_BUF, &temp, 4); } return 0; } void netxen_free_adapter_offload(struct netxen_adapter *adapter) { int i = 100; if (!adapter->dummy_dma.addr) return; if (NX_IS_REVISION_P2(adapter->ahw.revision_id)) { do { if (dma_watchdog_shutdown_request(adapter) == 1) break; msleep(50); if (dma_watchdog_shutdown_poll_result(adapter) == 1) break; } while (--i); } if (i) { pci_free_consistent(adapter->pdev, NETXEN_HOST_DUMMY_DMA_SIZE, adapter->dummy_dma.addr, adapter->dummy_dma.phys_addr); adapter->dummy_dma.addr = NULL; } else { printk(KERN_ERR "%s: dma_watchdog_shutdown failed\n", adapter->netdev->name); } } int netxen_phantom_init(struct netxen_adapter *adapter, int pegtune_val) { u32 val = 0; int retries = 60; if (!pegtune_val) { do { val = adapter->pci_read_normalize(adapter, CRB_CMDPEG_STATE); if (val == PHAN_INITIALIZE_COMPLETE || val == PHAN_INITIALIZE_ACK) return 0; msleep(500); } while (--retries); if (!retries) { pegtune_val = adapter->pci_read_normalize(adapter, NETXEN_ROMUSB_GLB_PEGTUNE_DONE); printk(KERN_WARNING "netxen_phantom_init: init failed, " "pegtune_val=%x\n", pegtune_val); return -1; } } return 0; } int netxen_receive_peg_ready(struct netxen_adapter *adapter) { u32 val = 0; int retries = 2000; do { val = adapter->pci_read_normalize(adapter, CRB_RCVPEG_STATE); if (val == PHAN_PEG_RCV_INITIALIZED) return 0; msleep(10); } while (--retries); if (!retries) { printk(KERN_ERR "Receive Peg initialization not " "complete, state: 0x%x.\n", val); return -EIO; } return 0; } static int netxen_alloc_rx_skb(struct netxen_adapter *adapter, struct nx_host_rds_ring *rds_ring, struct netxen_rx_buffer *buffer) { struct sk_buff *skb; dma_addr_t dma; struct pci_dev *pdev = adapter->pdev; buffer->skb = dev_alloc_skb(rds_ring->skb_size); if (!buffer->skb) return 1; skb = buffer->skb; if (!adapter->ahw.cut_through) skb_reserve(skb, 2); dma = pci_map_single(pdev, skb->data, rds_ring->dma_size, PCI_DMA_FROMDEVICE); if (pci_dma_mapping_error(pdev, dma)) { dev_kfree_skb_any(skb); buffer->skb = NULL; return 1; } buffer->skb = skb; buffer->dma = dma; buffer->state = NETXEN_BUFFER_BUSY; return 0; } static struct sk_buff *netxen_process_rxbuf(struct netxen_adapter *adapter, struct nx_host_rds_ring *rds_ring, u16 index, u16 cksum) { struct netxen_rx_buffer *buffer; struct sk_buff *skb; buffer = &rds_ring->rx_buf_arr[index]; pci_unmap_single(adapter->pdev, buffer->dma, rds_ring->dma_size, PCI_DMA_FROMDEVICE); skb = buffer->skb; if (!skb) goto no_skb; if (likely(adapter->rx_csum && cksum == STATUS_CKSUM_OK)) { adapter->stats.csummed++; skb->ip_summed = CHECKSUM_UNNECESSARY; } else skb->ip_summed = CHECKSUM_NONE; skb->dev = adapter->netdev; buffer->skb = NULL; no_skb: buffer->state = NETXEN_BUFFER_FREE; return skb; } static struct netxen_rx_buffer * netxen_process_rcv(struct netxen_adapter *adapter, int ring, int index, int length, int cksum, int pkt_offset) { struct net_device *netdev = adapter->netdev; struct netxen_recv_context *recv_ctx = &adapter->recv_ctx; struct netxen_rx_buffer *buffer; struct sk_buff *skb; struct nx_host_rds_ring *rds_ring = &recv_ctx->rds_rings[ring]; if (unlikely(index > rds_ring->num_desc)) return NULL; buffer = &rds_ring->rx_buf_arr[index]; skb = netxen_process_rxbuf(adapter, rds_ring, index, cksum); if (!skb) return buffer; if (length > rds_ring->skb_size) skb_put(skb, rds_ring->skb_size); else skb_put(skb, length); if (pkt_offset) skb_pull(skb, pkt_offset); skb->protocol = eth_type_trans(skb, netdev); netif_receive_skb(skb); adapter->stats.no_rcv++; adapter->stats.rxbytes += length; return buffer; } #define netxen_merge_rx_buffers(list, head) \ do { list_splice_tail_init(list, head); } while (0); int netxen_process_rcv_ring(struct nx_host_sds_ring *sds_ring, int max) { struct netxen_adapter *adapter = sds_ring->adapter; struct list_head *cur; struct status_desc *desc; struct netxen_rx_buffer *rxbuf; u32 consumer = sds_ring->consumer; int count = 0; u64 sts_data; int opcode, ring, index, length, cksum, pkt_offset; while (count < max) { desc = &sds_ring->desc_head[consumer]; sts_data = le64_to_cpu(desc->status_desc_data); if (!(sts_data & STATUS_OWNER_HOST)) break; ring = netxen_get_sts_type(sts_data); if (ring > RCV_RING_JUMBO) continue; opcode = netxen_get_sts_opcode(sts_data); index = netxen_get_sts_refhandle(sts_data); length = netxen_get_sts_totallength(sts_data); cksum = netxen_get_sts_status(sts_data); pkt_offset = netxen_get_sts_pkt_offset(sts_data); rxbuf = netxen_process_rcv(adapter, ring, index, length, cksum, pkt_offset); if (rxbuf) list_add_tail(&rxbuf->list, &sds_ring->free_list[ring]); desc->status_desc_data = cpu_to_le64(STATUS_OWNER_PHANTOM); consumer = get_next_index(consumer, sds_ring->num_desc); count++; } for (ring = 0; ring < adapter->max_rds_rings; ring++) { struct nx_host_rds_ring *rds_ring = &adapter->recv_ctx.rds_rings[ring]; if (!list_empty(&sds_ring->free_list[ring])) { list_for_each(cur, &sds_ring->free_list[ring]) { rxbuf = list_entry(cur, struct netxen_rx_buffer, list); netxen_alloc_rx_skb(adapter, rds_ring, rxbuf); } spin_lock(&rds_ring->lock); netxen_merge_rx_buffers(&sds_ring->free_list[ring], &rds_ring->free_list); spin_unlock(&rds_ring->lock); } netxen_post_rx_buffers_nodb(adapter, rds_ring); } if (count) { sds_ring->consumer = consumer; adapter->pci_write_normalize(adapter, sds_ring->crb_sts_consumer, consumer); } return count; } /* Process Command status ring */ int netxen_process_cmd_ring(struct netxen_adapter *adapter) { u32 sw_consumer, hw_consumer; int count = 0, i; struct netxen_cmd_buffer *buffer; struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; struct netxen_skb_frag *frag; int done = 0; struct nx_host_tx_ring *tx_ring = &adapter->tx_ring; if (!spin_trylock(&adapter->tx_clean_lock)) return 1; sw_consumer = tx_ring->sw_consumer; barrier(); /* hw_consumer can change underneath */ hw_consumer = le32_to_cpu(*(tx_ring->hw_consumer)); while (sw_consumer != hw_consumer) { buffer = &tx_ring->cmd_buf_arr[sw_consumer]; if (buffer->skb) { frag = &buffer->frag_array[0]; pci_unmap_single(pdev, frag->dma, frag->length, PCI_DMA_TODEVICE); frag->dma = 0ULL; for (i = 1; i < buffer->frag_count; i++) { frag++; /* Get the next frag */ pci_unmap_page(pdev, frag->dma, frag->length, PCI_DMA_TODEVICE); frag->dma = 0ULL; } adapter->stats.xmitfinished++; dev_kfree_skb_any(buffer->skb); buffer->skb = NULL; } sw_consumer = get_next_index(sw_consumer, tx_ring->num_desc); if (++count >= MAX_STATUS_HANDLE) break; } if (count) { tx_ring->sw_consumer = sw_consumer; smp_mb(); if (netif_queue_stopped(netdev) && netif_running(netdev)) { netif_tx_lock(netdev); netif_wake_queue(netdev); smp_mb(); netif_tx_unlock(netdev); } } /* * If everything is freed up to consumer then check if the ring is full * If the ring is full then check if more needs to be freed and * schedule the call back again. * * This happens when there are 2 CPUs. One could be freeing and the * other filling it. If the ring is full when we get out of here and * the card has already interrupted the host then the host can miss the * interrupt. * * There is still a possible race condition and the host could miss an * interrupt. The card has to take care of this. */ barrier(); /* hw_consumer can change underneath */ hw_consumer = le32_to_cpu(*(tx_ring->hw_consumer)); done = (sw_consumer == hw_consumer); spin_unlock(&adapter->tx_clean_lock); return (done); } void netxen_post_rx_buffers(struct netxen_adapter *adapter, u32 ringid, struct nx_host_rds_ring *rds_ring) { struct rcv_desc *pdesc; struct netxen_rx_buffer *buffer; int producer, count = 0; netxen_ctx_msg msg = 0; struct list_head *head; producer = rds_ring->producer; spin_lock(&rds_ring->lock); head = &rds_ring->free_list; while (!list_empty(head)) { buffer = list_entry(head->next, struct netxen_rx_buffer, list); if (!buffer->skb) { if (netxen_alloc_rx_skb(adapter, rds_ring, buffer)) break; } count++; list_del(&buffer->list); /* make a rcv descriptor */ pdesc = &rds_ring->desc_head[producer]; pdesc->addr_buffer = cpu_to_le64(buffer->dma); pdesc->reference_handle = cpu_to_le16(buffer->ref_handle); pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size); producer = get_next_index(producer, rds_ring->num_desc); } spin_unlock(&rds_ring->lock); if (count) { rds_ring->producer = producer; adapter->pci_write_normalize(adapter, rds_ring->crb_rcv_producer, (producer-1) & (rds_ring->num_desc-1)); if (adapter->fw_major < 4) { /* * Write a doorbell msg to tell phanmon of change in * receive ring producer * Only for firmware version < 4.0.0 */ netxen_set_msg_peg_id(msg, NETXEN_RCV_PEG_DB_ID); netxen_set_msg_privid(msg); netxen_set_msg_count(msg, ((producer - 1) & (rds_ring->num_desc - 1))); netxen_set_msg_ctxid(msg, adapter->portnum); netxen_set_msg_opcode(msg, NETXEN_RCV_PRODUCER(ringid)); writel(msg, DB_NORMALIZE(adapter, NETXEN_RCV_PRODUCER_OFFSET)); } } } static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter, struct nx_host_rds_ring *rds_ring) { struct rcv_desc *pdesc; struct netxen_rx_buffer *buffer; int producer, count = 0; struct list_head *head; producer = rds_ring->producer; if (!spin_trylock(&rds_ring->lock)) return; head = &rds_ring->free_list; while (!list_empty(head)) { buffer = list_entry(head->next, struct netxen_rx_buffer, list); if (!buffer->skb) { if (netxen_alloc_rx_skb(adapter, rds_ring, buffer)) break; } count++; list_del(&buffer->list); /* make a rcv descriptor */ pdesc = &rds_ring->desc_head[producer]; pdesc->reference_handle = cpu_to_le16(buffer->ref_handle); pdesc->buffer_length = cpu_to_le32(rds_ring->dma_size); pdesc->addr_buffer = cpu_to_le64(buffer->dma); producer = get_next_index(producer, rds_ring->num_desc); } if (count) { rds_ring->producer = producer; adapter->pci_write_normalize(adapter, rds_ring->crb_rcv_producer, (producer - 1) & (rds_ring->num_desc - 1)); wmb(); } spin_unlock(&rds_ring->lock); } void netxen_nic_clear_stats(struct netxen_adapter *adapter) { memset(&adapter->stats, 0, sizeof(adapter->stats)); return; }