/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 1999, 2000, 01 Ralf Baechle * Copyright (C) 1995, 1996 Paul M. Antoine * Copyright (C) 1998 Ulf Carlsson * Copyright (C) 1999 Silicon Graphics, Inc. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000, 01 MIPS Technologies, Inc. * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern asmlinkage void handle_tlbm(void); extern asmlinkage void handle_tlbl(void); extern asmlinkage void handle_tlbs(void); extern asmlinkage void handle_adel(void); extern asmlinkage void handle_ades(void); extern asmlinkage void handle_ibe(void); extern asmlinkage void handle_dbe(void); extern asmlinkage void handle_sys(void); extern asmlinkage void handle_bp(void); extern asmlinkage void handle_ri(void); extern asmlinkage void handle_cpu(void); extern asmlinkage void handle_ov(void); extern asmlinkage void handle_tr(void); extern asmlinkage void handle_fpe(void); extern asmlinkage void handle_mdmx(void); extern asmlinkage void handle_watch(void); extern asmlinkage void handle_dsp(void); extern asmlinkage void handle_mcheck(void); extern asmlinkage void handle_reserved(void); extern int fpu_emulator_cop1Handler(int xcptno, struct pt_regs *xcp, struct mips_fpu_soft_struct *ctx); void (*board_be_init)(void); int (*board_be_handler)(struct pt_regs *regs, int is_fixup); void (*board_nmi_handler_setup)(void); void (*board_ejtag_handler_setup)(void); void (*board_bind_eic_interrupt)(int irq, int regset); /* * These constant is for searching for possible module text segments. * MODULE_RANGE is a guess of how much space is likely to be vmalloced. */ #define MODULE_RANGE (8*1024*1024) /* * This routine abuses get_user()/put_user() to reference pointers * with at least a bit of error checking ... */ void show_stack(struct task_struct *task, unsigned long *sp) { const int field = 2 * sizeof(unsigned long); long stackdata; int i; if (!sp) { if (task && task != current) sp = (unsigned long *) task->thread.reg29; else sp = (unsigned long *) &sp; } printk("Stack :"); i = 0; while ((unsigned long) sp & (PAGE_SIZE - 1)) { if (i && ((i % (64 / field)) == 0)) printk("\n "); if (i > 39) { printk(" ..."); break; } if (__get_user(stackdata, sp++)) { printk(" (Bad stack address)"); break; } printk(" %0*lx", field, stackdata); i++; } printk("\n"); } void show_trace(struct task_struct *task, unsigned long *stack) { const int field = 2 * sizeof(unsigned long); unsigned long addr; if (!stack) { if (task && task != current) stack = (unsigned long *) task->thread.reg29; else stack = (unsigned long *) &stack; } printk("Call Trace:"); #ifdef CONFIG_KALLSYMS printk("\n"); #endif while (!kstack_end(stack)) { addr = *stack++; if (__kernel_text_address(addr)) { printk(" [<%0*lx>] ", field, addr); print_symbol("%s\n", addr); } } printk("\n"); } /* * The architecture-independent dump_stack generator */ void dump_stack(void) { unsigned long stack; show_trace(current, &stack); } EXPORT_SYMBOL(dump_stack); void show_code(unsigned int *pc) { long i; printk("\nCode:"); for(i = -3 ; i < 6 ; i++) { unsigned int insn; if (__get_user(insn, pc + i)) { printk(" (Bad address in epc)\n"); break; } printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>')); } } void show_regs(struct pt_regs *regs) { const int field = 2 * sizeof(unsigned long); unsigned int cause = regs->cp0_cause; int i; printk("Cpu %d\n", smp_processor_id()); /* * Saved main processor registers */ for (i = 0; i < 32; ) { if ((i % 4) == 0) printk("$%2d :", i); if (i == 0) printk(" %0*lx", field, 0UL); else if (i == 26 || i == 27) printk(" %*s", field, ""); else printk(" %0*lx", field, regs->regs[i]); i++; if ((i % 4) == 0) printk("\n"); } printk("Hi : %0*lx\n", field, regs->hi); printk("Lo : %0*lx\n", field, regs->lo); /* * Saved cp0 registers */ printk("epc : %0*lx ", field, regs->cp0_epc); print_symbol("%s ", regs->cp0_epc); printk(" %s\n", print_tainted()); printk("ra : %0*lx ", field, regs->regs[31]); print_symbol("%s\n", regs->regs[31]); printk("Status: %08x ", (uint32_t) regs->cp0_status); if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) { if (regs->cp0_status & ST0_KUO) printk("KUo "); if (regs->cp0_status & ST0_IEO) printk("IEo "); if (regs->cp0_status & ST0_KUP) printk("KUp "); if (regs->cp0_status & ST0_IEP) printk("IEp "); if (regs->cp0_status & ST0_KUC) printk("KUc "); if (regs->cp0_status & ST0_IEC) printk("IEc "); } else { if (regs->cp0_status & ST0_KX) printk("KX "); if (regs->cp0_status & ST0_SX) printk("SX "); if (regs->cp0_status & ST0_UX) printk("UX "); switch (regs->cp0_status & ST0_KSU) { case KSU_USER: printk("USER "); break; case KSU_SUPERVISOR: printk("SUPERVISOR "); break; case KSU_KERNEL: printk("KERNEL "); break; default: printk("BAD_MODE "); break; } if (regs->cp0_status & ST0_ERL) printk("ERL "); if (regs->cp0_status & ST0_EXL) printk("EXL "); if (regs->cp0_status & ST0_IE) printk("IE "); } printk("\n"); printk("Cause : %08x\n", cause); cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; if (1 <= cause && cause <= 5) printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); printk("PrId : %08x\n", read_c0_prid()); } void show_registers(struct pt_regs *regs) { show_regs(regs); print_modules(); printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n", current->comm, current->pid, current_thread_info(), current); show_stack(current, (long *) regs->regs[29]); show_trace(current, (long *) regs->regs[29]); show_code((unsigned int *) regs->cp0_epc); printk("\n"); } static DEFINE_SPINLOCK(die_lock); NORET_TYPE void ATTRIB_NORET __die(const char * str, struct pt_regs * regs, const char * file, const char * func, unsigned long line) { static int die_counter; console_verbose(); spin_lock_irq(&die_lock); printk("%s", str); if (file && func) printk(" in %s:%s, line %ld", file, func, line); printk("[#%d]:\n", ++die_counter); show_registers(regs); spin_unlock_irq(&die_lock); do_exit(SIGSEGV); } void __die_if_kernel(const char * str, struct pt_regs * regs, const char * file, const char * func, unsigned long line) { if (!user_mode(regs)) __die(str, regs, file, func, line); } extern const struct exception_table_entry __start___dbe_table[]; extern const struct exception_table_entry __stop___dbe_table[]; void __declare_dbe_table(void) { __asm__ __volatile__( ".section\t__dbe_table,\"a\"\n\t" ".previous" ); } /* Given an address, look for it in the exception tables. */ static const struct exception_table_entry *search_dbe_tables(unsigned long addr) { const struct exception_table_entry *e; e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); if (!e) e = search_module_dbetables(addr); return e; } asmlinkage void do_be(struct pt_regs *regs) { const int field = 2 * sizeof(unsigned long); const struct exception_table_entry *fixup = NULL; int data = regs->cp0_cause & 4; int action = MIPS_BE_FATAL; /* XXX For now. Fixme, this searches the wrong table ... */ if (data && !user_mode(regs)) fixup = search_dbe_tables(exception_epc(regs)); if (fixup) action = MIPS_BE_FIXUP; if (board_be_handler) action = board_be_handler(regs, fixup != 0); switch (action) { case MIPS_BE_DISCARD: return; case MIPS_BE_FIXUP: if (fixup) { regs->cp0_epc = fixup->nextinsn; return; } break; default: break; } /* * Assume it would be too dangerous to continue ... */ printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", data ? "Data" : "Instruction", field, regs->cp0_epc, field, regs->regs[31]); die_if_kernel("Oops", regs); force_sig(SIGBUS, current); } static inline int get_insn_opcode(struct pt_regs *regs, unsigned int *opcode) { unsigned int __user *epc; epc = (unsigned int __user *) regs->cp0_epc + ((regs->cp0_cause & CAUSEF_BD) != 0); if (!get_user(*opcode, epc)) return 0; force_sig(SIGSEGV, current); return 1; } /* * ll/sc emulation */ #define OPCODE 0xfc000000 #define BASE 0x03e00000 #define RT 0x001f0000 #define OFFSET 0x0000ffff #define LL 0xc0000000 #define SC 0xe0000000 #define SPEC3 0x7c000000 #define RD 0x0000f800 #define FUNC 0x0000003f #define RDHWR 0x0000003b /* * The ll_bit is cleared by r*_switch.S */ unsigned long ll_bit; static struct task_struct *ll_task = NULL; static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode) { unsigned long value, __user *vaddr; long offset; int signal = 0; /* * analyse the ll instruction that just caused a ri exception * and put the referenced address to addr. */ /* sign extend offset */ offset = opcode & OFFSET; offset <<= 16; offset >>= 16; vaddr = (unsigned long __user *) ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); if ((unsigned long)vaddr & 3) { signal = SIGBUS; goto sig; } if (get_user(value, vaddr)) { signal = SIGSEGV; goto sig; } preempt_disable(); if (ll_task == NULL || ll_task == current) { ll_bit = 1; } else { ll_bit = 0; } ll_task = current; preempt_enable(); compute_return_epc(regs); regs->regs[(opcode & RT) >> 16] = value; return; sig: force_sig(signal, current); } static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode) { unsigned long __user *vaddr; unsigned long reg; long offset; int signal = 0; /* * analyse the sc instruction that just caused a ri exception * and put the referenced address to addr. */ /* sign extend offset */ offset = opcode & OFFSET; offset <<= 16; offset >>= 16; vaddr = (unsigned long __user *) ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); reg = (opcode & RT) >> 16; if ((unsigned long)vaddr & 3) { signal = SIGBUS; goto sig; } preempt_disable(); if (ll_bit == 0 || ll_task != current) { compute_return_epc(regs); regs->regs[reg] = 0; preempt_enable(); return; } preempt_enable(); if (put_user(regs->regs[reg], vaddr)) { signal = SIGSEGV; goto sig; } compute_return_epc(regs); regs->regs[reg] = 1; return; sig: force_sig(signal, current); } /* * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both * opcodes are supposed to result in coprocessor unusable exceptions if * executed on ll/sc-less processors. That's the theory. In practice a * few processors such as NEC's VR4100 throw reserved instruction exceptions * instead, so we're doing the emulation thing in both exception handlers. */ static inline int simulate_llsc(struct pt_regs *regs) { unsigned int opcode; if (unlikely(get_insn_opcode(regs, &opcode))) return -EFAULT; if ((opcode & OPCODE) == LL) { simulate_ll(regs, opcode); return 0; } if ((opcode & OPCODE) == SC) { simulate_sc(regs, opcode); return 0; } return -EFAULT; /* Strange things going on ... */ } /* * Simulate trapping 'rdhwr' instructions to provide user accessible * registers not implemented in hardware. The only current use of this * is the thread area pointer. */ static inline int simulate_rdhwr(struct pt_regs *regs) { struct thread_info *ti = current->thread_info; unsigned int opcode; if (unlikely(get_insn_opcode(regs, &opcode))) return -EFAULT; if (unlikely(compute_return_epc(regs))) return -EFAULT; if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { int rd = (opcode & RD) >> 11; int rt = (opcode & RT) >> 16; switch (rd) { case 29: regs->regs[rt] = ti->tp_value; break; default: return -EFAULT; } } return 0; } asmlinkage void do_ov(struct pt_regs *regs) { siginfo_t info; info.si_code = FPE_INTOVF; info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void __user *) regs->cp0_epc; force_sig_info(SIGFPE, &info, current); } /* * XXX Delayed fp exceptions when doing a lazy ctx switch XXX */ asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) { if (fcr31 & FPU_CSR_UNI_X) { int sig; preempt_disable(); #ifdef CONFIG_PREEMPT if (!is_fpu_owner()) { /* We might lose fpu before disabling preempt... */ own_fpu(); BUG_ON(!used_math()); restore_fp(current); } #endif /* * Unimplemented operation exception. If we've got the full * software emulator on-board, let's use it... * * Force FPU to dump state into task/thread context. We're * moving a lot of data here for what is probably a single * instruction, but the alternative is to pre-decode the FP * register operands before invoking the emulator, which seems * a bit extreme for what should be an infrequent event. */ save_fp(current); /* Ensure 'resume' not overwrite saved fp context again. */ lose_fpu(); preempt_enable(); /* Run the emulator */ sig = fpu_emulator_cop1Handler (0, regs, ¤t->thread.fpu.soft); preempt_disable(); own_fpu(); /* Using the FPU again. */ /* * We can't allow the emulated instruction to leave any of * the cause bit set in $fcr31. */ current->thread.fpu.soft.fcr31 &= ~FPU_CSR_ALL_X; /* Restore the hardware register state */ restore_fp(current); preempt_enable(); /* If something went wrong, signal */ if (sig) force_sig(sig, current); return; } force_sig(SIGFPE, current); } asmlinkage void do_bp(struct pt_regs *regs) { unsigned int opcode, bcode; siginfo_t info; die_if_kernel("Break instruction in kernel code", regs); if (get_insn_opcode(regs, &opcode)) return; /* * There is the ancient bug in the MIPS assemblers that the break * code starts left to bit 16 instead to bit 6 in the opcode. * Gas is bug-compatible, but not always, grrr... * We handle both cases with a simple heuristics. --macro */ bcode = ((opcode >> 6) & ((1 << 20) - 1)); if (bcode < (1 << 10)) bcode <<= 10; /* * (A short test says that IRIX 5.3 sends SIGTRAP for all break * insns, even for break codes that indicate arithmetic failures. * Weird ...) * But should we continue the brokenness??? --macro */ switch (bcode) { case BRK_OVERFLOW << 10: case BRK_DIVZERO << 10: if (bcode == (BRK_DIVZERO << 10)) info.si_code = FPE_INTDIV; else info.si_code = FPE_INTOVF; info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void __user *) regs->cp0_epc; force_sig_info(SIGFPE, &info, current); break; default: force_sig(SIGTRAP, current); } } asmlinkage void do_tr(struct pt_regs *regs) { unsigned int opcode, tcode = 0; siginfo_t info; die_if_kernel("Trap instruction in kernel code", regs); if (get_insn_opcode(regs, &opcode)) return; /* Immediate versions don't provide a code. */ if (!(opcode & OPCODE)) tcode = ((opcode >> 6) & ((1 << 10) - 1)); /* * (A short test says that IRIX 5.3 sends SIGTRAP for all trap * insns, even for trap codes that indicate arithmetic failures. * Weird ...) * But should we continue the brokenness??? --macro */ switch (tcode) { case BRK_OVERFLOW: case BRK_DIVZERO: if (tcode == BRK_DIVZERO) info.si_code = FPE_INTDIV; else info.si_code = FPE_INTOVF; info.si_signo = SIGFPE; info.si_errno = 0; info.si_addr = (void __user *) regs->cp0_epc; force_sig_info(SIGFPE, &info, current); break; default: force_sig(SIGTRAP, current); } } asmlinkage void do_ri(struct pt_regs *regs) { die_if_kernel("Reserved instruction in kernel code", regs); if (!cpu_has_llsc) if (!simulate_llsc(regs)) return; if (!simulate_rdhwr(regs)) return; force_sig(SIGILL, current); } asmlinkage void do_cpu(struct pt_regs *regs) { unsigned int cpid; die_if_kernel("do_cpu invoked from kernel context!", regs); cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; switch (cpid) { case 0: if (!cpu_has_llsc) if (!simulate_llsc(regs)) return; if (!simulate_rdhwr(regs)) return; break; case 1: preempt_disable(); own_fpu(); if (used_math()) { /* Using the FPU again. */ restore_fp(current); } else { /* First time FPU user. */ init_fpu(); set_used_math(); } preempt_enable(); if (!cpu_has_fpu) { int sig = fpu_emulator_cop1Handler(0, regs, ¤t->thread.fpu.soft); if (sig) force_sig(sig, current); } return; case 2: case 3: break; } force_sig(SIGILL, current); } asmlinkage void do_mdmx(struct pt_regs *regs) { force_sig(SIGILL, current); } asmlinkage void do_watch(struct pt_regs *regs) { /* * We use the watch exception where available to detect stack * overflows. */ dump_tlb_all(); show_regs(regs); panic("Caught WATCH exception - probably caused by stack overflow."); } asmlinkage void do_mcheck(struct pt_regs *regs) { show_regs(regs); dump_tlb_all(); /* * Some chips may have other causes of machine check (e.g. SB1 * graduation timer) */ panic("Caught Machine Check exception - %scaused by multiple " "matching entries in the TLB.", (regs->cp0_status & ST0_TS) ? "" : "not "); } asmlinkage void do_dsp(struct pt_regs *regs) { if (cpu_has_dsp) panic("Unexpected DSP exception\n"); force_sig(SIGILL, current); } asmlinkage void do_reserved(struct pt_regs *regs) { /* * Game over - no way to handle this if it ever occurs. Most probably * caused by a new unknown cpu type or after another deadly * hard/software error. */ show_regs(regs); panic("Caught reserved exception %ld - should not happen.", (regs->cp0_cause & 0x7f) >> 2); } asmlinkage void do_default_vi(struct pt_regs *regs) { show_regs(regs); panic("Caught unexpected vectored interrupt."); } /* * Some MIPS CPUs can enable/disable for cache parity detection, but do * it different ways. */ static inline void parity_protection_init(void) { switch (current_cpu_data.cputype) { case CPU_24K: case CPU_5KC: write_c0_ecc(0x80000000); back_to_back_c0_hazard(); /* Set the PE bit (bit 31) in the c0_errctl register. */ printk(KERN_INFO "Cache parity protection %sabled\n", (read_c0_ecc() & 0x80000000) ? "en" : "dis"); break; case CPU_20KC: case CPU_25KF: /* Clear the DE bit (bit 16) in the c0_status register. */ printk(KERN_INFO "Enable cache parity protection for " "MIPS 20KC/25KF CPUs.\n"); clear_c0_status(ST0_DE); break; default: break; } } asmlinkage void cache_parity_error(void) { const int field = 2 * sizeof(unsigned long); unsigned int reg_val; /* For the moment, report the problem and hang. */ printk("Cache error exception:\n"); printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); reg_val = read_c0_cacheerr(); printk("c0_cacheerr == %08x\n", reg_val); printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", reg_val & (1<<30) ? "secondary" : "primary", reg_val & (1<<31) ? "data" : "insn"); printk("Error bits: %s%s%s%s%s%s%s\n", reg_val & (1<<29) ? "ED " : "", reg_val & (1<<28) ? "ET " : "", reg_val & (1<<26) ? "EE " : "", reg_val & (1<<25) ? "EB " : "", reg_val & (1<<24) ? "EI " : "", reg_val & (1<<23) ? "E1 " : "", reg_val & (1<<22) ? "E0 " : ""); printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); #if defined(CONFIG_CPU_MIPS32_R1) || defined(CONFIG_CPU_MIPS64_R1) if (reg_val & (1<<22)) printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); if (reg_val & (1<<23)) printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); #endif panic("Can't handle the cache error!"); } /* * SDBBP EJTAG debug exception handler. * We skip the instruction and return to the next instruction. */ void ejtag_exception_handler(struct pt_regs *regs) { const int field = 2 * sizeof(unsigned long); unsigned long depc, old_epc; unsigned int debug; printk("SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); depc = read_c0_depc(); debug = read_c0_debug(); printk("c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); if (debug & 0x80000000) { /* * In branch delay slot. * We cheat a little bit here and use EPC to calculate the * debug return address (DEPC). EPC is restored after the * calculation. */ old_epc = regs->cp0_epc; regs->cp0_epc = depc; __compute_return_epc(regs); depc = regs->cp0_epc; regs->cp0_epc = old_epc; } else depc += 4; write_c0_depc(depc); #if 0 printk("\n\n----- Enable EJTAG single stepping ----\n\n"); write_c0_debug(debug | 0x100); #endif } /* * NMI exception handler. */ void nmi_exception_handler(struct pt_regs *regs) { printk("NMI taken!!!!\n"); die("NMI", regs); while(1) ; } #define VECTORSPACING 0x100 /* for EI/VI mode */ unsigned long ebase; unsigned long exception_handlers[32]; unsigned long vi_handlers[64]; /* * As a side effect of the way this is implemented we're limited * to interrupt handlers in the address range from * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ... */ void *set_except_vector(int n, void *addr) { unsigned long handler = (unsigned long) addr; unsigned long old_handler = exception_handlers[n]; exception_handlers[n] = handler; if (n == 0 && cpu_has_divec) { *(volatile u32 *)(ebase + 0x200) = 0x08000000 | (0x03ffffff & (handler >> 2)); flush_icache_range(ebase + 0x200, ebase + 0x204); } return (void *)old_handler; } #ifdef CONFIG_CPU_MIPSR2 /* * Shadow register allocation * FIXME: SMP... */ /* MIPSR2 shadow register sets */ struct shadow_registers { spinlock_t sr_lock; /* */ int sr_supported; /* Number of shadow register sets supported */ int sr_allocated; /* Bitmap of allocated shadow registers */ } shadow_registers; void mips_srs_init(void) { #ifdef CONFIG_CPU_MIPSR2_SRS shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1; printk ("%d MIPSR2 register sets available\n", shadow_registers.sr_supported); #else shadow_registers.sr_supported = 1; #endif shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */ spin_lock_init(&shadow_registers.sr_lock); } int mips_srs_max(void) { return shadow_registers.sr_supported; } int mips_srs_alloc (void) { struct shadow_registers *sr = &shadow_registers; unsigned long flags; int set; spin_lock_irqsave(&sr->sr_lock, flags); for (set = 0; set < sr->sr_supported; set++) { if ((sr->sr_allocated & (1 << set)) == 0) { sr->sr_allocated |= 1 << set; spin_unlock_irqrestore(&sr->sr_lock, flags); return set; } } /* None available */ spin_unlock_irqrestore(&sr->sr_lock, flags); return -1; } void mips_srs_free (int set) { struct shadow_registers *sr = &shadow_registers; unsigned long flags; spin_lock_irqsave(&sr->sr_lock, flags); sr->sr_allocated &= ~(1 << set); spin_unlock_irqrestore(&sr->sr_lock, flags); } void *set_vi_srs_handler (int n, void *addr, int srs) { unsigned long handler; unsigned long old_handler = vi_handlers[n]; u32 *w; unsigned char *b; if (!cpu_has_veic && !cpu_has_vint) BUG(); if (addr == NULL) { handler = (unsigned long) do_default_vi; srs = 0; } else handler = (unsigned long) addr; vi_handlers[n] = (unsigned long) addr; b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); if (srs >= mips_srs_max()) panic("Shadow register set %d not supported", srs); if (cpu_has_veic) { if (board_bind_eic_interrupt) board_bind_eic_interrupt (n, srs); } else if (cpu_has_vint) { /* SRSMap is only defined if shadow sets are implemented */ if (mips_srs_max() > 1) change_c0_srsmap (0xf << n*4, srs << n*4); } if (srs == 0) { /* * If no shadow set is selected then use the default handler * that does normal register saving and a standard interrupt exit */ extern char except_vec_vi, except_vec_vi_lui; extern char except_vec_vi_ori, except_vec_vi_end; const int handler_len = &except_vec_vi_end - &except_vec_vi; const int lui_offset = &except_vec_vi_lui - &except_vec_vi; const int ori_offset = &except_vec_vi_ori - &except_vec_vi; if (handler_len > VECTORSPACING) { /* * Sigh... panicing won't help as the console * is probably not configured :( */ panic ("VECTORSPACING too small"); } memcpy (b, &except_vec_vi, handler_len); w = (u32 *)(b + lui_offset); *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff); w = (u32 *)(b + ori_offset); *w = (*w & 0xffff0000) | ((u32)handler & 0xffff); flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len)); } else { /* * In other cases jump directly to the interrupt handler * * It is the handlers responsibility to save registers if required * (eg hi/lo) and return from the exception using "eret" */ w = (u32 *)b; *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */ *w = 0; flush_icache_range((unsigned long)b, (unsigned long)(b+8)); } return (void *)old_handler; } void *set_vi_handler (int n, void *addr) { return set_vi_srs_handler (n, addr, 0); } #endif /* * This is used by native signal handling */ asmlinkage int (*save_fp_context)(struct sigcontext *sc); asmlinkage int (*restore_fp_context)(struct sigcontext *sc); extern asmlinkage int _save_fp_context(struct sigcontext *sc); extern asmlinkage int _restore_fp_context(struct sigcontext *sc); extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc); extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc); static inline void signal_init(void) { if (cpu_has_fpu) { save_fp_context = _save_fp_context; restore_fp_context = _restore_fp_context; } else { save_fp_context = fpu_emulator_save_context; restore_fp_context = fpu_emulator_restore_context; } } #ifdef CONFIG_MIPS32_COMPAT /* * This is used by 32-bit signal stuff on the 64-bit kernel */ asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc); asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc); extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc); extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc); extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc); extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc); static inline void signal32_init(void) { if (cpu_has_fpu) { save_fp_context32 = _save_fp_context32; restore_fp_context32 = _restore_fp_context32; } else { save_fp_context32 = fpu_emulator_save_context32; restore_fp_context32 = fpu_emulator_restore_context32; } } #endif extern void cpu_cache_init(void); extern void tlb_init(void); extern void flush_tlb_handlers(void); void __init per_cpu_trap_init(void) { unsigned int cpu = smp_processor_id(); unsigned int status_set = ST0_CU0; /* * Disable coprocessors and select 32-bit or 64-bit addressing * and the 16/32 or 32/32 FPR register model. Reset the BEV * flag that some firmware may have left set and the TS bit (for * IP27). Set XX for ISA IV code to work. */ #ifdef CONFIG_64BIT status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; #endif if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV) status_set |= ST0_XX; change_c0_status(ST0_CU|ST0_MX|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, status_set); if (cpu_has_dsp) set_c0_status(ST0_MX); #ifdef CONFIG_CPU_MIPSR2 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */ #endif /* * Interrupt handling. */ if (cpu_has_veic || cpu_has_vint) { write_c0_ebase (ebase); /* Setting vector spacing enables EI/VI mode */ change_c0_intctl (0x3e0, VECTORSPACING); } if (cpu_has_divec) { if (cpu_has_mipsmt) { unsigned int vpflags = dvpe(); set_c0_cause(CAUSEF_IV); evpe(vpflags); } else set_c0_cause(CAUSEF_IV); } cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; TLBMISS_HANDLER_SETUP(); atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; BUG_ON(current->mm); enter_lazy_tlb(&init_mm, current); cpu_cache_init(); tlb_init(); } /* Install CPU exception handler */ void __init set_handler (unsigned long offset, void *addr, unsigned long size) { memcpy((void *)(ebase + offset), addr, size); flush_icache_range(ebase + offset, ebase + offset + size); } /* Install uncached CPU exception handler */ void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size) { #ifdef CONFIG_32BIT unsigned long uncached_ebase = KSEG1ADDR(ebase); #endif #ifdef CONFIG_64BIT unsigned long uncached_ebase = TO_UNCAC(ebase); #endif memcpy((void *)(uncached_ebase + offset), addr, size); } void __init trap_init(void) { extern char except_vec3_generic, except_vec3_r4000; extern char except_vec4; unsigned long i; if (cpu_has_veic || cpu_has_vint) ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64); else ebase = CAC_BASE; #ifdef CONFIG_CPU_MIPSR2 mips_srs_init(); #endif per_cpu_trap_init(); /* * Copy the generic exception handlers to their final destination. * This will be overriden later as suitable for a particular * configuration. */ set_handler(0x180, &except_vec3_generic, 0x80); /* * Setup default vectors */ for (i = 0; i <= 31; i++) set_except_vector(i, handle_reserved); /* * Copy the EJTAG debug exception vector handler code to it's final * destination. */ if (cpu_has_ejtag && board_ejtag_handler_setup) board_ejtag_handler_setup (); /* * Only some CPUs have the watch exceptions. */ if (cpu_has_watch) set_except_vector(23, handle_watch); /* * Initialise interrupt handlers */ if (cpu_has_veic || cpu_has_vint) { int nvec = cpu_has_veic ? 64 : 8; for (i = 0; i < nvec; i++) set_vi_handler (i, NULL); } else if (cpu_has_divec) set_handler(0x200, &except_vec4, 0x8); /* * Some CPUs can enable/disable for cache parity detection, but does * it different ways. */ parity_protection_init(); /* * The Data Bus Errors / Instruction Bus Errors are signaled * by external hardware. Therefore these two exceptions * may have board specific handlers. */ if (board_be_init) board_be_init(); set_except_vector(1, handle_tlbm); set_except_vector(2, handle_tlbl); set_except_vector(3, handle_tlbs); set_except_vector(4, handle_adel); set_except_vector(5, handle_ades); set_except_vector(6, handle_ibe); set_except_vector(7, handle_dbe); set_except_vector(8, handle_sys); set_except_vector(9, handle_bp); set_except_vector(10, handle_ri); set_except_vector(11, handle_cpu); set_except_vector(12, handle_ov); set_except_vector(13, handle_tr); if (current_cpu_data.cputype == CPU_R6000 || current_cpu_data.cputype == CPU_R6000A) { /* * The R6000 is the only R-series CPU that features a machine * check exception (similar to the R4000 cache error) and * unaligned ldc1/sdc1 exception. The handlers have not been * written yet. Well, anyway there is no R6000 machine on the * current list of targets for Linux/MIPS. * (Duh, crap, there is someone with a triple R6k machine) */ //set_except_vector(14, handle_mc); //set_except_vector(15, handle_ndc); } if (board_nmi_handler_setup) board_nmi_handler_setup(); if (cpu_has_fpu && !cpu_has_nofpuex) set_except_vector(15, handle_fpe); set_except_vector(22, handle_mdmx); if (cpu_has_mcheck) set_except_vector(24, handle_mcheck); if (cpu_has_dsp) set_except_vector(26, handle_dsp); if (cpu_has_vce) /* Special exception: R4[04]00 uses also the divec space. */ memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100); else if (cpu_has_4kex) memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80); else memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80); signal_init(); #ifdef CONFIG_MIPS32_COMPAT signal32_init(); #endif flush_icache_range(ebase, ebase + 0x400); flush_tlb_handlers(); }