/* * PCIe driver for Renesas R-Car SoCs * Copyright (C) 2014 Renesas Electronics Europe Ltd * * Based on: * arch/sh/drivers/pci/pcie-sh7786.c * arch/sh/drivers/pci/ops-sh7786.c * Copyright (C) 2009 - 2011 Paul Mundt * * Author: Phil Edworthy * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DRV_NAME "rcar-pcie" #define PCIECAR 0x000010 #define PCIECCTLR 0x000018 #define CONFIG_SEND_ENABLE (1 << 31) #define TYPE0 (0 << 8) #define TYPE1 (1 << 8) #define PCIECDR 0x000020 #define PCIEMSR 0x000028 #define PCIEINTXR 0x000400 #define PCIEMSITXR 0x000840 /* Transfer control */ #define PCIETCTLR 0x02000 #define CFINIT 1 #define PCIETSTR 0x02004 #define DATA_LINK_ACTIVE 1 #define PCIEERRFR 0x02020 #define UNSUPPORTED_REQUEST (1 << 4) #define PCIEMSIFR 0x02044 #define PCIEMSIALR 0x02048 #define MSIFE 1 #define PCIEMSIAUR 0x0204c #define PCIEMSIIER 0x02050 /* root port address */ #define PCIEPRAR(x) (0x02080 + ((x) * 0x4)) /* local address reg & mask */ #define PCIELAR(x) (0x02200 + ((x) * 0x20)) #define PCIELAMR(x) (0x02208 + ((x) * 0x20)) #define LAM_PREFETCH (1 << 3) #define LAM_64BIT (1 << 2) #define LAR_ENABLE (1 << 1) /* PCIe address reg & mask */ #define PCIEPALR(x) (0x03400 + ((x) * 0x20)) #define PCIEPAUR(x) (0x03404 + ((x) * 0x20)) #define PCIEPAMR(x) (0x03408 + ((x) * 0x20)) #define PCIEPTCTLR(x) (0x0340c + ((x) * 0x20)) #define PAR_ENABLE (1 << 31) #define IO_SPACE (1 << 8) /* Configuration */ #define PCICONF(x) (0x010000 + ((x) * 0x4)) #define PMCAP(x) (0x010040 + ((x) * 0x4)) #define EXPCAP(x) (0x010070 + ((x) * 0x4)) #define VCCAP(x) (0x010100 + ((x) * 0x4)) /* link layer */ #define IDSETR1 0x011004 #define TLCTLR 0x011048 #define MACSR 0x011054 #define SPCHGFIN (1 << 4) #define SPCHGFAIL (1 << 6) #define SPCHGSUC (1 << 7) #define LINK_SPEED (0xf << 16) #define LINK_SPEED_2_5GTS (1 << 16) #define LINK_SPEED_5_0GTS (2 << 16) #define MACCTLR 0x011058 #define SPEED_CHANGE (1 << 24) #define SCRAMBLE_DISABLE (1 << 27) #define MACS2R 0x011078 #define MACCGSPSETR 0x011084 #define SPCNGRSN (1 << 31) /* R-Car H1 PHY */ #define H1_PCIEPHYADRR 0x04000c #define WRITE_CMD (1 << 16) #define PHY_ACK (1 << 24) #define RATE_POS 12 #define LANE_POS 8 #define ADR_POS 0 #define H1_PCIEPHYDOUTR 0x040014 #define H1_PCIEPHYSR 0x040018 /* R-Car Gen2 PHY */ #define GEN2_PCIEPHYADDR 0x780 #define GEN2_PCIEPHYDATA 0x784 #define GEN2_PCIEPHYCTRL 0x78c #define INT_PCI_MSI_NR 32 #define RCONF(x) (PCICONF(0)+(x)) #define RPMCAP(x) (PMCAP(0)+(x)) #define REXPCAP(x) (EXPCAP(0)+(x)) #define RVCCAP(x) (VCCAP(0)+(x)) #define PCIE_CONF_BUS(b) (((b) & 0xff) << 24) #define PCIE_CONF_DEV(d) (((d) & 0x1f) << 19) #define PCIE_CONF_FUNC(f) (((f) & 0x7) << 16) #define RCAR_PCI_MAX_RESOURCES 4 #define MAX_NR_INBOUND_MAPS 6 struct rcar_msi { DECLARE_BITMAP(used, INT_PCI_MSI_NR); struct irq_domain *domain; struct msi_controller chip; unsigned long pages; struct mutex lock; int irq1; int irq2; }; static inline struct rcar_msi *to_rcar_msi(struct msi_controller *chip) { return container_of(chip, struct rcar_msi, chip); } /* Structure representing the PCIe interface */ struct rcar_pcie { struct device *dev; void __iomem *base; struct list_head resources; int root_bus_nr; struct clk *clk; struct clk *bus_clk; struct rcar_msi msi; }; static void rcar_pci_write_reg(struct rcar_pcie *pcie, unsigned long val, unsigned long reg) { writel(val, pcie->base + reg); } static unsigned long rcar_pci_read_reg(struct rcar_pcie *pcie, unsigned long reg) { return readl(pcie->base + reg); } enum { RCAR_PCI_ACCESS_READ, RCAR_PCI_ACCESS_WRITE, }; static void rcar_rmw32(struct rcar_pcie *pcie, int where, u32 mask, u32 data) { int shift = 8 * (where & 3); u32 val = rcar_pci_read_reg(pcie, where & ~3); val &= ~(mask << shift); val |= data << shift; rcar_pci_write_reg(pcie, val, where & ~3); } static u32 rcar_read_conf(struct rcar_pcie *pcie, int where) { int shift = 8 * (where & 3); u32 val = rcar_pci_read_reg(pcie, where & ~3); return val >> shift; } /* Serialization is provided by 'pci_lock' in drivers/pci/access.c */ static int rcar_pcie_config_access(struct rcar_pcie *pcie, unsigned char access_type, struct pci_bus *bus, unsigned int devfn, int where, u32 *data) { int dev, func, reg, index; dev = PCI_SLOT(devfn); func = PCI_FUNC(devfn); reg = where & ~3; index = reg / 4; /* * While each channel has its own memory-mapped extended config * space, it's generally only accessible when in endpoint mode. * When in root complex mode, the controller is unable to target * itself with either type 0 or type 1 accesses, and indeed, any * controller initiated target transfer to its own config space * result in a completer abort. * * Each channel effectively only supports a single device, but as * the same channel <-> device access works for any PCI_SLOT() * value, we cheat a bit here and bind the controller's config * space to devfn 0 in order to enable self-enumeration. In this * case the regular ECAR/ECDR path is sidelined and the mangled * config access itself is initiated as an internal bus transaction. */ if (pci_is_root_bus(bus)) { if (dev != 0) return PCIBIOS_DEVICE_NOT_FOUND; if (access_type == RCAR_PCI_ACCESS_READ) { *data = rcar_pci_read_reg(pcie, PCICONF(index)); } else { /* Keep an eye out for changes to the root bus number */ if (pci_is_root_bus(bus) && (reg == PCI_PRIMARY_BUS)) pcie->root_bus_nr = *data & 0xff; rcar_pci_write_reg(pcie, *data, PCICONF(index)); } return PCIBIOS_SUCCESSFUL; } if (pcie->root_bus_nr < 0) return PCIBIOS_DEVICE_NOT_FOUND; /* Clear errors */ rcar_pci_write_reg(pcie, rcar_pci_read_reg(pcie, PCIEERRFR), PCIEERRFR); /* Set the PIO address */ rcar_pci_write_reg(pcie, PCIE_CONF_BUS(bus->number) | PCIE_CONF_DEV(dev) | PCIE_CONF_FUNC(func) | reg, PCIECAR); /* Enable the configuration access */ if (bus->parent->number == pcie->root_bus_nr) rcar_pci_write_reg(pcie, CONFIG_SEND_ENABLE | TYPE0, PCIECCTLR); else rcar_pci_write_reg(pcie, CONFIG_SEND_ENABLE | TYPE1, PCIECCTLR); /* Check for errors */ if (rcar_pci_read_reg(pcie, PCIEERRFR) & UNSUPPORTED_REQUEST) return PCIBIOS_DEVICE_NOT_FOUND; /* Check for master and target aborts */ if (rcar_read_conf(pcie, RCONF(PCI_STATUS)) & (PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT)) return PCIBIOS_DEVICE_NOT_FOUND; if (access_type == RCAR_PCI_ACCESS_READ) *data = rcar_pci_read_reg(pcie, PCIECDR); else rcar_pci_write_reg(pcie, *data, PCIECDR); /* Disable the configuration access */ rcar_pci_write_reg(pcie, 0, PCIECCTLR); return PCIBIOS_SUCCESSFUL; } static int rcar_pcie_read_conf(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val) { struct rcar_pcie *pcie = bus->sysdata; int ret; ret = rcar_pcie_config_access(pcie, RCAR_PCI_ACCESS_READ, bus, devfn, where, val); if (ret != PCIBIOS_SUCCESSFUL) { *val = 0xffffffff; return ret; } if (size == 1) *val = (*val >> (8 * (where & 3))) & 0xff; else if (size == 2) *val = (*val >> (8 * (where & 2))) & 0xffff; dev_dbg(&bus->dev, "pcie-config-read: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08lx\n", bus->number, devfn, where, size, (unsigned long)*val); return ret; } /* Serialization is provided by 'pci_lock' in drivers/pci/access.c */ static int rcar_pcie_write_conf(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val) { struct rcar_pcie *pcie = bus->sysdata; int shift, ret; u32 data; ret = rcar_pcie_config_access(pcie, RCAR_PCI_ACCESS_READ, bus, devfn, where, &data); if (ret != PCIBIOS_SUCCESSFUL) return ret; dev_dbg(&bus->dev, "pcie-config-write: bus=%3d devfn=0x%04x where=0x%04x size=%d val=0x%08lx\n", bus->number, devfn, where, size, (unsigned long)val); if (size == 1) { shift = 8 * (where & 3); data &= ~(0xff << shift); data |= ((val & 0xff) << shift); } else if (size == 2) { shift = 8 * (where & 2); data &= ~(0xffff << shift); data |= ((val & 0xffff) << shift); } else data = val; ret = rcar_pcie_config_access(pcie, RCAR_PCI_ACCESS_WRITE, bus, devfn, where, &data); return ret; } static struct pci_ops rcar_pcie_ops = { .read = rcar_pcie_read_conf, .write = rcar_pcie_write_conf, }; static void rcar_pcie_setup_window(int win, struct rcar_pcie *pcie, struct resource *res) { /* Setup PCIe address space mappings for each resource */ resource_size_t size; resource_size_t res_start; u32 mask; rcar_pci_write_reg(pcie, 0x00000000, PCIEPTCTLR(win)); /* * The PAMR mask is calculated in units of 128Bytes, which * keeps things pretty simple. */ size = resource_size(res); mask = (roundup_pow_of_two(size) / SZ_128) - 1; rcar_pci_write_reg(pcie, mask << 7, PCIEPAMR(win)); if (res->flags & IORESOURCE_IO) res_start = pci_pio_to_address(res->start); else res_start = res->start; rcar_pci_write_reg(pcie, upper_32_bits(res_start), PCIEPAUR(win)); rcar_pci_write_reg(pcie, lower_32_bits(res_start) & ~0x7F, PCIEPALR(win)); /* First resource is for IO */ mask = PAR_ENABLE; if (res->flags & IORESOURCE_IO) mask |= IO_SPACE; rcar_pci_write_reg(pcie, mask, PCIEPTCTLR(win)); } static int rcar_pcie_setup(struct list_head *resource, struct rcar_pcie *pci) { struct resource_entry *win; int i = 0; /* Setup PCI resources */ resource_list_for_each_entry(win, &pci->resources) { struct resource *res = win->res; if (!res->flags) continue; switch (resource_type(res)) { case IORESOURCE_IO: case IORESOURCE_MEM: rcar_pcie_setup_window(i, pci, res); i++; break; case IORESOURCE_BUS: pci->root_bus_nr = res->start; break; default: continue; } pci_add_resource(resource, res); } return 1; } static void rcar_pcie_force_speedup(struct rcar_pcie *pcie) { struct device *dev = pcie->dev; unsigned int timeout = 1000; u32 macsr; if ((rcar_pci_read_reg(pcie, MACS2R) & LINK_SPEED) != LINK_SPEED_5_0GTS) return; if (rcar_pci_read_reg(pcie, MACCTLR) & SPEED_CHANGE) { dev_err(dev, "Speed change already in progress\n"); return; } macsr = rcar_pci_read_reg(pcie, MACSR); if ((macsr & LINK_SPEED) == LINK_SPEED_5_0GTS) goto done; /* Set target link speed to 5.0 GT/s */ rcar_rmw32(pcie, EXPCAP(12), PCI_EXP_LNKSTA_CLS, PCI_EXP_LNKSTA_CLS_5_0GB); /* Set speed change reason as intentional factor */ rcar_rmw32(pcie, MACCGSPSETR, SPCNGRSN, 0); /* Clear SPCHGFIN, SPCHGSUC, and SPCHGFAIL */ if (macsr & (SPCHGFIN | SPCHGSUC | SPCHGFAIL)) rcar_pci_write_reg(pcie, macsr, MACSR); /* Start link speed change */ rcar_rmw32(pcie, MACCTLR, SPEED_CHANGE, SPEED_CHANGE); while (timeout--) { macsr = rcar_pci_read_reg(pcie, MACSR); if (macsr & SPCHGFIN) { /* Clear the interrupt bits */ rcar_pci_write_reg(pcie, macsr, MACSR); if (macsr & SPCHGFAIL) dev_err(dev, "Speed change failed\n"); goto done; } msleep(1); }; dev_err(dev, "Speed change timed out\n"); done: dev_info(dev, "Current link speed is %s GT/s\n", (macsr & LINK_SPEED) == LINK_SPEED_5_0GTS ? "5" : "2.5"); } static int rcar_pcie_enable(struct rcar_pcie *pcie) { struct device *dev = pcie->dev; struct pci_bus *bus, *child; LIST_HEAD(res); /* Try setting 5 GT/s link speed */ rcar_pcie_force_speedup(pcie); rcar_pcie_setup(&res, pcie); pci_add_flags(PCI_REASSIGN_ALL_RSRC | PCI_REASSIGN_ALL_BUS); if (IS_ENABLED(CONFIG_PCI_MSI)) bus = pci_scan_root_bus_msi(dev, pcie->root_bus_nr, &rcar_pcie_ops, pcie, &res, &pcie->msi.chip); else bus = pci_scan_root_bus(dev, pcie->root_bus_nr, &rcar_pcie_ops, pcie, &res); if (!bus) { dev_err(dev, "Scanning rootbus failed"); return -ENODEV; } pci_fixup_irqs(pci_common_swizzle, of_irq_parse_and_map_pci); pci_bus_size_bridges(bus); pci_bus_assign_resources(bus); list_for_each_entry(child, &bus->children, node) pcie_bus_configure_settings(child); pci_bus_add_devices(bus); return 0; } static int phy_wait_for_ack(struct rcar_pcie *pcie) { struct device *dev = pcie->dev; unsigned int timeout = 100; while (timeout--) { if (rcar_pci_read_reg(pcie, H1_PCIEPHYADRR) & PHY_ACK) return 0; udelay(100); } dev_err(dev, "Access to PCIe phy timed out\n"); return -ETIMEDOUT; } static void phy_write_reg(struct rcar_pcie *pcie, unsigned int rate, unsigned int addr, unsigned int lane, unsigned int data) { unsigned long phyaddr; phyaddr = WRITE_CMD | ((rate & 1) << RATE_POS) | ((lane & 0xf) << LANE_POS) | ((addr & 0xff) << ADR_POS); /* Set write data */ rcar_pci_write_reg(pcie, data, H1_PCIEPHYDOUTR); rcar_pci_write_reg(pcie, phyaddr, H1_PCIEPHYADRR); /* Ignore errors as they will be dealt with if the data link is down */ phy_wait_for_ack(pcie); /* Clear command */ rcar_pci_write_reg(pcie, 0, H1_PCIEPHYDOUTR); rcar_pci_write_reg(pcie, 0, H1_PCIEPHYADRR); /* Ignore errors as they will be dealt with if the data link is down */ phy_wait_for_ack(pcie); } static int rcar_pcie_wait_for_dl(struct rcar_pcie *pcie) { unsigned int timeout = 10; while (timeout--) { if ((rcar_pci_read_reg(pcie, PCIETSTR) & DATA_LINK_ACTIVE)) return 0; msleep(5); } return -ETIMEDOUT; } static int rcar_pcie_hw_init(struct rcar_pcie *pcie) { int err; /* Begin initialization */ rcar_pci_write_reg(pcie, 0, PCIETCTLR); /* Set mode */ rcar_pci_write_reg(pcie, 1, PCIEMSR); /* * Initial header for port config space is type 1, set the device * class to match. Hardware takes care of propagating the IDSETR * settings, so there is no need to bother with a quirk. */ rcar_pci_write_reg(pcie, PCI_CLASS_BRIDGE_PCI << 16, IDSETR1); /* * Setup Secondary Bus Number & Subordinate Bus Number, even though * they aren't used, to avoid bridge being detected as broken. */ rcar_rmw32(pcie, RCONF(PCI_SECONDARY_BUS), 0xff, 1); rcar_rmw32(pcie, RCONF(PCI_SUBORDINATE_BUS), 0xff, 1); /* Initialize default capabilities. */ rcar_rmw32(pcie, REXPCAP(0), 0xff, PCI_CAP_ID_EXP); rcar_rmw32(pcie, REXPCAP(PCI_EXP_FLAGS), PCI_EXP_FLAGS_TYPE, PCI_EXP_TYPE_ROOT_PORT << 4); rcar_rmw32(pcie, RCONF(PCI_HEADER_TYPE), 0x7f, PCI_HEADER_TYPE_BRIDGE); /* Enable data link layer active state reporting */ rcar_rmw32(pcie, REXPCAP(PCI_EXP_LNKCAP), PCI_EXP_LNKCAP_DLLLARC, PCI_EXP_LNKCAP_DLLLARC); /* Write out the physical slot number = 0 */ rcar_rmw32(pcie, REXPCAP(PCI_EXP_SLTCAP), PCI_EXP_SLTCAP_PSN, 0); /* Set the completion timer timeout to the maximum 50ms. */ rcar_rmw32(pcie, TLCTLR + 1, 0x3f, 50); /* Terminate list of capabilities (Next Capability Offset=0) */ rcar_rmw32(pcie, RVCCAP(0), 0xfff00000, 0); /* Enable MSI */ if (IS_ENABLED(CONFIG_PCI_MSI)) rcar_pci_write_reg(pcie, 0x801f0000, PCIEMSITXR); /* Finish initialization - establish a PCI Express link */ rcar_pci_write_reg(pcie, CFINIT, PCIETCTLR); /* This will timeout if we don't have a link. */ err = rcar_pcie_wait_for_dl(pcie); if (err) return err; /* Enable INTx interrupts */ rcar_rmw32(pcie, PCIEINTXR, 0, 0xF << 8); wmb(); return 0; } static int rcar_pcie_hw_init_h1(struct rcar_pcie *pcie) { unsigned int timeout = 10; /* Initialize the phy */ phy_write_reg(pcie, 0, 0x42, 0x1, 0x0EC34191); phy_write_reg(pcie, 1, 0x42, 0x1, 0x0EC34180); phy_write_reg(pcie, 0, 0x43, 0x1, 0x00210188); phy_write_reg(pcie, 1, 0x43, 0x1, 0x00210188); phy_write_reg(pcie, 0, 0x44, 0x1, 0x015C0014); phy_write_reg(pcie, 1, 0x44, 0x1, 0x015C0014); phy_write_reg(pcie, 1, 0x4C, 0x1, 0x786174A0); phy_write_reg(pcie, 1, 0x4D, 0x1, 0x048000BB); phy_write_reg(pcie, 0, 0x51, 0x1, 0x079EC062); phy_write_reg(pcie, 0, 0x52, 0x1, 0x20000000); phy_write_reg(pcie, 1, 0x52, 0x1, 0x20000000); phy_write_reg(pcie, 1, 0x56, 0x1, 0x00003806); phy_write_reg(pcie, 0, 0x60, 0x1, 0x004B03A5); phy_write_reg(pcie, 0, 0x64, 0x1, 0x3F0F1F0F); phy_write_reg(pcie, 0, 0x66, 0x1, 0x00008000); while (timeout--) { if (rcar_pci_read_reg(pcie, H1_PCIEPHYSR)) return rcar_pcie_hw_init(pcie); msleep(5); } return -ETIMEDOUT; } static int rcar_pcie_hw_init_gen2(struct rcar_pcie *pcie) { /* * These settings come from the R-Car Series, 2nd Generation User's * Manual, section 50.3.1 (2) Initialization of the physical layer. */ rcar_pci_write_reg(pcie, 0x000f0030, GEN2_PCIEPHYADDR); rcar_pci_write_reg(pcie, 0x00381203, GEN2_PCIEPHYDATA); rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL); rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL); rcar_pci_write_reg(pcie, 0x000f0054, GEN2_PCIEPHYADDR); /* The following value is for DC connection, no termination resistor */ rcar_pci_write_reg(pcie, 0x13802007, GEN2_PCIEPHYDATA); rcar_pci_write_reg(pcie, 0x00000001, GEN2_PCIEPHYCTRL); rcar_pci_write_reg(pcie, 0x00000006, GEN2_PCIEPHYCTRL); return rcar_pcie_hw_init(pcie); } static int rcar_msi_alloc(struct rcar_msi *chip) { int msi; mutex_lock(&chip->lock); msi = find_first_zero_bit(chip->used, INT_PCI_MSI_NR); if (msi < INT_PCI_MSI_NR) set_bit(msi, chip->used); else msi = -ENOSPC; mutex_unlock(&chip->lock); return msi; } static int rcar_msi_alloc_region(struct rcar_msi *chip, int no_irqs) { int msi; mutex_lock(&chip->lock); msi = bitmap_find_free_region(chip->used, INT_PCI_MSI_NR, order_base_2(no_irqs)); mutex_unlock(&chip->lock); return msi; } static void rcar_msi_free(struct rcar_msi *chip, unsigned long irq) { mutex_lock(&chip->lock); clear_bit(irq, chip->used); mutex_unlock(&chip->lock); } static irqreturn_t rcar_pcie_msi_irq(int irq, void *data) { struct rcar_pcie *pcie = data; struct rcar_msi *msi = &pcie->msi; struct device *dev = pcie->dev; unsigned long reg; reg = rcar_pci_read_reg(pcie, PCIEMSIFR); /* MSI & INTx share an interrupt - we only handle MSI here */ if (!reg) return IRQ_NONE; while (reg) { unsigned int index = find_first_bit(®, 32); unsigned int irq; /* clear the interrupt */ rcar_pci_write_reg(pcie, 1 << index, PCIEMSIFR); irq = irq_find_mapping(msi->domain, index); if (irq) { if (test_bit(index, msi->used)) generic_handle_irq(irq); else dev_info(dev, "unhandled MSI\n"); } else { /* Unknown MSI, just clear it */ dev_dbg(dev, "unexpected MSI\n"); } /* see if there's any more pending in this vector */ reg = rcar_pci_read_reg(pcie, PCIEMSIFR); } return IRQ_HANDLED; } static int rcar_msi_setup_irq(struct msi_controller *chip, struct pci_dev *pdev, struct msi_desc *desc) { struct rcar_msi *msi = to_rcar_msi(chip); struct rcar_pcie *pcie = container_of(chip, struct rcar_pcie, msi.chip); struct msi_msg msg; unsigned int irq; int hwirq; hwirq = rcar_msi_alloc(msi); if (hwirq < 0) return hwirq; irq = irq_find_mapping(msi->domain, hwirq); if (!irq) { rcar_msi_free(msi, hwirq); return -EINVAL; } irq_set_msi_desc(irq, desc); msg.address_lo = rcar_pci_read_reg(pcie, PCIEMSIALR) & ~MSIFE; msg.address_hi = rcar_pci_read_reg(pcie, PCIEMSIAUR); msg.data = hwirq; pci_write_msi_msg(irq, &msg); return 0; } static int rcar_msi_setup_irqs(struct msi_controller *chip, struct pci_dev *pdev, int nvec, int type) { struct rcar_pcie *pcie = container_of(chip, struct rcar_pcie, msi.chip); struct rcar_msi *msi = to_rcar_msi(chip); struct msi_desc *desc; struct msi_msg msg; unsigned int irq; int hwirq; int i; /* MSI-X interrupts are not supported */ if (type == PCI_CAP_ID_MSIX) return -EINVAL; WARN_ON(!list_is_singular(&pdev->dev.msi_list)); desc = list_entry(pdev->dev.msi_list.next, struct msi_desc, list); hwirq = rcar_msi_alloc_region(msi, nvec); if (hwirq < 0) return -ENOSPC; irq = irq_find_mapping(msi->domain, hwirq); if (!irq) return -ENOSPC; for (i = 0; i < nvec; i++) { /* * irq_create_mapping() called from rcar_pcie_probe() pre- * allocates descs, so there is no need to allocate descs here. * We can therefore assume that if irq_find_mapping() above * returns non-zero, then the descs are also successfully * allocated. */ if (irq_set_msi_desc_off(irq, i, desc)) { /* TODO: clear */ return -EINVAL; } } desc->nvec_used = nvec; desc->msi_attrib.multiple = order_base_2(nvec); msg.address_lo = rcar_pci_read_reg(pcie, PCIEMSIALR) & ~MSIFE; msg.address_hi = rcar_pci_read_reg(pcie, PCIEMSIAUR); msg.data = hwirq; pci_write_msi_msg(irq, &msg); return 0; } static void rcar_msi_teardown_irq(struct msi_controller *chip, unsigned int irq) { struct rcar_msi *msi = to_rcar_msi(chip); struct irq_data *d = irq_get_irq_data(irq); rcar_msi_free(msi, d->hwirq); } static struct irq_chip rcar_msi_irq_chip = { .name = "R-Car PCIe MSI", .irq_enable = pci_msi_unmask_irq, .irq_disable = pci_msi_mask_irq, .irq_mask = pci_msi_mask_irq, .irq_unmask = pci_msi_unmask_irq, }; static int rcar_msi_map(struct irq_domain *domain, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_and_handler(irq, &rcar_msi_irq_chip, handle_simple_irq); irq_set_chip_data(irq, domain->host_data); return 0; } static const struct irq_domain_ops msi_domain_ops = { .map = rcar_msi_map, }; static int rcar_pcie_enable_msi(struct rcar_pcie *pcie) { struct device *dev = pcie->dev; struct rcar_msi *msi = &pcie->msi; unsigned long base; int err, i; mutex_init(&msi->lock); msi->chip.dev = dev; msi->chip.setup_irq = rcar_msi_setup_irq; msi->chip.setup_irqs = rcar_msi_setup_irqs; msi->chip.teardown_irq = rcar_msi_teardown_irq; msi->domain = irq_domain_add_linear(dev->of_node, INT_PCI_MSI_NR, &msi_domain_ops, &msi->chip); if (!msi->domain) { dev_err(dev, "failed to create IRQ domain\n"); return -ENOMEM; } for (i = 0; i < INT_PCI_MSI_NR; i++) irq_create_mapping(msi->domain, i); /* Two irqs are for MSI, but they are also used for non-MSI irqs */ err = devm_request_irq(dev, msi->irq1, rcar_pcie_msi_irq, IRQF_SHARED | IRQF_NO_THREAD, rcar_msi_irq_chip.name, pcie); if (err < 0) { dev_err(dev, "failed to request IRQ: %d\n", err); goto err; } err = devm_request_irq(dev, msi->irq2, rcar_pcie_msi_irq, IRQF_SHARED | IRQF_NO_THREAD, rcar_msi_irq_chip.name, pcie); if (err < 0) { dev_err(dev, "failed to request IRQ: %d\n", err); goto err; } /* setup MSI data target */ msi->pages = __get_free_pages(GFP_KERNEL, 0); base = virt_to_phys((void *)msi->pages); rcar_pci_write_reg(pcie, base | MSIFE, PCIEMSIALR); rcar_pci_write_reg(pcie, 0, PCIEMSIAUR); /* enable all MSI interrupts */ rcar_pci_write_reg(pcie, 0xffffffff, PCIEMSIIER); return 0; err: irq_domain_remove(msi->domain); return err; } static int rcar_pcie_get_resources(struct rcar_pcie *pcie) { struct device *dev = pcie->dev; struct resource res; int err, i; err = of_address_to_resource(dev->of_node, 0, &res); if (err) return err; pcie->base = devm_ioremap_resource(dev, &res); if (IS_ERR(pcie->base)) return PTR_ERR(pcie->base); pcie->clk = devm_clk_get(dev, "pcie"); if (IS_ERR(pcie->clk)) { dev_err(dev, "cannot get platform clock\n"); return PTR_ERR(pcie->clk); } err = clk_prepare_enable(pcie->clk); if (err) return err; pcie->bus_clk = devm_clk_get(dev, "pcie_bus"); if (IS_ERR(pcie->bus_clk)) { dev_err(dev, "cannot get pcie bus clock\n"); err = PTR_ERR(pcie->bus_clk); goto fail_clk; } err = clk_prepare_enable(pcie->bus_clk); if (err) goto fail_clk; i = irq_of_parse_and_map(dev->of_node, 0); if (!i) { dev_err(dev, "cannot get platform resources for msi interrupt\n"); err = -ENOENT; goto err_map_reg; } pcie->msi.irq1 = i; i = irq_of_parse_and_map(dev->of_node, 1); if (!i) { dev_err(dev, "cannot get platform resources for msi interrupt\n"); err = -ENOENT; goto err_map_reg; } pcie->msi.irq2 = i; return 0; err_map_reg: clk_disable_unprepare(pcie->bus_clk); fail_clk: clk_disable_unprepare(pcie->clk); return err; } static int rcar_pcie_inbound_ranges(struct rcar_pcie *pcie, struct of_pci_range *range, int *index) { u64 restype = range->flags; u64 cpu_addr = range->cpu_addr; u64 cpu_end = range->cpu_addr + range->size; u64 pci_addr = range->pci_addr; u32 flags = LAM_64BIT | LAR_ENABLE; u64 mask; u64 size; int idx = *index; if (restype & IORESOURCE_PREFETCH) flags |= LAM_PREFETCH; /* * If the size of the range is larger than the alignment of the start * address, we have to use multiple entries to perform the mapping. */ if (cpu_addr > 0) { unsigned long nr_zeros = __ffs64(cpu_addr); u64 alignment = 1ULL << nr_zeros; size = min(range->size, alignment); } else { size = range->size; } /* Hardware supports max 4GiB inbound region */ size = min(size, 1ULL << 32); mask = roundup_pow_of_two(size) - 1; mask &= ~0xf; while (cpu_addr < cpu_end) { /* * Set up 64-bit inbound regions as the range parser doesn't * distinguish between 32 and 64-bit types. */ rcar_pci_write_reg(pcie, lower_32_bits(pci_addr), PCIEPRAR(idx)); rcar_pci_write_reg(pcie, lower_32_bits(cpu_addr), PCIELAR(idx)); rcar_pci_write_reg(pcie, lower_32_bits(mask) | flags, PCIELAMR(idx)); rcar_pci_write_reg(pcie, upper_32_bits(pci_addr), PCIEPRAR(idx + 1)); rcar_pci_write_reg(pcie, upper_32_bits(cpu_addr), PCIELAR(idx + 1)); rcar_pci_write_reg(pcie, 0, PCIELAMR(idx + 1)); pci_addr += size; cpu_addr += size; idx += 2; if (idx > MAX_NR_INBOUND_MAPS) { dev_err(pcie->dev, "Failed to map inbound regions!\n"); return -EINVAL; } } *index = idx; return 0; } static int pci_dma_range_parser_init(struct of_pci_range_parser *parser, struct device_node *node) { const int na = 3, ns = 2; int rlen; parser->node = node; parser->pna = of_n_addr_cells(node); parser->np = parser->pna + na + ns; parser->range = of_get_property(node, "dma-ranges", &rlen); if (!parser->range) return -ENOENT; parser->end = parser->range + rlen / sizeof(__be32); return 0; } static int rcar_pcie_parse_map_dma_ranges(struct rcar_pcie *pcie, struct device_node *np) { struct of_pci_range range; struct of_pci_range_parser parser; int index = 0; int err; if (pci_dma_range_parser_init(&parser, np)) return -EINVAL; /* Get the dma-ranges from DT */ for_each_of_pci_range(&parser, &range) { u64 end = range.cpu_addr + range.size - 1; dev_dbg(pcie->dev, "0x%08x 0x%016llx..0x%016llx -> 0x%016llx\n", range.flags, range.cpu_addr, end, range.pci_addr); err = rcar_pcie_inbound_ranges(pcie, &range, &index); if (err) return err; } return 0; } static const struct of_device_id rcar_pcie_of_match[] = { { .compatible = "renesas,pcie-r8a7779", .data = rcar_pcie_hw_init_h1 }, { .compatible = "renesas,pcie-rcar-gen2", .data = rcar_pcie_hw_init_gen2 }, { .compatible = "renesas,pcie-r8a7790", .data = rcar_pcie_hw_init_gen2 }, { .compatible = "renesas,pcie-r8a7791", .data = rcar_pcie_hw_init_gen2 }, { .compatible = "renesas,pcie-r8a7795", .data = rcar_pcie_hw_init }, {}, }; static int rcar_pcie_parse_request_of_pci_ranges(struct rcar_pcie *pci) { int err; struct device *dev = pci->dev; struct device_node *np = dev->of_node; resource_size_t iobase; struct resource_entry *win, *tmp; err = of_pci_get_host_bridge_resources(np, 0, 0xff, &pci->resources, &iobase); if (err) return err; err = devm_request_pci_bus_resources(dev, &pci->resources); if (err) goto out_release_res; resource_list_for_each_entry_safe(win, tmp, &pci->resources) { struct resource *res = win->res; if (resource_type(res) == IORESOURCE_IO) { err = pci_remap_iospace(res, iobase); if (err) { dev_warn(dev, "error %d: failed to map resource %pR\n", err, res); resource_list_destroy_entry(win); } } } return 0; out_release_res: pci_free_resource_list(&pci->resources); return err; } static int rcar_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct rcar_pcie *pcie; unsigned int data; const struct of_device_id *of_id; int err; int (*hw_init_fn)(struct rcar_pcie *); pcie = devm_kzalloc(dev, sizeof(*pcie), GFP_KERNEL); if (!pcie) return -ENOMEM; pcie->dev = dev; INIT_LIST_HEAD(&pcie->resources); rcar_pcie_parse_request_of_pci_ranges(pcie); err = rcar_pcie_get_resources(pcie); if (err < 0) { dev_err(dev, "failed to request resources: %d\n", err); return err; } err = rcar_pcie_parse_map_dma_ranges(pcie, dev->of_node); if (err) return err; of_id = of_match_device(rcar_pcie_of_match, dev); if (!of_id || !of_id->data) return -EINVAL; hw_init_fn = of_id->data; pm_runtime_enable(dev); err = pm_runtime_get_sync(dev); if (err < 0) { dev_err(dev, "pm_runtime_get_sync failed\n"); goto err_pm_disable; } /* Failure to get a link might just be that no cards are inserted */ err = hw_init_fn(pcie); if (err) { dev_info(dev, "PCIe link down\n"); err = 0; goto err_pm_put; } data = rcar_pci_read_reg(pcie, MACSR); dev_info(dev, "PCIe x%d: link up\n", (data >> 20) & 0x3f); if (IS_ENABLED(CONFIG_PCI_MSI)) { err = rcar_pcie_enable_msi(pcie); if (err < 0) { dev_err(dev, "failed to enable MSI support: %d\n", err); goto err_pm_put; } } err = rcar_pcie_enable(pcie); if (err) goto err_pm_put; return 0; err_pm_put: pm_runtime_put(dev); err_pm_disable: pm_runtime_disable(dev); return err; } static struct platform_driver rcar_pcie_driver = { .driver = { .name = DRV_NAME, .of_match_table = rcar_pcie_of_match, .suppress_bind_attrs = true, }, .probe = rcar_pcie_probe, }; builtin_platform_driver(rcar_pcie_driver);