/****************************************************************************** * * Copyright(c) 2009-2013 Realtek Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA * * The full GNU General Public License is included in this distribution in the * file called LICENSE. * * Contact Information: * wlanfae * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park, * Hsinchu 300, Taiwan. * * Larry Finger * *****************************************************************************/ #include "../wifi.h" #include "../efuse.h" #include "../base.h" #include "../regd.h" #include "../cam.h" #include "../ps.h" #include "../pci.h" #include "reg.h" #include "def.h" #include "phy.h" #include "dm.h" #include "fw.h" #include "led.h" #include "hw.h" #include "pwrseqcmd.h" #include "pwrseq.h" #define LLT_CONFIG 5 static void _rtl88ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw, u8 set_bits, u8 clear_bits) { struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_priv *rtlpriv = rtl_priv(hw); rtlpci->reg_bcn_ctrl_val |= set_bits; rtlpci->reg_bcn_ctrl_val &= ~clear_bits; rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); } static void _rtl88ee_stop_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6))); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte &= ~(BIT(0)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl88ee_resume_tx_beacon(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 tmp1byte; tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6)); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff); tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2); tmp1byte |= BIT(0); rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte); } static void _rtl88ee_enable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(1)); } static void _rtl88ee_return_beacon_queue_skb(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE]; while (skb_queue_len(&ring->queue)) { struct rtl_tx_desc *entry = &ring->desc[ring->idx]; struct sk_buff *skb = __skb_dequeue(&ring->queue); pci_unmap_single(rtlpci->pdev, rtlpriv->cfg->ops->get_desc( (u8 *)entry, true, HW_DESC_TXBUFF_ADDR), skb->len, PCI_DMA_TODEVICE); kfree_skb(skb); ring->idx = (ring->idx + 1) % ring->entries; } } static void _rtl88ee_disable_bcn_sub_func(struct ieee80211_hw *hw) { _rtl88ee_set_bcn_ctrl_reg(hw, BIT(1), 0); } static void _rtl88ee_set_fw_clock_on(struct ieee80211_hw *hw, u8 rpwm_val, bool need_turn_off_ckk) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool support_remote_wake_up; u32 count = 0, isr_regaddr, content; bool schedule_timer = need_turn_off_ckk; rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN, (u8 *)(&support_remote_wake_up)); if (!rtlhal->fw_ready) return; if (!rtlpriv->psc.fw_current_inpsmode) return; while (1) { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); if (rtlhal->fw_clk_change_in_progress) { while (rtlhal->fw_clk_change_in_progress) { spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); udelay(100); if (++count > 1000) return; spin_lock_bh(&rtlpriv->locks.fw_ps_lock); } spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } else { rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); break; } } if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) { rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); if (FW_PS_IS_ACK(rpwm_val)) { isr_regaddr = REG_HISR; content = rtl_read_dword(rtlpriv, isr_regaddr); while (!(content & IMR_CPWM) && (count < 500)) { udelay(50); count++; content = rtl_read_dword(rtlpriv, isr_regaddr); } if (content & IMR_CPWM) { rtl_write_word(rtlpriv, isr_regaddr, 0x0100); rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E; RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, "Receive CPWM INT!!! Set pHalData->FwPSState = %X\n", rtlhal->fw_ps_state); } } spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); if (schedule_timer) { mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); } } else { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } } static void _rtl88ee_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl8192_tx_ring *ring; enum rf_pwrstate rtstate; bool schedule_timer = false; u8 queue; if (!rtlhal->fw_ready) return; if (!rtlpriv->psc.fw_current_inpsmode) return; if (!rtlhal->allow_sw_to_change_hwclc) return; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate)); if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF) return; for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) { ring = &rtlpci->tx_ring[queue]; if (skb_queue_len(&ring->queue)) { schedule_timer = true; break; } } if (schedule_timer) { mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); return; } if (FW_PS_STATE(rtlhal->fw_ps_state) != FW_PS_STATE_RF_OFF_LOW_PWR_88E) { spin_lock_bh(&rtlpriv->locks.fw_ps_lock); if (!rtlhal->fw_clk_change_in_progress) { rtlhal->fw_clk_change_in_progress = true; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val); rtl_write_word(rtlpriv, REG_HISR, 0x0100); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); spin_lock_bh(&rtlpriv->locks.fw_ps_lock); rtlhal->fw_clk_change_in_progress = false; spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); } else { spin_unlock_bh(&rtlpriv->locks.fw_ps_lock); mod_timer(&rtlpriv->works.fw_clockoff_timer, jiffies + MSECS(10)); } } } static void _rtl88ee_set_fw_ps_rf_on(struct ieee80211_hw *hw) { u8 rpwm_val = 0; rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK); _rtl88ee_set_fw_clock_on(hw, rpwm_val, true); } static void _rtl88ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw) { u8 rpwm_val = 0; rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR_88E; _rtl88ee_set_fw_clock_off(hw, rpwm_val); } void rtl88ee_fw_clk_off_timer_callback(unsigned long data) { struct ieee80211_hw *hw = (struct ieee80211_hw *)data; _rtl88ee_set_fw_ps_rf_off_low_power(hw); } static void _rtl88ee_fwlps_leave(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool fw_current_inps = false; u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE; if (ppsc->low_power_enable) { rpwm_val = (FW_PS_STATE_ALL_ON_88E|FW_PS_ACK);/* RF on */ _rtl88ee_set_fw_clock_on(hw, rpwm_val, false); rtlhal->allow_sw_to_change_hwclc = false; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &fw_pwrmode); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } else { rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &fw_pwrmode); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); } } static void _rtl88ee_fwlps_enter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); bool fw_current_inps = true; u8 rpwm_val; if (ppsc->low_power_enable) { rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &ppsc->fwctrl_psmode); rtlhal->allow_sw_to_change_hwclc = true; _rtl88ee_set_fw_clock_off(hw, rpwm_val); } else { rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */ rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS, (u8 *)(&fw_current_inps)); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE, &ppsc->fwctrl_psmode); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val); } } void rtl88ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); switch (variable) { case HW_VAR_RCR: *((u32 *)(val)) = rtlpci->receive_config; break; case HW_VAR_RF_STATE: *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state; break; case HW_VAR_FWLPS_RF_ON:{ enum rf_pwrstate rfstate; u32 val_rcr; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rfstate)); if (rfstate == ERFOFF) { *((bool *)(val)) = true; } else { val_rcr = rtl_read_dword(rtlpriv, REG_RCR); val_rcr &= 0x00070000; if (val_rcr) *((bool *)(val)) = false; else *((bool *)(val)) = true; } break; } case HW_VAR_FW_PSMODE_STATUS: *((bool *)(val)) = ppsc->fw_current_inpsmode; break; case HW_VAR_CORRECT_TSF:{ u64 tsf; u32 *ptsf_low = (u32 *)&tsf; u32 *ptsf_high = ((u32 *)&tsf) + 1; *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4)); *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR); *((u64 *)(val)) = tsf; break; } default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not process %x\n", variable); break; } } void rtl88ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 idx; switch (variable) { case HW_VAR_ETHER_ADDR: for (idx = 0; idx < ETH_ALEN; idx++) rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]); break; case HW_VAR_BASIC_RATE:{ u16 rate_cfg = ((u16 *)val)[0]; u8 rate_index = 0; rate_cfg = rate_cfg & 0x15f; rate_cfg |= 0x01; rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff); rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff); while (rate_cfg > 0x1) { rate_cfg = (rate_cfg >> 1); rate_index++; } rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index); break; } case HW_VAR_BSSID: for (idx = 0; idx < ETH_ALEN; idx++) rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]); break; case HW_VAR_SIFS: rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]); rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]); rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]); rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]); if (!mac->ht_enable) rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e); else rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, *((u16 *)val)); break; case HW_VAR_SLOT_TIME:{ u8 e_aci; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "HW_VAR_SLOT_TIME %x\n", val[0]); rtl_write_byte(rtlpriv, REG_SLOT, val[0]); for (e_aci = 0; e_aci < AC_MAX; e_aci++) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, &e_aci); } break; } case HW_VAR_ACK_PREAMBLE:{ u8 reg_tmp; u8 short_preamble = (bool)*val; reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL+2); if (short_preamble) { reg_tmp |= 0x02; rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); } else { reg_tmp |= 0xFD; rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp); } break; } case HW_VAR_WPA_CONFIG: rtl_write_byte(rtlpriv, REG_SECCFG, *val); break; case HW_VAR_AMPDU_MIN_SPACE:{ u8 min_spacing_to_set; u8 sec_min_space; min_spacing_to_set = *val; if (min_spacing_to_set <= 7) { sec_min_space = 0; if (min_spacing_to_set < sec_min_space) min_spacing_to_set = sec_min_space; mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) | min_spacing_to_set); *val = min_spacing_to_set; RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); } break; } case HW_VAR_SHORTGI_DENSITY:{ u8 density_to_set; density_to_set = *val; mac->min_space_cfg |= (density_to_set << 3); RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_SHORTGI_DENSITY: %#x\n", mac->min_space_cfg); rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, mac->min_space_cfg); break; } case HW_VAR_AMPDU_FACTOR:{ u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 }; u8 factor; u8 *reg = NULL; u8 id = 0; reg = regtoset_normal; factor = *val; if (factor <= 3) { factor = (1 << (factor + 2)); if (factor > 0xf) factor = 0xf; for (id = 0; id < 4; id++) { if ((reg[id] & 0xf0) > (factor << 4)) reg[id] = (reg[id] & 0x0f) | (factor << 4); if ((reg[id] & 0x0f) > factor) reg[id] = (reg[id] & 0xf0) | (factor); rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + id), reg[id]); } RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD, "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor); } break; } case HW_VAR_AC_PARAM:{ u8 e_aci = *val; rtl88e_dm_init_edca_turbo(hw); if (rtlpci->acm_method != EACMWAY2_SW) rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL, &e_aci); break; } case HW_VAR_ACM_CTRL:{ u8 e_aci = *val; union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(mac->ac[0].aifs)); u8 acm = p_aci_aifsn->f.acm; u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL); acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1); if (acm) { switch (e_aci) { case AC0_BE: acm_ctrl |= ACMHW_BEQEN; break; case AC2_VI: acm_ctrl |= ACMHW_VIQEN; break; case AC3_VO: acm_ctrl |= ACMHW_VOQEN; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n", acm); break; } } else { switch (e_aci) { case AC0_BE: acm_ctrl &= (~ACMHW_BEQEN); break; case AC2_VI: acm_ctrl &= (~ACMHW_VIQEN); break; case AC3_VO: acm_ctrl &= (~ACMHW_BEQEN); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not process\n"); break; } } RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE, "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n", acm_ctrl); rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl); break; } case HW_VAR_RCR: rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]); rtlpci->receive_config = ((u32 *)(val))[0]; break; case HW_VAR_RETRY_LIMIT:{ u8 retry_limit = *val; rtl_write_word(rtlpriv, REG_RL, retry_limit << RETRY_LIMIT_SHORT_SHIFT | retry_limit << RETRY_LIMIT_LONG_SHIFT); break; } case HW_VAR_DUAL_TSF_RST: rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1))); break; case HW_VAR_EFUSE_BYTES: rtlefuse->efuse_usedbytes = *((u16 *)val); break; case HW_VAR_EFUSE_USAGE: rtlefuse->efuse_usedpercentage = *val; break; case HW_VAR_IO_CMD: rtl88e_phy_set_io_cmd(hw, (*(enum io_type *)val)); break; case HW_VAR_SET_RPWM:{ u8 rpwm_val; rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM); udelay(1); if (rpwm_val & BIT(7)) { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val); } else { rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val | BIT(7)); } break; } case HW_VAR_H2C_FW_PWRMODE: rtl88e_set_fw_pwrmode_cmd(hw, *val); break; case HW_VAR_FW_PSMODE_STATUS: ppsc->fw_current_inpsmode = *((bool *)val); break; case HW_VAR_RESUME_CLK_ON: _rtl88ee_set_fw_ps_rf_on(hw); break; case HW_VAR_FW_LPS_ACTION:{ bool enter_fwlps = *((bool *)val); if (enter_fwlps) _rtl88ee_fwlps_enter(hw); else _rtl88ee_fwlps_leave(hw); break; } case HW_VAR_H2C_FW_JOINBSSRPT:{ u8 mstatus = *val; u8 tmp, tmp_reg422, uval; u8 count = 0, dlbcn_count = 0; bool recover = false; if (mstatus == RT_MEDIA_CONNECT) { rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL); tmp = rtl_read_byte(rtlpriv, REG_CR + 1); rtl_write_byte(rtlpriv, REG_CR + 1, (tmp | BIT(0))); _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3)); _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0); tmp_reg422 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2); rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422 & (~BIT(6))); if (tmp_reg422 & BIT(6)) recover = true; do { uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2); rtl_write_byte(rtlpriv, REG_TDECTRL+2, (uval | BIT(0))); _rtl88ee_return_beacon_queue_skb(hw); rtl88e_set_fw_rsvdpagepkt(hw, 0); uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2); count = 0; while (!(uval & BIT(0)) && count < 20) { count++; udelay(10); uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2); } dlbcn_count++; } while (!(uval & BIT(0)) && dlbcn_count < 5); if (uval & BIT(0)) rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0)); _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0); _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4)); if (recover) { rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp_reg422); } rtl_write_byte(rtlpriv, REG_CR + 1, (tmp & ~(BIT(0)))); } rtl88e_set_fw_joinbss_report_cmd(hw, *val); break; } case HW_VAR_H2C_FW_P2P_PS_OFFLOAD: rtl88e_set_p2p_ps_offload_cmd(hw, *val); break; case HW_VAR_AID:{ u16 u2btmp; u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT); u2btmp &= 0xC000; rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp | mac->assoc_id)); break; } case HW_VAR_CORRECT_TSF:{ u8 btype_ibss = *val; if (btype_ibss == true) _rtl88ee_stop_tx_beacon(hw); _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3)); rtl_write_dword(rtlpriv, REG_TSFTR, (u32) (mac->tsf & 0xffffffff)); rtl_write_dword(rtlpriv, REG_TSFTR + 4, (u32) ((mac->tsf >> 32) & 0xffffffff)); _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0); if (btype_ibss == true) _rtl88ee_resume_tx_beacon(hw); break; } default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not process %x\n", variable); break; } } static bool _rtl88ee_llt_write(struct ieee80211_hw *hw, u32 address, u32 data) { struct rtl_priv *rtlpriv = rtl_priv(hw); bool status = true; long count = 0; u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS); rtl_write_dword(rtlpriv, REG_LLT_INIT, value); do { value = rtl_read_dword(rtlpriv, REG_LLT_INIT); if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value)) break; if (count > POLLING_LLT_THRESHOLD) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Failed to polling write LLT done at address %d!\n", address); status = false; break; } } while (++count); return status; } static bool _rtl88ee_llt_table_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); unsigned short i; u8 txpktbuf_bndy; u8 maxpage; bool status; maxpage = 0xAF; txpktbuf_bndy = 0xAB; rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x01); rtl_write_dword(rtlpriv, REG_RQPN, 0x80730d29); rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x25FF0000 | txpktbuf_bndy)); rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy); rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy); rtl_write_byte(rtlpriv, REG_PBP, 0x11); rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4); for (i = 0; i < (txpktbuf_bndy - 1); i++) { status = _rtl88ee_llt_write(hw, i, i + 1); if (true != status) return status; } status = _rtl88ee_llt_write(hw, (txpktbuf_bndy - 1), 0xFF); if (true != status) return status; for (i = txpktbuf_bndy; i < maxpage; i++) { status = _rtl88ee_llt_write(hw, i, (i + 1)); if (true != status) return status; } status = _rtl88ee_llt_write(hw, maxpage, txpktbuf_bndy); if (true != status) return status; return true; } static void _rtl88ee_gen_refresh_led_state(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0); if (rtlpriv->rtlhal.up_first_time) return; if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) rtl88ee_sw_led_on(hw, pLed0); else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT) rtl88ee_sw_led_on(hw, pLed0); else rtl88ee_sw_led_off(hw, pLed0); } static bool _rtl88ee_init_mac(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 bytetmp; u16 wordtmp; /*Disable XTAL OUTPUT for power saving. YJ, add, 111206. */ bytetmp = rtl_read_byte(rtlpriv, REG_XCK_OUT_CTRL) & (~BIT(0)); rtl_write_byte(rtlpriv, REG_XCK_OUT_CTRL, bytetmp); /*Auto Power Down to CHIP-off State*/ bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7)); rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp); rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00); /* HW Power on sequence */ if (!rtl88_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8188E_NIC_ENABLE_FLOW)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "init MAC Fail as rtl_hal_pwrseqcmdparsing\n"); return false; } bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4); rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp); bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2); rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp|BIT(2)); bytetmp = rtl_read_byte(rtlpriv, REG_WATCH_DOG+1); rtl_write_byte(rtlpriv, REG_WATCH_DOG+1, bytetmp|BIT(7)); bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1); rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1, bytetmp|BIT(1)); bytetmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL); rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, bytetmp|BIT(1)|BIT(0)); rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL+1, 2); rtl_write_word(rtlpriv, REG_TX_RPT_TIME, 0xcdf0); /*Add for wake up online*/ bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR); rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp|BIT(3)); bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG+1); rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+1, (bytetmp & (~BIT(4)))); rtl_write_byte(rtlpriv, 0x367, 0x80); rtl_write_word(rtlpriv, REG_CR, 0x2ff); rtl_write_byte(rtlpriv, REG_CR+1, 0x06); rtl_write_byte(rtlpriv, REG_CR+2, 0x00); if (!rtlhal->mac_func_enable) { if (_rtl88ee_llt_table_init(hw) == false) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "LLT table init fail\n"); return false; } } rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff); rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff); wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL); wordtmp &= 0xf; wordtmp |= 0xE771; rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff); rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config); rtl_write_dword(rtlpriv, REG_BCNQ_DESA, ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_MGQ_DESA, (u64) rtlpci->tx_ring[MGNT_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VOQ_DESA, (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_VIQ_DESA, (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BEQ_DESA, (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_BKQ_DESA, (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_HQ_DESA, (u64) rtlpci->tx_ring[HIGH_QUEUE].dma & DMA_BIT_MASK(32)); rtl_write_dword(rtlpriv, REG_RX_DESA, (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma & DMA_BIT_MASK(32)); /* if we want to support 64 bit DMA, we should set it here, * but at the moment we do not support 64 bit DMA */ rtl_write_dword(rtlpriv, REG_INT_MIG, 0); rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0); rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0);/*Enable RX DMA */ if (rtlhal->earlymode_enable) {/*Early mode enable*/ bytetmp = rtl_read_byte(rtlpriv, REG_EARLY_MODE_CONTROL); bytetmp |= 0x1f; rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL, bytetmp); rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL+3, 0x81); } _rtl88ee_gen_refresh_led_state(hw); return true; } static void _rtl88ee_hw_configure(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 reg_prsr; reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG; rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr); rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF); } static void _rtl88ee_enable_aspm_back_door(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); u8 tmp1byte = 0; u32 tmp4Byte = 0, count; rtl_write_word(rtlpriv, 0x354, 0x8104); rtl_write_word(rtlpriv, 0x358, 0x24); rtl_write_word(rtlpriv, 0x350, 0x70c); rtl_write_byte(rtlpriv, 0x352, 0x2); tmp1byte = rtl_read_byte(rtlpriv, 0x352); count = 0; while (tmp1byte && count < 20) { udelay(10); tmp1byte = rtl_read_byte(rtlpriv, 0x352); count++; } if (0 == tmp1byte) { tmp4Byte = rtl_read_dword(rtlpriv, 0x34c); rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(31)); rtl_write_word(rtlpriv, 0x350, 0xf70c); rtl_write_byte(rtlpriv, 0x352, 0x1); } tmp1byte = rtl_read_byte(rtlpriv, 0x352); count = 0; while (tmp1byte && count < 20) { udelay(10); tmp1byte = rtl_read_byte(rtlpriv, 0x352); count++; } rtl_write_word(rtlpriv, 0x350, 0x718); rtl_write_byte(rtlpriv, 0x352, 0x2); tmp1byte = rtl_read_byte(rtlpriv, 0x352); count = 0; while (tmp1byte && count < 20) { udelay(10); tmp1byte = rtl_read_byte(rtlpriv, 0x352); count++; } if (ppsc->support_backdoor || (0 == tmp1byte)) { tmp4Byte = rtl_read_dword(rtlpriv, 0x34c); rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(11)|BIT(12)); rtl_write_word(rtlpriv, 0x350, 0xf718); rtl_write_byte(rtlpriv, 0x352, 0x1); } tmp1byte = rtl_read_byte(rtlpriv, 0x352); count = 0; while (tmp1byte && count < 20) { udelay(10); tmp1byte = rtl_read_byte(rtlpriv, 0x352); count++; } } void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 sec_reg_value; RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n", rtlpriv->sec.pairwise_enc_algorithm, rtlpriv->sec.group_enc_algorithm); if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "not open hw encryption\n"); return; } sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE; if (rtlpriv->sec.use_defaultkey) { sec_reg_value |= SCR_TXUSEDK; sec_reg_value |= SCR_RXUSEDK; } sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK); rtl_write_byte(rtlpriv, REG_CR + 1, 0x02); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "The SECR-value %x\n", sec_reg_value); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value); } int rtl88ee_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); bool rtstatus = true; int err = 0; u8 tmp_u1b, u1byte; unsigned long flags; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Rtl8188EE hw init\n"); rtlpriv->rtlhal.being_init_adapter = true; /* As this function can take a very long time (up to 350 ms) * and can be called with irqs disabled, reenable the irqs * to let the other devices continue being serviced. * * It is safe doing so since our own interrupts will only be enabled * in a subsequent step. */ local_save_flags(flags); local_irq_enable(); rtlpriv->intf_ops->disable_aspm(hw); tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1); u1byte = rtl_read_byte(rtlpriv, REG_CR); if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) { rtlhal->mac_func_enable = true; } else { rtlhal->mac_func_enable = false; rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E; } rtstatus = _rtl88ee_init_mac(hw); if (rtstatus != true) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n"); err = 1; goto exit; } err = rtl88e_download_fw(hw, false); if (err) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Failed to download FW. Init HW without FW now..\n"); err = 1; goto exit; } else { rtlhal->fw_ready = true; } /*fw related variable initialize */ rtlhal->last_hmeboxnum = 0; rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E; rtlhal->fw_clk_change_in_progress = false; rtlhal->allow_sw_to_change_hwclc = false; ppsc->fw_current_inpsmode = false; rtl88e_phy_mac_config(hw); /* because last function modifies RCR, we update * rcr var here, or TP will be unstable for receive_config * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx * RCR_APP_ICV will cause mac80211 disassoc for cisco 1252 */ rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV); rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config); rtl88e_phy_bb_config(hw); rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1); rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1); rtlphy->rf_mode = RF_OP_BY_SW_3WIRE; rtl88e_phy_rf_config(hw); rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0, RF_CHNLBW, RFREG_OFFSET_MASK); rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 0xfff00fff; _rtl88ee_hw_configure(hw); rtl_cam_reset_all_entry(hw); rtl88ee_enable_hw_security_config(hw); rtlhal->mac_func_enable = true; ppsc->rfpwr_state = ERFON; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr); _rtl88ee_enable_aspm_back_door(hw); rtlpriv->intf_ops->enable_aspm(hw); if (ppsc->rfpwr_state == ERFON) { if ((rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) || ((rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV) && (rtlhal->oem_id == RT_CID_819X_HP))) { rtl88e_phy_set_rfpath_switch(hw, true); rtlpriv->dm.fat_table.rx_idle_ant = MAIN_ANT; } else { rtl88e_phy_set_rfpath_switch(hw, false); rtlpriv->dm.fat_table.rx_idle_ant = AUX_ANT; } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "rx idle ant %s\n", (rtlpriv->dm.fat_table.rx_idle_ant == MAIN_ANT) ? ("MAIN_ANT") : ("AUX_ANT")); if (rtlphy->iqk_initialized) { rtl88e_phy_iq_calibrate(hw, true); } else { rtl88e_phy_iq_calibrate(hw, false); rtlphy->iqk_initialized = true; } rtl88e_dm_check_txpower_tracking(hw); rtl88e_phy_lc_calibrate(hw); } tmp_u1b = efuse_read_1byte(hw, 0x1FA); if (!(tmp_u1b & BIT(0))) { rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n"); } if (!(tmp_u1b & BIT(4))) { tmp_u1b = rtl_read_byte(rtlpriv, 0x16); tmp_u1b &= 0x0F; rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80); udelay(10); rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "under 1.5V\n"); } rtl_write_byte(rtlpriv, REG_NAV_CTRL+2, ((30000+127)/128)); rtl88e_dm_init(hw); exit: local_irq_restore(flags); rtlpriv->rtlhal.being_init_adapter = false; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "end of Rtl8188EE hw init %x\n", err); return err; } static enum version_8188e _rtl88ee_read_chip_version(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); enum version_8188e version = VERSION_UNKNOWN; u32 value32; value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG); if (value32 & TRP_VAUX_EN) { version = (enum version_8188e) VERSION_TEST_CHIP_88E; } else { version = NORMAL_CHIP; version = version | ((value32 & TYPE_ID) ? RF_TYPE_2T2R : 0); version = version | ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0); } rtlphy->rf_type = RF_1T1R; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ? "RF_2T2R" : "RF_1T1R"); return version; } static int _rtl88ee_set_media_status(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); u8 bt_msr = rtl_read_byte(rtlpriv, MSR); enum led_ctl_mode ledaction = LED_CTL_NO_LINK; bt_msr &= 0xfc; if (type == NL80211_IFTYPE_UNSPECIFIED || type == NL80211_IFTYPE_STATION) { _rtl88ee_stop_tx_beacon(hw); _rtl88ee_enable_bcn_sub_func(hw); } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP || type == NL80211_IFTYPE_MESH_POINT) { _rtl88ee_resume_tx_beacon(hw); _rtl88ee_disable_bcn_sub_func(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n", type); } switch (type) { case NL80211_IFTYPE_UNSPECIFIED: bt_msr |= MSR_NOLINK; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to NO LINK!\n"); break; case NL80211_IFTYPE_ADHOC: bt_msr |= MSR_ADHOC; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Ad Hoc!\n"); break; case NL80211_IFTYPE_STATION: bt_msr |= MSR_INFRA; ledaction = LED_CTL_LINK; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to STA!\n"); break; case NL80211_IFTYPE_AP: bt_msr |= MSR_AP; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to AP!\n"); break; case NL80211_IFTYPE_MESH_POINT: bt_msr |= MSR_ADHOC; RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Set Network type to Mesh Point!\n"); break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Network type %d not support!\n", type); return 1; } rtl_write_byte(rtlpriv, (MSR), bt_msr); rtlpriv->cfg->ops->led_control(hw, ledaction); if ((bt_msr & MSR_MASK) == MSR_AP) rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00); else rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66); return 0; } void rtl88ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 reg_rcr; if (rtlpriv->psc.rfpwr_state != ERFON) return; rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); if (check_bssid == true) { reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4)); } else if (check_bssid == false) { reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN)); _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0); rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(®_rcr)); } } int rtl88ee_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (_rtl88ee_set_media_status(hw, type)) return -EOPNOTSUPP; if (rtlpriv->mac80211.link_state == MAC80211_LINKED) { if (type != NL80211_IFTYPE_AP && type != NL80211_IFTYPE_MESH_POINT) rtl88ee_set_check_bssid(hw, true); } else { rtl88ee_set_check_bssid(hw, false); } return 0; } /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */ void rtl88ee_set_qos(struct ieee80211_hw *hw, int aci) { struct rtl_priv *rtlpriv = rtl_priv(hw); rtl88e_dm_init_edca_turbo(hw); switch (aci) { case AC1_BK: rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f); break; case AC0_BE: break; case AC2_VI: rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322); break; case AC3_VO: rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222); break; default: RT_ASSERT(false, "invalid aci: %d !\n", aci); break; } } void rtl88ee_enable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF); rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF); rtlpci->irq_enabled = true; /* there are some C2H CMDs have been sent before system interrupt * is enabled, e.g., C2H, CPWM. * So we need to clear all C2H events that FW has notified, otherwise * FW won't schedule any commands anymore. */ rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0); /*enable system interrupt*/ rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF); } void rtl88ee_disable_interrupt(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED); rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED); rtlpci->irq_enabled = false; synchronize_irq(rtlpci->pdev->irq); } static void _rtl88ee_poweroff_adapter(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 u1b_tmp; u32 count = 0; rtlhal->mac_func_enable = false; rtlpriv->intf_ops->enable_aspm(hw); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n"); u1b_tmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL); rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, u1b_tmp & (~BIT(1))); u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); while (!(u1b_tmp & BIT(1)) && (count++ < 100)) { udelay(10); u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL); count++; } rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0xFF); rtl88_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8188E_NIC_LPS_ENTER_FLOW); rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00); if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready) rtl88e_firmware_selfreset(hw); u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1); rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2)))); rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00); u1b_tmp = rtl_read_byte(rtlpriv, REG_32K_CTRL); rtl_write_byte(rtlpriv, REG_32K_CTRL, (u1b_tmp & (~BIT(0)))); rtl88_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK, RTL8188E_NIC_DISABLE_FLOW); u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1); rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp & (~BIT(3)))); u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1); rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp | BIT(3))); rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E); u1b_tmp = rtl_read_byte(rtlpriv, GPIO_IN); rtl_write_byte(rtlpriv, GPIO_OUT, u1b_tmp); rtl_write_byte(rtlpriv, GPIO_IO_SEL, 0x7F); u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL); rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL, (u1b_tmp << 4) | u1b_tmp); u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL+1); rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL+1, u1b_tmp | 0x0F); rtl_write_dword(rtlpriv, REG_GPIO_IO_SEL_2+2, 0x00080808); } void rtl88ee_card_disable(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); enum nl80211_iftype opmode; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8188ee card disable\n"); mac->link_state = MAC80211_NOLINK; opmode = NL80211_IFTYPE_UNSPECIFIED; _rtl88ee_set_media_status(hw, opmode); if (rtlpriv->rtlhal.driver_is_goingto_unload || ppsc->rfoff_reason > RF_CHANGE_BY_PS) rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF); RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); _rtl88ee_poweroff_adapter(hw); /* after power off we should do iqk again */ rtlpriv->phy.iqk_initialized = false; } void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta, u32 *p_intb) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0]; rtl_write_dword(rtlpriv, ISR, *p_inta); *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1]; rtl_write_dword(rtlpriv, REG_HISRE, *p_intb); } void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); u16 bcn_interval, atim_window; bcn_interval = mac->beacon_interval; atim_window = 2; /*FIX MERGE */ rtl88ee_disable_interrupt(hw); rtl_write_word(rtlpriv, REG_ATIMWND, atim_window); rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18); rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18); rtl_write_byte(rtlpriv, 0x606, 0x30); rtlpci->reg_bcn_ctrl_val |= BIT(3); rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val); /*rtl88ee_enable_interrupt(hw);*/ } void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 bcn_interval = mac->beacon_interval; RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG, "beacon_interval:%d\n", bcn_interval); /*rtl88ee_disable_interrupt(hw);*/ rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval); /*rtl88ee_enable_interrupt(hw);*/ } void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw, u32 add_msr, u32 rm_msr) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw)); RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr); rtl88ee_disable_interrupt(hw); if (add_msr) rtlpci->irq_mask[0] |= add_msr; if (rm_msr) rtlpci->irq_mask[0] &= (~rm_msr); rtl88ee_enable_interrupt(hw); } static inline u8 get_chnl_group(u8 chnl) { u8 group; group = chnl / 3; if (chnl == 14) group = 5; return group; } static void set_diff0_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path, u32 i, u32 eadr) { pwr2g->bw40_diff[path][i] = 0; if (hwinfo[eadr] == 0xFF) { pwr2g->bw20_diff[path][i] = 0x02; } else { pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; /*bit sign number to 8 bit sign number*/ if (pwr2g->bw20_diff[path][i] & BIT(3)) pwr2g->bw20_diff[path][i] |= 0xF0; } if (hwinfo[eadr] == 0xFF) { pwr2g->ofdm_diff[path][i] = 0x04; } else { pwr2g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f); /*bit sign number to 8 bit sign number*/ if (pwr2g->ofdm_diff[path][i] & BIT(3)) pwr2g->ofdm_diff[path][i] |= 0xF0; } pwr2g->cck_diff[path][i] = 0; } static void set_diff0_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path, u32 i, u32 eadr) { pwr5g->bw40_diff[path][i] = 0; if (hwinfo[eadr] == 0xFF) { pwr5g->bw20_diff[path][i] = 0; } else { pwr5g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; /*bit sign number to 8 bit sign number*/ if (pwr5g->bw20_diff[path][i] & BIT(3)) pwr5g->bw20_diff[path][i] |= 0xF0; } if (hwinfo[eadr] == 0xFF) { pwr5g->ofdm_diff[path][i] = 0x04; } else { pwr5g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f); /*bit sign number to 8 bit sign number*/ if (pwr5g->ofdm_diff[path][i] & BIT(3)) pwr5g->ofdm_diff[path][i] |= 0xF0; } } static void set_diff1_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path, u32 i, u32 eadr) { if (hwinfo[eadr] == 0xFF) { pwr2g->bw40_diff[path][i] = 0xFE; } else { pwr2g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; if (pwr2g->bw40_diff[path][i] & BIT(3)) pwr2g->bw40_diff[path][i] |= 0xF0; } if (hwinfo[eadr] == 0xFF) { pwr2g->bw20_diff[path][i] = 0xFE; } else { pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0x0f); if (pwr2g->bw20_diff[path][i] & BIT(3)) pwr2g->bw20_diff[path][i] |= 0xF0; } } static void set_diff1_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path, u32 i, u32 eadr) { if (hwinfo[eadr] == 0xFF) { pwr5g->bw40_diff[path][i] = 0xFE; } else { pwr5g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; if (pwr5g->bw40_diff[path][i] & BIT(3)) pwr5g->bw40_diff[path][i] |= 0xF0; } if (hwinfo[eadr] == 0xFF) { pwr5g->bw20_diff[path][i] = 0xFE; } else { pwr5g->bw20_diff[path][i] = (hwinfo[eadr] & 0x0f); if (pwr5g->bw20_diff[path][i] & BIT(3)) pwr5g->bw20_diff[path][i] |= 0xF0; } } static void set_diff2_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path, u32 i, u32 eadr) { if (hwinfo[eadr] == 0xFF) { pwr2g->ofdm_diff[path][i] = 0xFE; } else { pwr2g->ofdm_diff[path][i] = (hwinfo[eadr]&0xf0)>>4; if (pwr2g->ofdm_diff[path][i] & BIT(3)) pwr2g->ofdm_diff[path][i] |= 0xF0; } if (hwinfo[eadr] == 0xFF) { pwr2g->cck_diff[path][i] = 0xFE; } else { pwr2g->cck_diff[path][i] = (hwinfo[eadr]&0x0f); if (pwr2g->cck_diff[path][i] & BIT(3)) pwr2g->cck_diff[path][i] |= 0xF0; } } static void _rtl8188e_read_power_value_fromprom(struct ieee80211_hw *hw, struct txpower_info_2g *pwr2g, struct txpower_info_5g *pwr5g, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); u32 path, eadr = EEPROM_TX_PWR_INX, i; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "hal_ReadPowerValueFromPROM88E(): PROMContent[0x%x]= 0x%x\n", (eadr+1), hwinfo[eadr+1]); if (0xFF == hwinfo[eadr+1]) autoload_fail = true; if (autoload_fail) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "auto load fail : Use Default value!\n"); for (path = 0; path < MAX_RF_PATH; path++) { /* 2.4G default value */ for (i = 0; i < MAX_CHNL_GROUP_24G; i++) { pwr2g->index_cck_base[path][i] = 0x2D; pwr2g->index_bw40_base[path][i] = 0x2D; } for (i = 0; i < MAX_TX_COUNT; i++) { if (i == 0) { pwr2g->bw20_diff[path][0] = 0x02; pwr2g->ofdm_diff[path][0] = 0x04; } else { pwr2g->bw20_diff[path][i] = 0xFE; pwr2g->bw40_diff[path][i] = 0xFE; pwr2g->cck_diff[path][i] = 0xFE; pwr2g->ofdm_diff[path][i] = 0xFE; } } } return; } for (path = 0; path < MAX_RF_PATH; path++) { /*2.4G default value*/ for (i = 0; i < MAX_CHNL_GROUP_24G; i++) { pwr2g->index_cck_base[path][i] = hwinfo[eadr++]; if (pwr2g->index_cck_base[path][i] == 0xFF) pwr2g->index_cck_base[path][i] = 0x2D; } for (i = 0; i < MAX_CHNL_GROUP_24G; i++) { pwr2g->index_bw40_base[path][i] = hwinfo[eadr++]; if (pwr2g->index_bw40_base[path][i] == 0xFF) pwr2g->index_bw40_base[path][i] = 0x2D; } for (i = 0; i < MAX_TX_COUNT; i++) { if (i == 0) { set_diff0_2g(pwr2g, hwinfo, path, i, eadr); eadr++; } else { set_diff1_2g(pwr2g, hwinfo, path, i, eadr); eadr++; set_diff2_2g(pwr2g, hwinfo, path, i, eadr); eadr++; } } /*5G default value*/ for (i = 0; i < MAX_CHNL_GROUP_5G; i++) { pwr5g->index_bw40_base[path][i] = hwinfo[eadr++]; if (pwr5g->index_bw40_base[path][i] == 0xFF) pwr5g->index_bw40_base[path][i] = 0xFE; } for (i = 0; i < MAX_TX_COUNT; i++) { if (i == 0) { set_diff0_5g(pwr5g, hwinfo, path, i, eadr); eadr++; } else { set_diff1_5g(pwr5g, hwinfo, path, i, eadr); eadr++; } } if (hwinfo[eadr] == 0xFF) { pwr5g->ofdm_diff[path][1] = 0xFE; pwr5g->ofdm_diff[path][2] = 0xFE; } else { pwr5g->ofdm_diff[path][1] = (hwinfo[eadr] & 0xf0) >> 4; pwr5g->ofdm_diff[path][2] = (hwinfo[eadr] & 0x0f); } eadr++; if (hwinfo[eadr] == 0xFF) pwr5g->ofdm_diff[path][3] = 0xFE; else pwr5g->ofdm_diff[path][3] = (hwinfo[eadr]&0x0f); eadr++; for (i = 1; i < MAX_TX_COUNT; i++) { if (pwr5g->ofdm_diff[path][i] == 0xFF) pwr5g->ofdm_diff[path][i] = 0xFE; else if (pwr5g->ofdm_diff[path][i] & BIT(3)) pwr5g->ofdm_diff[path][i] |= 0xF0; } } } static void _rtl88ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw, bool autoload_fail, u8 *hwinfo) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct txpower_info_2g pwrinfo24g; struct txpower_info_5g pwrinfo5g; u8 rf_path, index; u8 i; int jj = EEPROM_RF_BOARD_OPTION_88E; int kk = EEPROM_THERMAL_METER_88E; _rtl8188e_read_power_value_fromprom(hw, &pwrinfo24g, &pwrinfo5g, autoload_fail, hwinfo); for (rf_path = 0; rf_path < 2; rf_path++) { for (i = 0; i < 14; i++) { index = get_chnl_group(i+1); rtlefuse->txpwrlevel_cck[rf_path][i] = pwrinfo24g.index_cck_base[rf_path][index]; if (i == 13) rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = pwrinfo24g.index_bw40_base[rf_path][4]; else rtlefuse->txpwrlevel_ht40_1s[rf_path][i] = pwrinfo24g.index_bw40_base[rf_path][index]; rtlefuse->txpwr_ht20diff[rf_path][i] = pwrinfo24g.bw20_diff[rf_path][0]; rtlefuse->txpwr_legacyhtdiff[rf_path][i] = pwrinfo24g.ofdm_diff[rf_path][0]; } for (i = 0; i < 14; i++) { RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "RF(%d)-Ch(%d) [CCK / HT40_1S ] = " "[0x%x / 0x%x ]\n", rf_path, i, rtlefuse->txpwrlevel_cck[rf_path][i], rtlefuse->txpwrlevel_ht40_1s[rf_path][i]); } } if (!autoload_fail) rtlefuse->eeprom_thermalmeter = hwinfo[kk]; else rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) { rtlefuse->apk_thermalmeterignore = true; rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER; } rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter; RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter); if (!autoload_fail) { rtlefuse->eeprom_regulatory = hwinfo[jj] & 0x07;/*bit0~2*/ if (hwinfo[jj] == 0xFF) rtlefuse->eeprom_regulatory = 0; } else { rtlefuse->eeprom_regulatory = 0; } RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory); } static void _rtl88ee_read_adapter_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); u16 i, usvalue; u8 hwinfo[HWSET_MAX_SIZE]; u16 eeprom_id; int jj = EEPROM_RF_BOARD_OPTION_88E; int kk = EEPROM_RF_FEATURE_OPTION_88E; if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) { rtl_efuse_shadow_map_update(hw); memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], HWSET_MAX_SIZE); } else if (rtlefuse->epromtype == EEPROM_93C46) { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "RTL819X Not boot from eeprom, check it !!"); } RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"), hwinfo, HWSET_MAX_SIZE); eeprom_id = *((u16 *)&hwinfo[0]); if (eeprom_id != RTL8188E_EEPROM_ID) { RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, "EEPROM ID(%#x) is invalid!!\n", eeprom_id); rtlefuse->autoload_failflag = true; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; } if (rtlefuse->autoload_failflag == true) return; /*VID DID SVID SDID*/ rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID]; rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID]; rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID]; rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID]; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROMId = 0x%4x\n", eeprom_id); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid); RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid); /*customer ID*/ rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID]; if (rtlefuse->eeprom_oemid == 0xFF) rtlefuse->eeprom_oemid = 0; RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid); /*EEPROM version*/ rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION]; /*mac address*/ for (i = 0; i < 6; i += 2) { usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i]; *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "dev_addr: %pM\n", rtlefuse->dev_addr); /*channel plan */ rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN]; /* set channel paln to world wide 13 */ rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13; /*tx power*/ _rtl88ee_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); rtlefuse->txpwr_fromeprom = true; rtl8188ee_read_bt_coexist_info_from_hwpg(hw, rtlefuse->autoload_failflag, hwinfo); /*board type*/ rtlefuse->board_type = (hwinfo[jj] & 0xE0) >> 5; /*Wake on wlan*/ rtlefuse->wowlan_enable = ((hwinfo[kk] & 0x40) >> 6); /*parse xtal*/ rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_88E]; if (hwinfo[EEPROM_XTAL_88E]) rtlefuse->crystalcap = 0x20; /*antenna diversity*/ rtlefuse->antenna_div_cfg = (hwinfo[jj] & 0x18) >> 3; if (hwinfo[jj] == 0xFF) rtlefuse->antenna_div_cfg = 0; if (rppriv->bt_coexist.eeprom_bt_coexist != 0 && rppriv->bt_coexist.eeprom_bt_ant_num == ANT_X1) rtlefuse->antenna_div_cfg = 0; rtlefuse->antenna_div_type = hwinfo[EEPROM_RF_ANTENNA_OPT_88E]; if (rtlefuse->antenna_div_type == 0xFF) rtlefuse->antenna_div_type = 0x01; if (rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV || rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) rtlefuse->antenna_div_cfg = 1; if (rtlhal->oem_id == RT_CID_DEFAULT) { switch (rtlefuse->eeprom_oemid) { case EEPROM_CID_DEFAULT: if (rtlefuse->eeprom_did == 0x8179) { if (rtlefuse->eeprom_svid == 0x1025) { rtlhal->oem_id = RT_CID_819X_ACER; } else if ((rtlefuse->eeprom_svid == 0x10EC && rtlefuse->eeprom_smid == 0x0179) || (rtlefuse->eeprom_svid == 0x17AA && rtlefuse->eeprom_smid == 0x0179)) { rtlhal->oem_id = RT_CID_819X_LENOVO; } else if (rtlefuse->eeprom_svid == 0x103c && rtlefuse->eeprom_smid == 0x197d) { rtlhal->oem_id = RT_CID_819X_HP; } else { rtlhal->oem_id = RT_CID_DEFAULT; } } else { rtlhal->oem_id = RT_CID_DEFAULT; } break; case EEPROM_CID_TOSHIBA: rtlhal->oem_id = RT_CID_TOSHIBA; break; case EEPROM_CID_QMI: rtlhal->oem_id = RT_CID_819X_QMI; break; case EEPROM_CID_WHQL: default: rtlhal->oem_id = RT_CID_DEFAULT; break; } } } static void _rtl88ee_hal_customized_behavior(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); pcipriv->ledctl.led_opendrain = true; switch (rtlhal->oem_id) { case RT_CID_819X_HP: pcipriv->ledctl.led_opendrain = true; break; case RT_CID_819X_LENOVO: case RT_CID_DEFAULT: case RT_CID_TOSHIBA: case RT_CID_CCX: case RT_CID_819X_ACER: case RT_CID_WHQL: default: break; } RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RT Customized ID: 0x%02X\n", rtlhal->oem_id); } void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u8 tmp_u1b; rtlhal->version = _rtl88ee_read_chip_version(hw); if (get_rf_type(rtlphy) == RF_1T1R) { rtlpriv->dm.rfpath_rxenable[0] = true; } else { rtlpriv->dm.rfpath_rxenable[0] = true; rtlpriv->dm.rfpath_rxenable[1] = true; } RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n", rtlhal->version); tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR); if (tmp_u1b & BIT(4)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n"); rtlefuse->epromtype = EEPROM_93C46; } else { RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n"); rtlefuse->epromtype = EEPROM_BOOT_EFUSE; } if (tmp_u1b & BIT(5)) { RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n"); rtlefuse->autoload_failflag = false; _rtl88ee_read_adapter_info(hw); } else { RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n"); } _rtl88ee_hal_customized_behavior(hw); } static void rtl88ee_update_hal_rate_table(struct ieee80211_hw *hw, struct ieee80211_sta *sta) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); u32 ratr_value; u8 ratr_index = 0; u8 nmode = mac->ht_enable; u8 mimo_ps = IEEE80211_SMPS_OFF; u16 shortgi_rate; u32 tmp_ratr_value; u8 ctx40 = mac->bw_40; u16 cap = sta->ht_cap.cap; u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = mac->mode; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_value = sta->supp_rates[1] << 4; else ratr_value = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_value = 0xfff; ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: if (ratr_value & 0x0000000c) ratr_value &= 0x0000000d; else ratr_value &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_value &= 0x00000FF5; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: nmode = 1; if (mimo_ps == IEEE80211_SMPS_STATIC) { ratr_value &= 0x0007F005; } else { u32 ratr_mask; if (get_rf_type(rtlphy) == RF_1T2R || get_rf_type(rtlphy) == RF_1T1R) ratr_mask = 0x000ff005; else ratr_mask = 0x0f0ff005; ratr_value &= ratr_mask; } break; default: if (rtlphy->rf_type == RF_1T2R) ratr_value &= 0x000ff0ff; else ratr_value &= 0x0f0ff0ff; break; } if ((rppriv->bt_coexist.bt_coexistence) && (rppriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) && (rppriv->bt_coexist.bt_cur_state) && (rppriv->bt_coexist.bt_ant_isolation) && ((rppriv->bt_coexist.bt_service == BT_SCO) || (rppriv->bt_coexist.bt_service == BT_BUSY))) ratr_value &= 0x0fffcfc0; else ratr_value &= 0x0FFFFFFF; if (nmode && ((ctx40 && short40) || (!ctx40 && short20))) { ratr_value |= 0x10000000; tmp_ratr_value = (ratr_value >> 12); for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) { if ((1 << shortgi_rate) & tmp_ratr_value) break; } shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) | (shortgi_rate << 4) | (shortgi_rate); } rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value); RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0)); } static void rtl88ee_update_hal_rate_mask(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw)); struct rtl_sta_info *sta_entry = NULL; u32 ratr_bitmap; u8 ratr_index; u16 cap = sta->ht_cap.cap; u8 ctx40 = (cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0; u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0; u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0; enum wireless_mode wirelessmode = 0; bool shortgi = false; u8 rate_mask[5]; u8 macid = 0; u8 mimo_ps = IEEE80211_SMPS_OFF; sta_entry = (struct rtl_sta_info *)sta->drv_priv; wirelessmode = sta_entry->wireless_mode; if (mac->opmode == NL80211_IFTYPE_STATION || mac->opmode == NL80211_IFTYPE_MESH_POINT) ctx40 = mac->bw_40; else if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_ADHOC) macid = sta->aid + 1; if (rtlhal->current_bandtype == BAND_ON_5G) ratr_bitmap = sta->supp_rates[1] << 4; else ratr_bitmap = sta->supp_rates[0]; if (mac->opmode == NL80211_IFTYPE_ADHOC) ratr_bitmap = 0xfff; ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 | sta->ht_cap.mcs.rx_mask[0] << 12); switch (wirelessmode) { case WIRELESS_MODE_B: ratr_index = RATR_INX_WIRELESS_B; if (ratr_bitmap & 0x0000000c) ratr_bitmap &= 0x0000000d; else ratr_bitmap &= 0x0000000f; break; case WIRELESS_MODE_G: ratr_index = RATR_INX_WIRELESS_GB; if (rssi == 1) ratr_bitmap &= 0x00000f00; else if (rssi == 2) ratr_bitmap &= 0x00000ff0; else ratr_bitmap &= 0x00000ff5; break; case WIRELESS_MODE_A: ratr_index = RATR_INX_WIRELESS_A; ratr_bitmap &= 0x00000ff0; break; case WIRELESS_MODE_N_24G: case WIRELESS_MODE_N_5G: ratr_index = RATR_INX_WIRELESS_NGB; if (mimo_ps == IEEE80211_SMPS_STATIC) { if (rssi == 1) ratr_bitmap &= 0x00070000; else if (rssi == 2) ratr_bitmap &= 0x0007f000; else ratr_bitmap &= 0x0007f005; } else { if (rtlphy->rf_type == RF_1T2R || rtlphy->rf_type == RF_1T1R) { if (ctx40) { if (rssi == 1) ratr_bitmap &= 0x000f0000; else if (rssi == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff015; } else { if (rssi == 1) ratr_bitmap &= 0x000f0000; else if (rssi == 2) ratr_bitmap &= 0x000ff000; else ratr_bitmap &= 0x000ff005; } } else { if (ctx40) { if (rssi == 1) ratr_bitmap &= 0x0f8f0000; else if (rssi == 2) ratr_bitmap &= 0x0f8ff000; else ratr_bitmap &= 0x0f8ff015; } else { if (rssi == 1) ratr_bitmap &= 0x0f8f0000; else if (rssi == 2) ratr_bitmap &= 0x0f8ff000; else ratr_bitmap &= 0x0f8ff005; } } } if ((ctx40 && short40) || (!ctx40 && short20)) { if (macid == 0) shortgi = true; else if (macid == 1) shortgi = false; } break; default: ratr_index = RATR_INX_WIRELESS_NGB; if (rtlphy->rf_type == RF_1T2R) ratr_bitmap &= 0x000ff0ff; else ratr_bitmap &= 0x0f0ff0ff; break; } sta_entry->ratr_index = ratr_index; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "ratr_bitmap :%x\n", ratr_bitmap); *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28); rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80; RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n", ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1], rate_mask[2], rate_mask[3], rate_mask[4]); rtl88e_fill_h2c_cmd(hw, H2C_88E_RA_MASK, 5, rate_mask); _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0); } void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw, struct ieee80211_sta *sta, u8 rssi) { struct rtl_priv *rtlpriv = rtl_priv(hw); if (rtlpriv->dm.useramask) rtl88ee_update_hal_rate_mask(hw, sta, rssi); else rtl88ee_update_hal_rate_table(hw, sta); } void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u16 sifs_timer; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time); if (!mac->ht_enable) sifs_timer = 0x0a0a; else sifs_timer = 0x0e0e; rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer); } bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw)); enum rf_pwrstate state_toset; u32 u4tmp; bool actuallyset = false; if (rtlpriv->rtlhal.being_init_adapter) return false; if (ppsc->swrf_processing) return false; spin_lock(&rtlpriv->locks.rf_ps_lock); if (ppsc->rfchange_inprogress) { spin_unlock(&rtlpriv->locks.rf_ps_lock); return false; } else { ppsc->rfchange_inprogress = true; spin_unlock(&rtlpriv->locks.rf_ps_lock); } u4tmp = rtl_read_dword(rtlpriv, REG_GPIO_OUTPUT); state_toset = (u4tmp & BIT(31)) ? ERFON : ERFOFF; if ((ppsc->hwradiooff == true) && (state_toset == ERFON)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio ON, RF ON\n"); state_toset = ERFON; ppsc->hwradiooff = false; actuallyset = true; } else if ((ppsc->hwradiooff == false) && (state_toset == ERFOFF)) { RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG, "GPIOChangeRF - HW Radio OFF, RF OFF\n"); state_toset = ERFOFF; ppsc->hwradiooff = true; actuallyset = true; } if (actuallyset) { spin_lock(&rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = false; spin_unlock(&rtlpriv->locks.rf_ps_lock); } else { if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC); spin_lock(&rtlpriv->locks.rf_ps_lock); ppsc->rfchange_inprogress = false; spin_unlock(&rtlpriv->locks.rf_ps_lock); } *valid = 1; return !ppsc->hwradiooff; } static void add_one_key(struct ieee80211_hw *hw, u8 *macaddr, struct rtl_mac *mac, u32 key, u32 id, u8 enc_algo, bool is_pairwise) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw)); RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n"); if (is_pairwise) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n"); rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[key]); } else { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n"); if (mac->opmode == NL80211_IFTYPE_ADHOC) { rtl_cam_add_one_entry(hw, rtlefuse->dev_addr, PAIRWISE_KEYIDX, CAM_PAIRWISE_KEY_POSITION, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[id]); } rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo, CAM_CONFIG_NO_USEDK, rtlpriv->sec.key_buf[id]); } } void rtl88ee_set_key(struct ieee80211_hw *hw, u32 key, u8 *mac_ad, bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_mac *mac = rtl_mac(rtl_priv(hw)); u8 *macaddr = mac_ad; u32 id = 0; bool is_pairwise = false; static u8 cam_const_addr[4][6] = { {0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x02}, {0x00, 0x00, 0x00, 0x00, 0x00, 0x03} }; static u8 cam_const_broad[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (clear_all) { u8 idx = 0; u8 cam_offset = 0; u8 clear_number = 5; RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n"); for (idx = 0; idx < clear_number; idx++) { rtl_cam_mark_invalid(hw, cam_offset + idx); rtl_cam_empty_entry(hw, cam_offset + idx); if (idx < 5) { memset(rtlpriv->sec.key_buf[idx], 0, MAX_KEY_LEN); rtlpriv->sec.key_len[idx] = 0; } } } else { switch (enc_algo) { case WEP40_ENCRYPTION: enc_algo = CAM_WEP40; break; case WEP104_ENCRYPTION: enc_algo = CAM_WEP104; break; case TKIP_ENCRYPTION: enc_algo = CAM_TKIP; break; case AESCCMP_ENCRYPTION: enc_algo = CAM_AES; break; default: RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "switch case not processed\n"); enc_algo = CAM_TKIP; break; } if (is_wepkey || rtlpriv->sec.use_defaultkey) { macaddr = cam_const_addr[key]; id = key; } else { if (is_group) { macaddr = cam_const_broad; id = key; } else { if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) { id = rtl_cam_get_free_entry(hw, mac_ad); if (id >= TOTAL_CAM_ENTRY) { RT_TRACE(rtlpriv, COMP_SEC, DBG_EMERG, "Can not find free hw security cam entry\n"); return; } } else { id = CAM_PAIRWISE_KEY_POSITION; } key = PAIRWISE_KEYIDX; is_pairwise = true; } } if (rtlpriv->sec.key_len[key] == 0) { RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "delete one entry, id is %d\n", id); if (mac->opmode == NL80211_IFTYPE_AP || mac->opmode == NL80211_IFTYPE_MESH_POINT) rtl_cam_del_entry(hw, mac_ad); rtl_cam_delete_one_entry(hw, mac_ad, id); } else { add_one_key(hw, macaddr, mac, key, id, enc_algo, is_pairwise); } } } static void rtl8188ee_bt_var_init(struct ieee80211_hw *hw) { struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); struct bt_coexist_info coexist = rppriv->bt_coexist; coexist.bt_coexistence = rppriv->bt_coexist.eeprom_bt_coexist; coexist.bt_ant_num = coexist.eeprom_bt_ant_num; coexist.bt_coexist_type = coexist.eeprom_bt_type; if (coexist.reg_bt_iso == 2) coexist.bt_ant_isolation = coexist.eeprom_bt_ant_isol; else coexist.bt_ant_isolation = coexist.reg_bt_iso; coexist.bt_radio_shared_type = coexist.eeprom_bt_radio_shared; if (coexist.bt_coexistence) { if (coexist.reg_bt_sco == 1) coexist.bt_service = BT_OTHER_ACTION; else if (coexist.reg_bt_sco == 2) coexist.bt_service = BT_SCO; else if (coexist.reg_bt_sco == 4) coexist.bt_service = BT_BUSY; else if (coexist.reg_bt_sco == 5) coexist.bt_service = BT_OTHERBUSY; else coexist.bt_service = BT_IDLE; coexist.bt_edca_ul = 0; coexist.bt_edca_dl = 0; coexist.bt_rssi_state = 0xff; } } void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw, bool auto_load_fail, u8 *hwinfo) { rtl8188ee_bt_var_init(hw); } void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw) { struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); /* 0:Low, 1:High, 2:From Efuse. */ rppriv->bt_coexist.reg_bt_iso = 2; /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */ rppriv->bt_coexist.reg_bt_sco = 3; /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */ rppriv->bt_coexist.reg_bt_sco = 0; } void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw) { struct rtl_priv *rtlpriv = rtl_priv(hw); struct rtl_phy *rtlphy = &(rtlpriv->phy); struct rtl_pci_priv *rppriv = rtl_pcipriv(hw); struct bt_coexist_info coexist = rppriv->bt_coexist; u8 u1_tmp; if (coexist.bt_coexistence && ((coexist.bt_coexist_type == BT_CSR_BC4) || coexist.bt_coexist_type == BT_CSR_BC8)) { if (coexist.bt_ant_isolation) rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0); u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) & BIT_OFFSET_LEN_MASK_32(0, 1); u1_tmp = u1_tmp | ((coexist.bt_ant_isolation == 1) ? 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) | ((coexist.bt_service == BT_SCO) ? 0 : BIT_OFFSET_LEN_MASK_32(2, 1)); rtl_write_byte(rtlpriv, 0x4fd, u1_tmp); rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa); rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040); rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010); /* Config to 1T1R. */ if (rtlphy->rf_type == RF_1T1R) { u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE); u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1)); rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp); u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE); u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1)); rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp); } } } void rtl88ee_suspend(struct ieee80211_hw *hw) { } void rtl88ee_resume(struct ieee80211_hw *hw) { }