/* * Per core/cpu state * * Used to coordinate shared registers between HT threads or * among events on a single PMU. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include "perf_event.h" /* * Intel PerfMon, used on Core and later. */ static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly = { [PERF_COUNT_HW_CPU_CYCLES] = 0x003c, [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0, [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e, [PERF_COUNT_HW_CACHE_MISSES] = 0x412e, [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4, [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5, [PERF_COUNT_HW_BUS_CYCLES] = 0x013c, [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */ }; static struct event_constraint intel_core_event_constraints[] __read_mostly = { INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_core2_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */ INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */ INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */ INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */ INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */ INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */ INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */ INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */ INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */ INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_nehalem_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */ INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */ INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */ INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */ INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */ INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_nehalem_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), EVENT_EXTRA_END }; static struct event_constraint intel_westmere_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */ INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */ INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */ INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_snb_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_ivb_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */ INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */ INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */ INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */ INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */ INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */ INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ /* * Errata BV98 -- MEM_*_RETIRED events can leak between counters of SMT * siblings; disable these events because they can corrupt unrelated * counters. */ INTEL_EVENT_CONSTRAINT(0xd0, 0x0), /* MEM_UOPS_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd1, 0x0), /* MEM_LOAD_UOPS_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd2, 0x0), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */ INTEL_EVENT_CONSTRAINT(0xd3, 0x0), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_westmere_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b), EVENT_EXTRA_END }; static struct event_constraint intel_v1_event_constraints[] __read_mostly = { EVENT_CONSTRAINT_END }; static struct event_constraint intel_gen_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ EVENT_CONSTRAINT_END }; static struct event_constraint intel_slm_event_constraints[] __read_mostly = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x013c, 2), /* CPU_CLK_UNHALTED.REF */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */ EVENT_CONSTRAINT_END }; static struct extra_reg intel_snb_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), EVENT_EXTRA_END }; static struct extra_reg intel_snbep_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1), INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd), EVENT_EXTRA_END }; EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3"); EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3"); EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2"); struct attribute *nhm_events_attrs[] = { EVENT_PTR(mem_ld_nhm), NULL, }; struct attribute *snb_events_attrs[] = { EVENT_PTR(mem_ld_snb), EVENT_PTR(mem_st_snb), NULL, }; static struct event_constraint intel_hsw_event_constraints[] = { FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */ FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */ FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */ INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.* */ INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */ INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */ /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */ INTEL_EVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */ INTEL_EVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */ INTEL_EVENT_CONSTRAINT(0x04a3, 0xf), EVENT_CONSTRAINT_END }; static u64 intel_pmu_event_map(int hw_event) { return intel_perfmon_event_map[hw_event]; } #define SNB_DMND_DATA_RD (1ULL << 0) #define SNB_DMND_RFO (1ULL << 1) #define SNB_DMND_IFETCH (1ULL << 2) #define SNB_DMND_WB (1ULL << 3) #define SNB_PF_DATA_RD (1ULL << 4) #define SNB_PF_RFO (1ULL << 5) #define SNB_PF_IFETCH (1ULL << 6) #define SNB_LLC_DATA_RD (1ULL << 7) #define SNB_LLC_RFO (1ULL << 8) #define SNB_LLC_IFETCH (1ULL << 9) #define SNB_BUS_LOCKS (1ULL << 10) #define SNB_STRM_ST (1ULL << 11) #define SNB_OTHER (1ULL << 15) #define SNB_RESP_ANY (1ULL << 16) #define SNB_NO_SUPP (1ULL << 17) #define SNB_LLC_HITM (1ULL << 18) #define SNB_LLC_HITE (1ULL << 19) #define SNB_LLC_HITS (1ULL << 20) #define SNB_LLC_HITF (1ULL << 21) #define SNB_LOCAL (1ULL << 22) #define SNB_REMOTE (0xffULL << 23) #define SNB_SNP_NONE (1ULL << 31) #define SNB_SNP_NOT_NEEDED (1ULL << 32) #define SNB_SNP_MISS (1ULL << 33) #define SNB_NO_FWD (1ULL << 34) #define SNB_SNP_FWD (1ULL << 35) #define SNB_HITM (1ULL << 36) #define SNB_NON_DRAM (1ULL << 37) #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD) #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO) #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \ SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \ SNB_HITM) #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY) #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY) #define SNB_L3_ACCESS SNB_RESP_ANY #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM) static __initconst const u64 snb_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS, [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY, [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE, }, }, }; static __initconst const u64 snb_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */ [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */ [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */ [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; static __initconst const u64 westmere_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, /* * Use RFO, not WRITEBACK, because a write miss would typically occur * on RFO. */ [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; /* * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits; * See IA32 SDM Vol 3B 30.6.1.3 */ #define NHM_DMND_DATA_RD (1 << 0) #define NHM_DMND_RFO (1 << 1) #define NHM_DMND_IFETCH (1 << 2) #define NHM_DMND_WB (1 << 3) #define NHM_PF_DATA_RD (1 << 4) #define NHM_PF_DATA_RFO (1 << 5) #define NHM_PF_IFETCH (1 << 6) #define NHM_OFFCORE_OTHER (1 << 7) #define NHM_UNCORE_HIT (1 << 8) #define NHM_OTHER_CORE_HIT_SNP (1 << 9) #define NHM_OTHER_CORE_HITM (1 << 10) /* reserved */ #define NHM_REMOTE_CACHE_FWD (1 << 12) #define NHM_REMOTE_DRAM (1 << 13) #define NHM_LOCAL_DRAM (1 << 14) #define NHM_NON_DRAM (1 << 15) #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD) #define NHM_REMOTE (NHM_REMOTE_DRAM) #define NHM_DMND_READ (NHM_DMND_DATA_RD) #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB) #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO) #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM) #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD) #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS) static __initconst const u64 nehalem_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS, [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE, [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE, }, }, }; static __initconst const u64 nehalem_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */ [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */ [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */ }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, /* * Use RFO, not WRITEBACK, because a write miss would typically occur * on RFO. */ [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0x0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */ [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(NODE) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x01b7, [ C(RESULT_MISS) ] = 0x01b7, }, }, }; static __initconst const u64 core2_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */ [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */ [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */ [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static __initconst const u64 atom_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */ [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0x0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */ [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */ [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */ [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */ [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */ }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static struct extra_reg intel_slm_extra_regs[] __read_mostly = { /* must define OFFCORE_RSP_X first, see intel_fixup_er() */ INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0), INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x768005ffffull, RSP_1), EVENT_EXTRA_END }; #define SLM_DMND_READ SNB_DMND_DATA_RD #define SLM_DMND_WRITE SNB_DMND_RFO #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO) #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM) #define SLM_LLC_ACCESS SNB_RESP_ANY #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM) static __initconst const u64 slm_hw_cache_extra_regs [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(LL ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = SLM_DMND_READ|SLM_LLC_MISS, }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS, [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS, }, }, }; static __initconst const u64 slm_hw_cache_event_ids [PERF_COUNT_HW_CACHE_MAX] [PERF_COUNT_HW_CACHE_OP_MAX] [PERF_COUNT_HW_CACHE_RESULT_MAX] = { [ C(L1D) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(L1I ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */ [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(LL ) ] = { [ C(OP_READ) ] = { /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_WRITE) ] = { /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, [ C(OP_PREFETCH) ] = { /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */ [ C(RESULT_ACCESS) ] = 0x01b7, /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */ [ C(RESULT_MISS) ] = 0x01b7, }, }, [ C(DTLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = 0, [ C(RESULT_MISS) ] = 0, }, }, [ C(ITLB) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */ [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, [ C(BPU ) ] = { [ C(OP_READ) ] = { [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */ [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */ }, [ C(OP_WRITE) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, [ C(OP_PREFETCH) ] = { [ C(RESULT_ACCESS) ] = -1, [ C(RESULT_MISS) ] = -1, }, }, }; static inline bool intel_pmu_needs_lbr_smpl(struct perf_event *event) { /* user explicitly requested branch sampling */ if (has_branch_stack(event)) return true; /* implicit branch sampling to correct PEBS skid */ if (x86_pmu.intel_cap.pebs_trap && event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) return true; return false; } static void intel_pmu_disable_all(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0); if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) intel_pmu_disable_bts(); intel_pmu_pebs_disable_all(); intel_pmu_lbr_disable_all(); } static void intel_pmu_enable_all(int added) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); intel_pmu_pebs_enable_all(); intel_pmu_lbr_enable_all(); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask); if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) { struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS]; if (WARN_ON_ONCE(!event)) return; intel_pmu_enable_bts(event->hw.config); } } /* * Workaround for: * Intel Errata AAK100 (model 26) * Intel Errata AAP53 (model 30) * Intel Errata BD53 (model 44) * * The official story: * These chips need to be 'reset' when adding counters by programming the * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either * in sequence on the same PMC or on different PMCs. * * In practise it appears some of these events do in fact count, and * we need to programm all 4 events. */ static void intel_pmu_nhm_workaround(void) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); static const unsigned long nhm_magic[4] = { 0x4300B5, 0x4300D2, 0x4300B1, 0x4300B1 }; struct perf_event *event; int i; /* * The Errata requires below steps: * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL; * 2) Configure 4 PERFEVTSELx with the magic events and clear * the corresponding PMCx; * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL; * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL; * 5) Clear 4 pairs of ERFEVTSELx and PMCx; */ /* * The real steps we choose are a little different from above. * A) To reduce MSR operations, we don't run step 1) as they * are already cleared before this function is called; * B) Call x86_perf_event_update to save PMCx before configuring * PERFEVTSELx with magic number; * C) With step 5), we do clear only when the PERFEVTSELx is * not used currently. * D) Call x86_perf_event_set_period to restore PMCx; */ /* We always operate 4 pairs of PERF Counters */ for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) x86_perf_event_update(event); } for (i = 0; i < 4; i++) { wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]); wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0); } wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf); wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0); for (i = 0; i < 4; i++) { event = cpuc->events[i]; if (event) { x86_perf_event_set_period(event); __x86_pmu_enable_event(&event->hw, ARCH_PERFMON_EVENTSEL_ENABLE); } else wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0); } } static void intel_pmu_nhm_enable_all(int added) { if (added) intel_pmu_nhm_workaround(); intel_pmu_enable_all(added); } static inline u64 intel_pmu_get_status(void) { u64 status; rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); return status; } static inline void intel_pmu_ack_status(u64 ack) { wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack); } static void intel_pmu_disable_fixed(struct hw_perf_event *hwc) { int idx = hwc->idx - INTEL_PMC_IDX_FIXED; u64 ctrl_val, mask; mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; wrmsrl(hwc->config_base, ctrl_val); } static inline bool event_is_checkpointed(struct perf_event *event) { return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0; } static void intel_pmu_disable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { intel_pmu_disable_bts(); intel_pmu_drain_bts_buffer(); return; } cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx); cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx); cpuc->intel_cp_status &= ~(1ull << hwc->idx); /* * must disable before any actual event * because any event may be combined with LBR */ if (intel_pmu_needs_lbr_smpl(event)) intel_pmu_lbr_disable(event); if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_disable_fixed(hwc); return; } x86_pmu_disable_event(event); if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_disable(event); } static void intel_pmu_enable_fixed(struct hw_perf_event *hwc) { int idx = hwc->idx - INTEL_PMC_IDX_FIXED; u64 ctrl_val, bits, mask; /* * Enable IRQ generation (0x8), * and enable ring-3 counting (0x2) and ring-0 counting (0x1) * if requested: */ bits = 0x8ULL; if (hwc->config & ARCH_PERFMON_EVENTSEL_USR) bits |= 0x2; if (hwc->config & ARCH_PERFMON_EVENTSEL_OS) bits |= 0x1; /* * ANY bit is supported in v3 and up */ if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY) bits |= 0x4; bits <<= (idx * 4); mask = 0xfULL << (idx * 4); rdmsrl(hwc->config_base, ctrl_val); ctrl_val &= ~mask; ctrl_val |= bits; wrmsrl(hwc->config_base, ctrl_val); } static void intel_pmu_enable_event(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) { if (!__this_cpu_read(cpu_hw_events.enabled)) return; intel_pmu_enable_bts(hwc->config); return; } /* * must enabled before any actual event * because any event may be combined with LBR */ if (intel_pmu_needs_lbr_smpl(event)) intel_pmu_lbr_enable(event); if (event->attr.exclude_host) cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx); if (event->attr.exclude_guest) cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx); if (unlikely(event_is_checkpointed(event))) cpuc->intel_cp_status |= (1ull << hwc->idx); if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) { intel_pmu_enable_fixed(hwc); return; } if (unlikely(event->attr.precise_ip)) intel_pmu_pebs_enable(event); __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); } /* * Save and restart an expired event. Called by NMI contexts, * so it has to be careful about preempting normal event ops: */ int intel_pmu_save_and_restart(struct perf_event *event) { x86_perf_event_update(event); /* * For a checkpointed counter always reset back to 0. This * avoids a situation where the counter overflows, aborts the * transaction and is then set back to shortly before the * overflow, and overflows and aborts again. */ if (unlikely(event_is_checkpointed(event))) { /* No race with NMIs because the counter should not be armed */ wrmsrl(event->hw.event_base, 0); local64_set(&event->hw.prev_count, 0); } return x86_perf_event_set_period(event); } static void intel_pmu_reset(void) { struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds); unsigned long flags; int idx; if (!x86_pmu.num_counters) return; local_irq_save(flags); pr_info("clearing PMU state on CPU#%d\n", smp_processor_id()); for (idx = 0; idx < x86_pmu.num_counters; idx++) { wrmsrl_safe(x86_pmu_config_addr(idx), 0ull); wrmsrl_safe(x86_pmu_event_addr(idx), 0ull); } for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull); if (ds) ds->bts_index = ds->bts_buffer_base; local_irq_restore(flags); } /* * This handler is triggered by the local APIC, so the APIC IRQ handling * rules apply: */ static int intel_pmu_handle_irq(struct pt_regs *regs) { struct perf_sample_data data; struct cpu_hw_events *cpuc; int bit, loops; u64 status; int handled; cpuc = &__get_cpu_var(cpu_hw_events); /* * No known reason to not always do late ACK, * but just in case do it opt-in. */ if (!x86_pmu.late_ack) apic_write(APIC_LVTPC, APIC_DM_NMI); intel_pmu_disable_all(); handled = intel_pmu_drain_bts_buffer(); status = intel_pmu_get_status(); if (!status) { intel_pmu_enable_all(0); return handled; } loops = 0; again: intel_pmu_ack_status(status); if (++loops > 100) { static bool warned = false; if (!warned) { WARN(1, "perfevents: irq loop stuck!\n"); perf_event_print_debug(); warned = true; } intel_pmu_reset(); goto done; } inc_irq_stat(apic_perf_irqs); intel_pmu_lbr_read(); /* * PEBS overflow sets bit 62 in the global status register */ if (__test_and_clear_bit(62, (unsigned long *)&status)) { handled++; x86_pmu.drain_pebs(regs); } /* * Checkpointed counters can lead to 'spurious' PMIs because the * rollback caused by the PMI will have cleared the overflow status * bit. Therefore always force probe these counters. */ status |= cpuc->intel_cp_status; for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) { struct perf_event *event = cpuc->events[bit]; handled++; if (!test_bit(bit, cpuc->active_mask)) continue; if (!intel_pmu_save_and_restart(event)) continue; perf_sample_data_init(&data, 0, event->hw.last_period); if (has_branch_stack(event)) data.br_stack = &cpuc->lbr_stack; if (perf_event_overflow(event, &data, regs)) x86_pmu_stop(event, 0); } /* * Repeat if there is more work to be done: */ status = intel_pmu_get_status(); if (status) goto again; done: intel_pmu_enable_all(0); /* * Only unmask the NMI after the overflow counters * have been reset. This avoids spurious NMIs on * Haswell CPUs. */ if (x86_pmu.late_ack) apic_write(APIC_LVTPC, APIC_DM_NMI); return handled; } static struct event_constraint * intel_bts_constraints(struct perf_event *event) { struct hw_perf_event *hwc = &event->hw; unsigned int hw_event, bts_event; if (event->attr.freq) return NULL; hw_event = hwc->config & INTEL_ARCH_EVENT_MASK; bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS); if (unlikely(hw_event == bts_event && hwc->sample_period == 1)) return &bts_constraint; return NULL; } static int intel_alt_er(int idx) { if (!(x86_pmu.er_flags & ERF_HAS_RSP_1)) return idx; if (idx == EXTRA_REG_RSP_0) return EXTRA_REG_RSP_1; if (idx == EXTRA_REG_RSP_1) return EXTRA_REG_RSP_0; return idx; } static void intel_fixup_er(struct perf_event *event, int idx) { event->hw.extra_reg.idx = idx; if (idx == EXTRA_REG_RSP_0) { event->hw.config &= ~INTEL_ARCH_EVENT_MASK; event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event; event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0; } else if (idx == EXTRA_REG_RSP_1) { event->hw.config &= ~INTEL_ARCH_EVENT_MASK; event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event; event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1; } } /* * manage allocation of shared extra msr for certain events * * sharing can be: * per-cpu: to be shared between the various events on a single PMU * per-core: per-cpu + shared by HT threads */ static struct event_constraint * __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc, struct perf_event *event, struct hw_perf_event_extra *reg) { struct event_constraint *c = &emptyconstraint; struct er_account *era; unsigned long flags; int idx = reg->idx; /* * reg->alloc can be set due to existing state, so for fake cpuc we * need to ignore this, otherwise we might fail to allocate proper fake * state for this extra reg constraint. Also see the comment below. */ if (reg->alloc && !cpuc->is_fake) return NULL; /* call x86_get_event_constraint() */ again: era = &cpuc->shared_regs->regs[idx]; /* * we use spin_lock_irqsave() to avoid lockdep issues when * passing a fake cpuc */ raw_spin_lock_irqsave(&era->lock, flags); if (!atomic_read(&era->ref) || era->config == reg->config) { /* * If its a fake cpuc -- as per validate_{group,event}() we * shouldn't touch event state and we can avoid doing so * since both will only call get_event_constraints() once * on each event, this avoids the need for reg->alloc. * * Not doing the ER fixup will only result in era->reg being * wrong, but since we won't actually try and program hardware * this isn't a problem either. */ if (!cpuc->is_fake) { if (idx != reg->idx) intel_fixup_er(event, idx); /* * x86_schedule_events() can call get_event_constraints() * multiple times on events in the case of incremental * scheduling(). reg->alloc ensures we only do the ER * allocation once. */ reg->alloc = 1; } /* lock in msr value */ era->config = reg->config; era->reg = reg->reg; /* one more user */ atomic_inc(&era->ref); /* * need to call x86_get_event_constraint() * to check if associated event has constraints */ c = NULL; } else { idx = intel_alt_er(idx); if (idx != reg->idx) { raw_spin_unlock_irqrestore(&era->lock, flags); goto again; } } raw_spin_unlock_irqrestore(&era->lock, flags); return c; } static void __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc, struct hw_perf_event_extra *reg) { struct er_account *era; /* * Only put constraint if extra reg was actually allocated. Also takes * care of event which do not use an extra shared reg. * * Also, if this is a fake cpuc we shouldn't touch any event state * (reg->alloc) and we don't care about leaving inconsistent cpuc state * either since it'll be thrown out. */ if (!reg->alloc || cpuc->is_fake) return; era = &cpuc->shared_regs->regs[reg->idx]; /* one fewer user */ atomic_dec(&era->ref); /* allocate again next time */ reg->alloc = 0; } static struct event_constraint * intel_shared_regs_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c = NULL, *d; struct hw_perf_event_extra *xreg, *breg; xreg = &event->hw.extra_reg; if (xreg->idx != EXTRA_REG_NONE) { c = __intel_shared_reg_get_constraints(cpuc, event, xreg); if (c == &emptyconstraint) return c; } breg = &event->hw.branch_reg; if (breg->idx != EXTRA_REG_NONE) { d = __intel_shared_reg_get_constraints(cpuc, event, breg); if (d == &emptyconstraint) { __intel_shared_reg_put_constraints(cpuc, xreg); c = d; } } return c; } struct event_constraint * x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c; if (x86_pmu.event_constraints) { for_each_event_constraint(c, x86_pmu.event_constraints) { if ((event->hw.config & c->cmask) == c->code) { event->hw.flags |= c->flags; return c; } } } return &unconstrained; } static struct event_constraint * intel_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c; c = intel_bts_constraints(event); if (c) return c; c = intel_pebs_constraints(event); if (c) return c; c = intel_shared_regs_constraints(cpuc, event); if (c) return c; return x86_get_event_constraints(cpuc, event); } static void intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct hw_perf_event_extra *reg; reg = &event->hw.extra_reg; if (reg->idx != EXTRA_REG_NONE) __intel_shared_reg_put_constraints(cpuc, reg); reg = &event->hw.branch_reg; if (reg->idx != EXTRA_REG_NONE) __intel_shared_reg_put_constraints(cpuc, reg); } static void intel_put_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { intel_put_shared_regs_event_constraints(cpuc, event); } static void intel_pebs_aliases_core2(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use INST_RETIRED.ANY_P * (0x00c0), which is a PEBS capable event, to get the same * count. * * INST_RETIRED.ANY_P counts the number of cycles that retires * CNTMASK instructions. By setting CNTMASK to a value (16) * larger than the maximum number of instructions that can be * retired per cycle (4) and then inverting the condition, we * count all cycles that retire 16 or less instructions, which * is every cycle. * * Thereby we gain a PEBS capable cycle counter. */ u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static void intel_pebs_aliases_snb(struct perf_event *event) { if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) { /* * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P * (0x003c) so that we can use it with PEBS. * * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't * PEBS capable. However we can use UOPS_RETIRED.ALL * (0x01c2), which is a PEBS capable event, to get the same * count. * * UOPS_RETIRED.ALL counts the number of cycles that retires * CNTMASK micro-ops. By setting CNTMASK to a value (16) * larger than the maximum number of micro-ops that can be * retired per cycle (4) and then inverting the condition, we * count all cycles that retire 16 or less micro-ops, which * is every cycle. * * Thereby we gain a PEBS capable cycle counter. */ u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16); alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK); event->hw.config = alt_config; } } static int intel_pmu_hw_config(struct perf_event *event) { int ret = x86_pmu_hw_config(event); if (ret) return ret; if (event->attr.precise_ip && x86_pmu.pebs_aliases) x86_pmu.pebs_aliases(event); if (intel_pmu_needs_lbr_smpl(event)) { ret = intel_pmu_setup_lbr_filter(event); if (ret) return ret; } if (event->attr.type != PERF_TYPE_RAW) return 0; if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY)) return 0; if (x86_pmu.version < 3) return -EINVAL; if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN)) return -EACCES; event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY; return 0; } struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr) { if (x86_pmu.guest_get_msrs) return x86_pmu.guest_get_msrs(nr); *nr = 0; return NULL; } EXPORT_SYMBOL_GPL(perf_guest_get_msrs); static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL; arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask; arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask; /* * If PMU counter has PEBS enabled it is not enough to disable counter * on a guest entry since PEBS memory write can overshoot guest entry * and corrupt guest memory. Disabling PEBS solves the problem. */ arr[1].msr = MSR_IA32_PEBS_ENABLE; arr[1].host = cpuc->pebs_enabled; arr[1].guest = 0; *nr = 2; return arr; } static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs; int idx; for (idx = 0; idx < x86_pmu.num_counters; idx++) { struct perf_event *event = cpuc->events[idx]; arr[idx].msr = x86_pmu_config_addr(idx); arr[idx].host = arr[idx].guest = 0; if (!test_bit(idx, cpuc->active_mask)) continue; arr[idx].host = arr[idx].guest = event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE; if (event->attr.exclude_host) arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE; else if (event->attr.exclude_guest) arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE; } *nr = x86_pmu.num_counters; return arr; } static void core_pmu_enable_event(struct perf_event *event) { if (!event->attr.exclude_host) x86_pmu_enable_event(event); } static void core_pmu_enable_all(int added) { struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); int idx; for (idx = 0; idx < x86_pmu.num_counters; idx++) { struct hw_perf_event *hwc = &cpuc->events[idx]->hw; if (!test_bit(idx, cpuc->active_mask) || cpuc->events[idx]->attr.exclude_host) continue; __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); } } static int hsw_hw_config(struct perf_event *event) { int ret = intel_pmu_hw_config(event); if (ret) return ret; if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE)) return 0; event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED); /* * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with * PEBS or in ANY thread mode. Since the results are non-sensical forbid * this combination. */ if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) && ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) || event->attr.precise_ip > 0)) return -EOPNOTSUPP; if (event_is_checkpointed(event)) { /* * Sampling of checkpointed events can cause situations where * the CPU constantly aborts because of a overflow, which is * then checkpointed back and ignored. Forbid checkpointing * for sampling. * * But still allow a long sampling period, so that perf stat * from KVM works. */ if (event->attr.sample_period > 0 && event->attr.sample_period < 0x7fffffff) return -EOPNOTSUPP; } return 0; } static struct event_constraint counter2_constraint = EVENT_CONSTRAINT(0, 0x4, 0); static struct event_constraint * hsw_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event) { struct event_constraint *c = intel_get_event_constraints(cpuc, event); /* Handle special quirk on in_tx_checkpointed only in counter 2 */ if (event->hw.config & HSW_IN_TX_CHECKPOINTED) { if (c->idxmsk64 & (1U << 2)) return &counter2_constraint; return &emptyconstraint; } return c; } PMU_FORMAT_ATTR(event, "config:0-7" ); PMU_FORMAT_ATTR(umask, "config:8-15" ); PMU_FORMAT_ATTR(edge, "config:18" ); PMU_FORMAT_ATTR(pc, "config:19" ); PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */ PMU_FORMAT_ATTR(inv, "config:23" ); PMU_FORMAT_ATTR(cmask, "config:24-31" ); PMU_FORMAT_ATTR(in_tx, "config:32"); PMU_FORMAT_ATTR(in_tx_cp, "config:33"); static struct attribute *intel_arch_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_pc.attr, &format_attr_inv.attr, &format_attr_cmask.attr, NULL, }; ssize_t intel_event_sysfs_show(char *page, u64 config) { u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT); return x86_event_sysfs_show(page, config, event); } static __initconst const struct x86_pmu core_pmu = { .name = "core", .handle_irq = x86_pmu_handle_irq, .disable_all = x86_pmu_disable_all, .enable_all = core_pmu_enable_all, .enable = core_pmu_enable_event, .disable = x86_pmu_disable_event, .hw_config = x86_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL << 31) - 1, .get_event_constraints = intel_get_event_constraints, .put_event_constraints = intel_put_event_constraints, .event_constraints = intel_core_event_constraints, .guest_get_msrs = core_guest_get_msrs, .format_attrs = intel_arch_formats_attr, .events_sysfs_show = intel_event_sysfs_show, }; struct intel_shared_regs *allocate_shared_regs(int cpu) { struct intel_shared_regs *regs; int i; regs = kzalloc_node(sizeof(struct intel_shared_regs), GFP_KERNEL, cpu_to_node(cpu)); if (regs) { /* * initialize the locks to keep lockdep happy */ for (i = 0; i < EXTRA_REG_MAX; i++) raw_spin_lock_init(®s->regs[i].lock); regs->core_id = -1; } return regs; } static int intel_pmu_cpu_prepare(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); if (!(x86_pmu.extra_regs || x86_pmu.lbr_sel_map)) return NOTIFY_OK; cpuc->shared_regs = allocate_shared_regs(cpu); if (!cpuc->shared_regs) return NOTIFY_BAD; return NOTIFY_OK; } static void intel_pmu_cpu_starting(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); int core_id = topology_core_id(cpu); int i; init_debug_store_on_cpu(cpu); /* * Deal with CPUs that don't clear their LBRs on power-up. */ intel_pmu_lbr_reset(); cpuc->lbr_sel = NULL; if (!cpuc->shared_regs) return; if (!(x86_pmu.er_flags & ERF_NO_HT_SHARING)) { for_each_cpu(i, topology_thread_cpumask(cpu)) { struct intel_shared_regs *pc; pc = per_cpu(cpu_hw_events, i).shared_regs; if (pc && pc->core_id == core_id) { cpuc->kfree_on_online = cpuc->shared_regs; cpuc->shared_regs = pc; break; } } cpuc->shared_regs->core_id = core_id; cpuc->shared_regs->refcnt++; } if (x86_pmu.lbr_sel_map) cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR]; } static void intel_pmu_cpu_dying(int cpu) { struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); struct intel_shared_regs *pc; pc = cpuc->shared_regs; if (pc) { if (pc->core_id == -1 || --pc->refcnt == 0) kfree(pc); cpuc->shared_regs = NULL; } fini_debug_store_on_cpu(cpu); } static void intel_pmu_flush_branch_stack(void) { /* * Intel LBR does not tag entries with the * PID of the current task, then we need to * flush it on ctxsw * For now, we simply reset it */ if (x86_pmu.lbr_nr) intel_pmu_lbr_reset(); } PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63"); PMU_FORMAT_ATTR(ldlat, "config1:0-15"); static struct attribute *intel_arch3_formats_attr[] = { &format_attr_event.attr, &format_attr_umask.attr, &format_attr_edge.attr, &format_attr_pc.attr, &format_attr_any.attr, &format_attr_inv.attr, &format_attr_cmask.attr, &format_attr_in_tx.attr, &format_attr_in_tx_cp.attr, &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */ &format_attr_ldlat.attr, /* PEBS load latency */ NULL, }; static __initconst const struct x86_pmu intel_pmu = { .name = "Intel", .handle_irq = intel_pmu_handle_irq, .disable_all = intel_pmu_disable_all, .enable_all = intel_pmu_enable_all, .enable = intel_pmu_enable_event, .disable = intel_pmu_disable_event, .hw_config = intel_pmu_hw_config, .schedule_events = x86_schedule_events, .eventsel = MSR_ARCH_PERFMON_EVENTSEL0, .perfctr = MSR_ARCH_PERFMON_PERFCTR0, .event_map = intel_pmu_event_map, .max_events = ARRAY_SIZE(intel_perfmon_event_map), .apic = 1, /* * Intel PMCs cannot be accessed sanely above 32 bit width, * so we install an artificial 1<<31 period regardless of * the generic event period: */ .max_period = (1ULL << 31) - 1, .get_event_constraints = intel_get_event_constraints, .put_event_constraints = intel_put_event_constraints, .pebs_aliases = intel_pebs_aliases_core2, .format_attrs = intel_arch3_formats_attr, .events_sysfs_show = intel_event_sysfs_show, .cpu_prepare = intel_pmu_cpu_prepare, .cpu_starting = intel_pmu_cpu_starting, .cpu_dying = intel_pmu_cpu_dying, .guest_get_msrs = intel_guest_get_msrs, .flush_branch_stack = intel_pmu_flush_branch_stack, }; static __init void intel_clovertown_quirk(void) { /* * PEBS is unreliable due to: * * AJ67 - PEBS may experience CPL leaks * AJ68 - PEBS PMI may be delayed by one event * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12] * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS * * AJ67 could be worked around by restricting the OS/USR flags. * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI. * * AJ106 could possibly be worked around by not allowing LBR * usage from PEBS, including the fixup. * AJ68 could possibly be worked around by always programming * a pebs_event_reset[0] value and coping with the lost events. * * But taken together it might just make sense to not enable PEBS on * these chips. */ pr_warn("PEBS disabled due to CPU errata\n"); x86_pmu.pebs = 0; x86_pmu.pebs_constraints = NULL; } static int intel_snb_pebs_broken(int cpu) { u32 rev = UINT_MAX; /* default to broken for unknown models */ switch (cpu_data(cpu).x86_model) { case 42: /* SNB */ rev = 0x28; break; case 45: /* SNB-EP */ switch (cpu_data(cpu).x86_mask) { case 6: rev = 0x618; break; case 7: rev = 0x70c; break; } } return (cpu_data(cpu).microcode < rev); } static void intel_snb_check_microcode(void) { int pebs_broken = 0; int cpu; get_online_cpus(); for_each_online_cpu(cpu) { if ((pebs_broken = intel_snb_pebs_broken(cpu))) break; } put_online_cpus(); if (pebs_broken == x86_pmu.pebs_broken) return; /* * Serialized by the microcode lock.. */ if (x86_pmu.pebs_broken) { pr_info("PEBS enabled due to microcode update\n"); x86_pmu.pebs_broken = 0; } else { pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n"); x86_pmu.pebs_broken = 1; } } static __init void intel_sandybridge_quirk(void) { x86_pmu.check_microcode = intel_snb_check_microcode; intel_snb_check_microcode(); } static const struct { int id; char *name; } intel_arch_events_map[] __initconst = { { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" }, { PERF_COUNT_HW_INSTRUCTIONS, "instructions" }, { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" }, { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" }, { PERF_COUNT_HW_CACHE_MISSES, "cache misses" }, { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" }, { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" }, }; static __init void intel_arch_events_quirk(void) { int bit; /* disable event that reported as not presend by cpuid */ for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) { intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0; pr_warn("CPUID marked event: \'%s\' unavailable\n", intel_arch_events_map[bit].name); } } static __init void intel_nehalem_quirk(void) { union cpuid10_ebx ebx; ebx.full = x86_pmu.events_maskl; if (ebx.split.no_branch_misses_retired) { /* * Erratum AAJ80 detected, we work it around by using * the BR_MISP_EXEC.ANY event. This will over-count * branch-misses, but it's still much better than the * architectural event which is often completely bogus: */ intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89; ebx.split.no_branch_misses_retired = 0; x86_pmu.events_maskl = ebx.full; pr_info("CPU erratum AAJ80 worked around\n"); } } EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3"); EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82") /* Haswell special events */ EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1"); EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2"); EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4"); EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2"); EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1"); EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1"); EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2"); EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4"); EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2"); EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1"); EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1"); EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1"); static struct attribute *hsw_events_attrs[] = { EVENT_PTR(tx_start), EVENT_PTR(tx_commit), EVENT_PTR(tx_abort), EVENT_PTR(tx_capacity), EVENT_PTR(tx_conflict), EVENT_PTR(el_start), EVENT_PTR(el_commit), EVENT_PTR(el_abort), EVENT_PTR(el_capacity), EVENT_PTR(el_conflict), EVENT_PTR(cycles_t), EVENT_PTR(cycles_ct), EVENT_PTR(mem_ld_hsw), EVENT_PTR(mem_st_hsw), NULL }; __init int intel_pmu_init(void) { union cpuid10_edx edx; union cpuid10_eax eax; union cpuid10_ebx ebx; struct event_constraint *c; unsigned int unused; int version; if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) { switch (boot_cpu_data.x86) { case 0x6: return p6_pmu_init(); case 0xb: return knc_pmu_init(); case 0xf: return p4_pmu_init(); } return -ENODEV; } /* * Check whether the Architectural PerfMon supports * Branch Misses Retired hw_event or not. */ cpuid(10, &eax.full, &ebx.full, &unused, &edx.full); if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT) return -ENODEV; version = eax.split.version_id; if (version < 2) x86_pmu = core_pmu; else x86_pmu = intel_pmu; x86_pmu.version = version; x86_pmu.num_counters = eax.split.num_counters; x86_pmu.cntval_bits = eax.split.bit_width; x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1; x86_pmu.events_maskl = ebx.full; x86_pmu.events_mask_len = eax.split.mask_length; x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters); /* * Quirk: v2 perfmon does not report fixed-purpose events, so * assume at least 3 events: */ if (version > 1) x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3); /* * v2 and above have a perf capabilities MSR */ if (version > 1) { u64 capabilities; rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities); x86_pmu.intel_cap.capabilities = capabilities; } intel_ds_init(); x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */ /* * Install the hw-cache-events table: */ switch (boot_cpu_data.x86_model) { case 14: /* 65 nm core solo/duo, "Yonah" */ pr_cont("Core events, "); break; case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */ x86_add_quirk(intel_clovertown_quirk); case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */ case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */ case 29: /* six-core 45 nm xeon "Dunnington" */ memcpy(hw_cache_event_ids, core2_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_core(); x86_pmu.event_constraints = intel_core2_event_constraints; x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints; pr_cont("Core2 events, "); break; case 26: /* 45 nm nehalem, "Bloomfield" */ case 30: /* 45 nm nehalem, "Lynnfield" */ case 46: /* 45 nm nehalem-ex, "Beckton" */ memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_nehalem_event_constraints; x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; x86_pmu.extra_regs = intel_nehalem_extra_regs; x86_pmu.cpu_events = nhm_events_attrs; /* UOPS_ISSUED.STALLED_CYCLES */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); x86_add_quirk(intel_nehalem_quirk); pr_cont("Nehalem events, "); break; case 28: /* Atom */ case 38: /* Lincroft */ case 39: /* Penwell */ case 53: /* Cloverview */ case 54: /* Cedarview */ memcpy(hw_cache_event_ids, atom_hw_cache_event_ids, sizeof(hw_cache_event_ids)); intel_pmu_lbr_init_atom(); x86_pmu.event_constraints = intel_gen_event_constraints; x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints; pr_cont("Atom events, "); break; case 55: /* Atom 22nm "Silvermont" */ memcpy(hw_cache_event_ids, slm_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_atom(); x86_pmu.event_constraints = intel_slm_event_constraints; x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints; x86_pmu.extra_regs = intel_slm_extra_regs; x86_pmu.er_flags |= ERF_HAS_RSP_1; pr_cont("Silvermont events, "); break; case 37: /* 32 nm nehalem, "Clarkdale" */ case 44: /* 32 nm nehalem, "Gulftown" */ case 47: /* 32 nm Xeon E7 */ memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_nhm(); x86_pmu.event_constraints = intel_westmere_event_constraints; x86_pmu.enable_all = intel_pmu_nhm_enable_all; x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints; x86_pmu.extra_regs = intel_westmere_extra_regs; x86_pmu.er_flags |= ERF_HAS_RSP_1; x86_pmu.cpu_events = nhm_events_attrs; /* UOPS_ISSUED.STALLED_CYCLES */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1); pr_cont("Westmere events, "); break; case 42: /* SandyBridge */ case 45: /* SandyBridge, "Romely-EP" */ x86_add_quirk(intel_sandybridge_quirk); memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_snb(); x86_pmu.event_constraints = intel_snb_event_constraints; x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_snb; if (boot_cpu_data.x86_model == 45) x86_pmu.extra_regs = intel_snbep_extra_regs; else x86_pmu.extra_regs = intel_snb_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.er_flags |= ERF_HAS_RSP_1; x86_pmu.er_flags |= ERF_NO_HT_SHARING; x86_pmu.cpu_events = snb_events_attrs; /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1); pr_cont("SandyBridge events, "); break; case 58: /* IvyBridge */ case 62: /* IvyBridge EP */ memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_snb(); x86_pmu.event_constraints = intel_ivb_event_constraints; x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints; x86_pmu.pebs_aliases = intel_pebs_aliases_snb; if (boot_cpu_data.x86_model == 62) x86_pmu.extra_regs = intel_snbep_extra_regs; else x86_pmu.extra_regs = intel_snb_extra_regs; /* all extra regs are per-cpu when HT is on */ x86_pmu.er_flags |= ERF_HAS_RSP_1; x86_pmu.er_flags |= ERF_NO_HT_SHARING; x86_pmu.cpu_events = snb_events_attrs; /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */ intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1); pr_cont("IvyBridge events, "); break; case 60: /* Haswell Client */ case 70: case 71: case 63: case 69: x86_pmu.late_ack = true; memcpy(hw_cache_event_ids, snb_hw_cache_event_ids, sizeof(hw_cache_event_ids)); memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs, sizeof(hw_cache_extra_regs)); intel_pmu_lbr_init_snb(); x86_pmu.event_constraints = intel_hsw_event_constraints; x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints; x86_pmu.extra_regs = intel_snb_extra_regs; x86_pmu.pebs_aliases = intel_pebs_aliases_snb; /* all extra regs are per-cpu when HT is on */ x86_pmu.er_flags |= ERF_HAS_RSP_1; x86_pmu.er_flags |= ERF_NO_HT_SHARING; x86_pmu.hw_config = hsw_hw_config; x86_pmu.get_event_constraints = hsw_get_event_constraints; x86_pmu.cpu_events = hsw_events_attrs; pr_cont("Haswell events, "); break; default: switch (x86_pmu.version) { case 1: x86_pmu.event_constraints = intel_v1_event_constraints; pr_cont("generic architected perfmon v1, "); break; default: /* * default constraints for v2 and up */ x86_pmu.event_constraints = intel_gen_event_constraints; pr_cont("generic architected perfmon, "); break; } } if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) { WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!", x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC); x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC; } x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) { WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!", x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED); x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED; } x86_pmu.intel_ctrl |= ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED; if (x86_pmu.event_constraints) { /* * event on fixed counter2 (REF_CYCLES) only works on this * counter, so do not extend mask to generic counters */ for_each_event_constraint(c, x86_pmu.event_constraints) { if (c->cmask != FIXED_EVENT_FLAGS || c->idxmsk64 == INTEL_PMC_MSK_FIXED_REF_CYCLES) { continue; } c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1; c->weight += x86_pmu.num_counters; } } /* Support full width counters using alternative MSR range */ if (x86_pmu.intel_cap.full_width_write) { x86_pmu.max_period = x86_pmu.cntval_mask; x86_pmu.perfctr = MSR_IA32_PMC0; pr_cont("full-width counters, "); } return 0; }