/* * Copyright 2012 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "priv.h" #include #include #include void gf100_ltc_cbc_clear(struct nvkm_ltc_priv *ltc, u32 start, u32 limit) { struct nvkm_device *device = ltc->base.subdev.device; nvkm_wr32(device, 0x17e8cc, start); nvkm_wr32(device, 0x17e8d0, limit); nvkm_wr32(device, 0x17e8c8, 0x00000004); } void gf100_ltc_cbc_wait(struct nvkm_ltc_priv *ltc) { struct nvkm_device *device = ltc->base.subdev.device; int c, s; for (c = 0; c < ltc->ltc_nr; c++) { for (s = 0; s < ltc->lts_nr; s++) { const u32 addr = 0x1410c8 + (c * 0x2000) + (s * 0x400); nvkm_msec(device, 2000, if (!nvkm_rd32(device, addr)) break; ); } } } void gf100_ltc_zbc_clear_color(struct nvkm_ltc_priv *ltc, int i, const u32 color[4]) { struct nvkm_device *device = ltc->base.subdev.device; nvkm_mask(device, 0x17ea44, 0x0000000f, i); nvkm_wr32(device, 0x17ea48, color[0]); nvkm_wr32(device, 0x17ea4c, color[1]); nvkm_wr32(device, 0x17ea50, color[2]); nvkm_wr32(device, 0x17ea54, color[3]); } void gf100_ltc_zbc_clear_depth(struct nvkm_ltc_priv *ltc, int i, const u32 depth) { struct nvkm_device *device = ltc->base.subdev.device; nvkm_mask(device, 0x17ea44, 0x0000000f, i); nvkm_wr32(device, 0x17ea58, depth); } static const struct nvkm_bitfield gf100_ltc_lts_intr_name[] = { { 0x00000001, "IDLE_ERROR_IQ" }, { 0x00000002, "IDLE_ERROR_CBC" }, { 0x00000004, "IDLE_ERROR_TSTG" }, { 0x00000008, "IDLE_ERROR_DSTG" }, { 0x00000010, "EVICTED_CB" }, { 0x00000020, "ILLEGAL_COMPSTAT" }, { 0x00000040, "BLOCKLINEAR_CB" }, { 0x00000100, "ECC_SEC_ERROR" }, { 0x00000200, "ECC_DED_ERROR" }, { 0x00000400, "DEBUG" }, { 0x00000800, "ATOMIC_TO_Z" }, { 0x00001000, "ILLEGAL_ATOMIC" }, { 0x00002000, "BLKACTIVITY_ERR" }, {} }; static void gf100_ltc_lts_intr(struct nvkm_ltc_priv *ltc, int c, int s) { struct nvkm_subdev *subdev = <c->base.subdev; struct nvkm_device *device = subdev->device; u32 base = 0x141000 + (c * 0x2000) + (s * 0x400); u32 intr = nvkm_rd32(device, base + 0x020); u32 stat = intr & 0x0000ffff; char msg[128]; if (stat) { nvkm_snprintbf(msg, sizeof(msg), gf100_ltc_lts_intr_name, stat); nvkm_error(subdev, "LTC%d_LTS%d: %08x [%s]\n", c, s, stat, msg); } nvkm_wr32(device, base + 0x020, intr); } void gf100_ltc_intr(struct nvkm_subdev *subdev) { struct nvkm_ltc_priv *ltc = (void *)subdev; struct nvkm_device *device = ltc->base.subdev.device; u32 mask; mask = nvkm_rd32(device, 0x00017c); while (mask) { u32 s, c = __ffs(mask); for (s = 0; s < ltc->lts_nr; s++) gf100_ltc_lts_intr(ltc, c, s); mask &= ~(1 << c); } } static int gf100_ltc_init(struct nvkm_object *object) { struct nvkm_ltc_priv *ltc = (void *)object; struct nvkm_device *device = ltc->base.subdev.device; u32 lpg128 = !(nvkm_rd32(device, 0x100c80) & 0x00000001); int ret; ret = nvkm_ltc_init(ltc); if (ret) return ret; nvkm_mask(device, 0x17e820, 0x00100000, 0x00000000); /* INTR_EN &= ~0x10 */ nvkm_wr32(device, 0x17e8d8, ltc->ltc_nr); nvkm_wr32(device, 0x17e8d4, ltc->tag_base); nvkm_mask(device, 0x17e8c0, 0x00000002, lpg128 ? 0x00000002 : 0x00000000); return 0; } void gf100_ltc_dtor(struct nvkm_object *object) { struct nvkm_ltc_priv *ltc = (void *)object; struct nvkm_ram *ram = ltc->base.subdev.device->fb->ram; nvkm_mm_fini(<c->tags); if (ram) nvkm_mm_free(&ram->vram, <c->tag_ram); nvkm_ltc_destroy(ltc); } /* TODO: Figure out tag memory details and drop the over-cautious allocation. */ int gf100_ltc_init_tag_ram(struct nvkm_ltc_priv *ltc) { struct nvkm_ram *ram = ltc->base.subdev.device->fb->ram; u32 tag_size, tag_margin, tag_align; int ret; /* No VRAM, no tags for now. */ if (!ram) { ltc->num_tags = 0; goto mm_init; } /* tags for 1/4 of VRAM should be enough (8192/4 per GiB of VRAM) */ ltc->num_tags = (ram->size >> 17) / 4; if (ltc->num_tags > (1 << 17)) ltc->num_tags = 1 << 17; /* we have 17 bits in PTE */ ltc->num_tags = (ltc->num_tags + 63) & ~63; /* round up to 64 */ tag_align = ltc->ltc_nr * 0x800; tag_margin = (tag_align < 0x6000) ? 0x6000 : tag_align; /* 4 part 4 sub: 0x2000 bytes for 56 tags */ /* 3 part 4 sub: 0x6000 bytes for 168 tags */ /* * About 147 bytes per tag. Let's be safe and allocate x2, which makes * 0x4980 bytes for 64 tags, and round up to 0x6000 bytes for 64 tags. * * For 4 GiB of memory we'll have 8192 tags which makes 3 MiB, < 0.1 %. */ tag_size = (ltc->num_tags / 64) * 0x6000 + tag_margin; tag_size += tag_align; tag_size = (tag_size + 0xfff) >> 12; /* round up */ ret = nvkm_mm_tail(&ram->vram, 1, 1, tag_size, tag_size, 1, <c->tag_ram); if (ret) { ltc->num_tags = 0; } else { u64 tag_base = ((u64)ltc->tag_ram->offset << 12) + tag_margin; tag_base += tag_align - 1; do_div(tag_base, tag_align); ltc->tag_base = tag_base; } mm_init: ret = nvkm_mm_init(<c->tags, 0, ltc->num_tags, 1); return ret; } int gf100_ltc_ctor(struct nvkm_object *parent, struct nvkm_object *engine, struct nvkm_oclass *oclass, void *data, u32 size, struct nvkm_object **pobject) { struct nvkm_device *device = (void *)parent; struct nvkm_ltc_priv *ltc; u32 parts, mask; int ret, i; ret = nvkm_ltc_create(parent, engine, oclass, <c); *pobject = nv_object(ltc); if (ret) return ret; parts = nvkm_rd32(device, 0x022438); mask = nvkm_rd32(device, 0x022554); for (i = 0; i < parts; i++) { if (!(mask & (1 << i))) ltc->ltc_nr++; } ltc->lts_nr = nvkm_rd32(device, 0x17e8dc) >> 28; ret = gf100_ltc_init_tag_ram(ltc); if (ret) return ret; nv_subdev(ltc)->intr = gf100_ltc_intr; return 0; } struct nvkm_oclass * gf100_ltc_oclass = &(struct nvkm_ltc_impl) { .base.handle = NV_SUBDEV(LTC, 0xc0), .base.ofuncs = &(struct nvkm_ofuncs) { .ctor = gf100_ltc_ctor, .dtor = gf100_ltc_dtor, .init = gf100_ltc_init, .fini = _nvkm_ltc_fini, }, .intr = gf100_ltc_intr, .cbc_clear = gf100_ltc_cbc_clear, .cbc_wait = gf100_ltc_cbc_wait, .zbc = 16, .zbc_clear_color = gf100_ltc_zbc_clear_color, .zbc_clear_depth = gf100_ltc_zbc_clear_depth, }.base;