/* * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. * * Author: Yu Liu, yu.liu@freescale.com * Scott Wood, scottwood@freescale.com * Ashish Kalra, ashish.kalra@freescale.com * Varun Sethi, varun.sethi@freescale.com * Alexander Graf, agraf@suse.de * * Description: * This file is based on arch/powerpc/kvm/44x_tlb.c, * by Hollis Blanchard . * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, version 2, as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "e500.h" #include "trace_booke.h" #include "timing.h" #include "e500_mmu_host.h" static inline unsigned int gtlb0_get_next_victim( struct kvmppc_vcpu_e500 *vcpu_e500) { unsigned int victim; victim = vcpu_e500->gtlb_nv[0]++; if (unlikely(vcpu_e500->gtlb_nv[0] >= vcpu_e500->gtlb_params[0].ways)) vcpu_e500->gtlb_nv[0] = 0; return victim; } static int tlb0_set_base(gva_t addr, int sets, int ways) { int set_base; set_base = (addr >> PAGE_SHIFT) & (sets - 1); set_base *= ways; return set_base; } static int gtlb0_set_base(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t addr) { return tlb0_set_base(addr, vcpu_e500->gtlb_params[0].sets, vcpu_e500->gtlb_params[0].ways); } static unsigned int get_tlb_esel(struct kvm_vcpu *vcpu, int tlbsel) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int esel = get_tlb_esel_bit(vcpu); if (tlbsel == 0) { esel &= vcpu_e500->gtlb_params[0].ways - 1; esel += gtlb0_set_base(vcpu_e500, vcpu->arch.shared->mas2); } else { esel &= vcpu_e500->gtlb_params[tlbsel].entries - 1; } return esel; } /* Search the guest TLB for a matching entry. */ static int kvmppc_e500_tlb_index(struct kvmppc_vcpu_e500 *vcpu_e500, gva_t eaddr, int tlbsel, unsigned int pid, int as) { int size = vcpu_e500->gtlb_params[tlbsel].entries; unsigned int set_base, offset; int i; if (tlbsel == 0) { set_base = gtlb0_set_base(vcpu_e500, eaddr); size = vcpu_e500->gtlb_params[0].ways; } else { if (eaddr < vcpu_e500->tlb1_min_eaddr || eaddr > vcpu_e500->tlb1_max_eaddr) return -1; set_base = 0; } offset = vcpu_e500->gtlb_offset[tlbsel]; for (i = 0; i < size; i++) { struct kvm_book3e_206_tlb_entry *tlbe = &vcpu_e500->gtlb_arch[offset + set_base + i]; unsigned int tid; if (eaddr < get_tlb_eaddr(tlbe)) continue; if (eaddr > get_tlb_end(tlbe)) continue; tid = get_tlb_tid(tlbe); if (tid && (tid != pid)) continue; if (!get_tlb_v(tlbe)) continue; if (get_tlb_ts(tlbe) != as && as != -1) continue; return set_base + i; } return -1; } static inline void kvmppc_e500_deliver_tlb_miss(struct kvm_vcpu *vcpu, gva_t eaddr, int as) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); unsigned int victim, tsized; int tlbsel; /* since we only have two TLBs, only lower bit is used. */ tlbsel = (vcpu->arch.shared->mas4 >> 28) & 0x1; victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0; tsized = (vcpu->arch.shared->mas4 >> 7) & 0x1f; vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = MAS1_VALID | (as ? MAS1_TS : 0) | MAS1_TID(get_tlbmiss_tid(vcpu)) | MAS1_TSIZE(tsized); vcpu->arch.shared->mas2 = (eaddr & MAS2_EPN) | (vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK); vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; vcpu->arch.shared->mas6 = (vcpu->arch.shared->mas6 & MAS6_SPID1) | (get_cur_pid(vcpu) << 16) | (as ? MAS6_SAS : 0); } static void kvmppc_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500) { int size = vcpu_e500->gtlb_params[1].entries; unsigned int offset; gva_t eaddr; int i; vcpu_e500->tlb1_min_eaddr = ~0UL; vcpu_e500->tlb1_max_eaddr = 0; offset = vcpu_e500->gtlb_offset[1]; for (i = 0; i < size; i++) { struct kvm_book3e_206_tlb_entry *tlbe = &vcpu_e500->gtlb_arch[offset + i]; if (!get_tlb_v(tlbe)) continue; eaddr = get_tlb_eaddr(tlbe); vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, eaddr); eaddr = get_tlb_end(tlbe); vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, eaddr); } } static int kvmppc_need_recalc_tlb1map_range(struct kvmppc_vcpu_e500 *vcpu_e500, struct kvm_book3e_206_tlb_entry *gtlbe) { unsigned long start, end, size; size = get_tlb_bytes(gtlbe); start = get_tlb_eaddr(gtlbe) & ~(size - 1); end = start + size - 1; return vcpu_e500->tlb1_min_eaddr == start || vcpu_e500->tlb1_max_eaddr == end; } /* This function is supposed to be called for a adding a new valid tlb entry */ static void kvmppc_set_tlb1map_range(struct kvm_vcpu *vcpu, struct kvm_book3e_206_tlb_entry *gtlbe) { unsigned long start, end, size; struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); if (!get_tlb_v(gtlbe)) return; size = get_tlb_bytes(gtlbe); start = get_tlb_eaddr(gtlbe) & ~(size - 1); end = start + size - 1; vcpu_e500->tlb1_min_eaddr = min(vcpu_e500->tlb1_min_eaddr, start); vcpu_e500->tlb1_max_eaddr = max(vcpu_e500->tlb1_max_eaddr, end); } static inline int kvmppc_e500_gtlbe_invalidate( struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int esel) { struct kvm_book3e_206_tlb_entry *gtlbe = get_entry(vcpu_e500, tlbsel, esel); if (unlikely(get_tlb_iprot(gtlbe))) return -1; if (tlbsel == 1 && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe)) kvmppc_recalc_tlb1map_range(vcpu_e500); gtlbe->mas1 = 0; return 0; } int kvmppc_e500_emul_mt_mmucsr0(struct kvmppc_vcpu_e500 *vcpu_e500, ulong value) { int esel; if (value & MMUCSR0_TLB0FI) for (esel = 0; esel < vcpu_e500->gtlb_params[0].entries; esel++) kvmppc_e500_gtlbe_invalidate(vcpu_e500, 0, esel); if (value & MMUCSR0_TLB1FI) for (esel = 0; esel < vcpu_e500->gtlb_params[1].entries; esel++) kvmppc_e500_gtlbe_invalidate(vcpu_e500, 1, esel); /* Invalidate all host shadow mappings */ kvmppc_core_flush_tlb(&vcpu_e500->vcpu); return EMULATE_DONE; } int kvmppc_e500_emul_tlbivax(struct kvm_vcpu *vcpu, gva_t ea) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); unsigned int ia; int esel, tlbsel; ia = (ea >> 2) & 0x1; /* since we only have two TLBs, only lower bit is used. */ tlbsel = (ea >> 3) & 0x1; if (ia) { /* invalidate all entries */ for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } else { ea &= 0xfffff000; esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, get_cur_pid(vcpu), -1); if (esel >= 0) kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } /* Invalidate all host shadow mappings */ kvmppc_core_flush_tlb(&vcpu_e500->vcpu); return EMULATE_DONE; } static void tlbilx_all(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, int pid, int type) { struct kvm_book3e_206_tlb_entry *tlbe; int tid, esel; /* invalidate all entries */ for (esel = 0; esel < vcpu_e500->gtlb_params[tlbsel].entries; esel++) { tlbe = get_entry(vcpu_e500, tlbsel, esel); tid = get_tlb_tid(tlbe); if (type == 0 || tid == pid) { inval_gtlbe_on_host(vcpu_e500, tlbsel, esel); kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); } } } static void tlbilx_one(struct kvmppc_vcpu_e500 *vcpu_e500, int pid, gva_t ea) { int tlbsel, esel; for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, -1); if (esel >= 0) { inval_gtlbe_on_host(vcpu_e500, tlbsel, esel); kvmppc_e500_gtlbe_invalidate(vcpu_e500, tlbsel, esel); break; } } } int kvmppc_e500_emul_tlbilx(struct kvm_vcpu *vcpu, int type, gva_t ea) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int pid = get_cur_spid(vcpu); if (type == 0 || type == 1) { tlbilx_all(vcpu_e500, 0, pid, type); tlbilx_all(vcpu_e500, 1, pid, type); } else if (type == 3) { tlbilx_one(vcpu_e500, pid, ea); } return EMULATE_DONE; } int kvmppc_e500_emul_tlbre(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int tlbsel, esel; struct kvm_book3e_206_tlb_entry *gtlbe; tlbsel = get_tlb_tlbsel(vcpu); esel = get_tlb_esel(vcpu, tlbsel); gtlbe = get_entry(vcpu_e500, tlbsel, esel); vcpu->arch.shared->mas0 &= ~MAS0_NV(~0); vcpu->arch.shared->mas0 |= MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = gtlbe->mas1; vcpu->arch.shared->mas2 = gtlbe->mas2; vcpu->arch.shared->mas7_3 = gtlbe->mas7_3; return EMULATE_DONE; } int kvmppc_e500_emul_tlbsx(struct kvm_vcpu *vcpu, gva_t ea) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int as = !!get_cur_sas(vcpu); unsigned int pid = get_cur_spid(vcpu); int esel, tlbsel; struct kvm_book3e_206_tlb_entry *gtlbe = NULL; for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, ea, tlbsel, pid, as); if (esel >= 0) { gtlbe = get_entry(vcpu_e500, tlbsel, esel); break; } } if (gtlbe) { esel &= vcpu_e500->gtlb_params[tlbsel].ways - 1; vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(esel) | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = gtlbe->mas1; vcpu->arch.shared->mas2 = gtlbe->mas2; vcpu->arch.shared->mas7_3 = gtlbe->mas7_3; } else { int victim; /* since we only have two TLBs, only lower bit is used. */ tlbsel = vcpu->arch.shared->mas4 >> 28 & 0x1; victim = (tlbsel == 0) ? gtlb0_get_next_victim(vcpu_e500) : 0; vcpu->arch.shared->mas0 = MAS0_TLBSEL(tlbsel) | MAS0_ESEL(victim) | MAS0_NV(vcpu_e500->gtlb_nv[tlbsel]); vcpu->arch.shared->mas1 = (vcpu->arch.shared->mas6 & MAS6_SPID0) | ((vcpu->arch.shared->mas6 & MAS6_SAS) ? MAS1_TS : 0) | (vcpu->arch.shared->mas4 & MAS4_TSIZED(~0)); vcpu->arch.shared->mas2 &= MAS2_EPN; vcpu->arch.shared->mas2 |= vcpu->arch.shared->mas4 & MAS2_ATTRIB_MASK; vcpu->arch.shared->mas7_3 &= MAS3_U0 | MAS3_U1 | MAS3_U2 | MAS3_U3; } kvmppc_set_exit_type(vcpu, EMULATED_TLBSX_EXITS); return EMULATE_DONE; } int kvmppc_e500_emul_tlbwe(struct kvm_vcpu *vcpu) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_entry *gtlbe; int tlbsel, esel; int recal = 0; int idx; tlbsel = get_tlb_tlbsel(vcpu); esel = get_tlb_esel(vcpu, tlbsel); gtlbe = get_entry(vcpu_e500, tlbsel, esel); if (get_tlb_v(gtlbe)) { inval_gtlbe_on_host(vcpu_e500, tlbsel, esel); if ((tlbsel == 1) && kvmppc_need_recalc_tlb1map_range(vcpu_e500, gtlbe)) recal = 1; } gtlbe->mas1 = vcpu->arch.shared->mas1; gtlbe->mas2 = vcpu->arch.shared->mas2; if (!(vcpu->arch.shared->msr & MSR_CM)) gtlbe->mas2 &= 0xffffffffUL; gtlbe->mas7_3 = vcpu->arch.shared->mas7_3; trace_kvm_booke206_gtlb_write(vcpu->arch.shared->mas0, gtlbe->mas1, gtlbe->mas2, gtlbe->mas7_3); if (tlbsel == 1) { /* * If a valid tlb1 entry is overwritten then recalculate the * min/max TLB1 map address range otherwise no need to look * in tlb1 array. */ if (recal) kvmppc_recalc_tlb1map_range(vcpu_e500); else kvmppc_set_tlb1map_range(vcpu, gtlbe); } idx = srcu_read_lock(&vcpu->kvm->srcu); /* Invalidate shadow mappings for the about-to-be-clobbered TLBE. */ if (tlbe_is_host_safe(vcpu, gtlbe)) { u64 eaddr = get_tlb_eaddr(gtlbe); u64 raddr = get_tlb_raddr(gtlbe); if (tlbsel == 0) { gtlbe->mas1 &= ~MAS1_TSIZE(~0); gtlbe->mas1 |= MAS1_TSIZE(BOOK3E_PAGESZ_4K); } /* Premap the faulting page */ kvmppc_mmu_map(vcpu, eaddr, raddr, index_of(tlbsel, esel)); } srcu_read_unlock(&vcpu->kvm->srcu, idx); kvmppc_set_exit_type(vcpu, EMULATED_TLBWE_EXITS); return EMULATE_DONE; } static int kvmppc_e500_tlb_search(struct kvm_vcpu *vcpu, gva_t eaddr, unsigned int pid, int as) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); int esel, tlbsel; for (tlbsel = 0; tlbsel < 2; tlbsel++) { esel = kvmppc_e500_tlb_index(vcpu_e500, eaddr, tlbsel, pid, as); if (esel >= 0) return index_of(tlbsel, esel); } return -1; } /* 'linear_address' is actually an encoding of AS|PID|EADDR . */ int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { int index; gva_t eaddr; u8 pid; u8 as; eaddr = tr->linear_address; pid = (tr->linear_address >> 32) & 0xff; as = (tr->linear_address >> 40) & 0x1; index = kvmppc_e500_tlb_search(vcpu, eaddr, pid, as); if (index < 0) { tr->valid = 0; return 0; } tr->physical_address = kvmppc_mmu_xlate(vcpu, index, eaddr); /* XXX what does "writeable" and "usermode" even mean? */ tr->valid = 1; return 0; } int kvmppc_mmu_itlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); } int kvmppc_mmu_dtlb_index(struct kvm_vcpu *vcpu, gva_t eaddr) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); return kvmppc_e500_tlb_search(vcpu, eaddr, get_cur_pid(vcpu), as); } void kvmppc_mmu_itlb_miss(struct kvm_vcpu *vcpu) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_IS); kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.pc, as); } void kvmppc_mmu_dtlb_miss(struct kvm_vcpu *vcpu) { unsigned int as = !!(vcpu->arch.shared->msr & MSR_DS); kvmppc_e500_deliver_tlb_miss(vcpu, vcpu->arch.fault_dear, as); } gpa_t kvmppc_mmu_xlate(struct kvm_vcpu *vcpu, unsigned int index, gva_t eaddr) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_entry *gtlbe; u64 pgmask; gtlbe = get_entry(vcpu_e500, tlbsel_of(index), esel_of(index)); pgmask = get_tlb_bytes(gtlbe) - 1; return get_tlb_raddr(gtlbe) | (eaddr & pgmask); } void kvmppc_mmu_destroy_e500(struct kvm_vcpu *vcpu) { } /*****************************************/ static void free_gtlb(struct kvmppc_vcpu_e500 *vcpu_e500) { int i; kvmppc_core_flush_tlb(&vcpu_e500->vcpu); kfree(vcpu_e500->g2h_tlb1_map); kfree(vcpu_e500->gtlb_priv[0]); kfree(vcpu_e500->gtlb_priv[1]); if (vcpu_e500->shared_tlb_pages) { vfree((void *)(round_down((uintptr_t)vcpu_e500->gtlb_arch, PAGE_SIZE))); for (i = 0; i < vcpu_e500->num_shared_tlb_pages; i++) { set_page_dirty_lock(vcpu_e500->shared_tlb_pages[i]); put_page(vcpu_e500->shared_tlb_pages[i]); } vcpu_e500->num_shared_tlb_pages = 0; kfree(vcpu_e500->shared_tlb_pages); vcpu_e500->shared_tlb_pages = NULL; } else { kfree(vcpu_e500->gtlb_arch); } vcpu_e500->gtlb_arch = NULL; } void kvmppc_get_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { sregs->u.e.mas0 = vcpu->arch.shared->mas0; sregs->u.e.mas1 = vcpu->arch.shared->mas1; sregs->u.e.mas2 = vcpu->arch.shared->mas2; sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3; sregs->u.e.mas4 = vcpu->arch.shared->mas4; sregs->u.e.mas6 = vcpu->arch.shared->mas6; sregs->u.e.mmucfg = vcpu->arch.mmucfg; sregs->u.e.tlbcfg[0] = vcpu->arch.tlbcfg[0]; sregs->u.e.tlbcfg[1] = vcpu->arch.tlbcfg[1]; sregs->u.e.tlbcfg[2] = 0; sregs->u.e.tlbcfg[3] = 0; } int kvmppc_set_sregs_e500_tlb(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) { vcpu->arch.shared->mas0 = sregs->u.e.mas0; vcpu->arch.shared->mas1 = sregs->u.e.mas1; vcpu->arch.shared->mas2 = sregs->u.e.mas2; vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3; vcpu->arch.shared->mas4 = sregs->u.e.mas4; vcpu->arch.shared->mas6 = sregs->u.e.mas6; } return 0; } int kvmppc_get_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; switch (id) { case KVM_REG_PPC_MAS0: *val = get_reg_val(id, vcpu->arch.shared->mas0); break; case KVM_REG_PPC_MAS1: *val = get_reg_val(id, vcpu->arch.shared->mas1); break; case KVM_REG_PPC_MAS2: *val = get_reg_val(id, vcpu->arch.shared->mas2); break; case KVM_REG_PPC_MAS7_3: *val = get_reg_val(id, vcpu->arch.shared->mas7_3); break; case KVM_REG_PPC_MAS4: *val = get_reg_val(id, vcpu->arch.shared->mas4); break; case KVM_REG_PPC_MAS6: *val = get_reg_val(id, vcpu->arch.shared->mas6); break; case KVM_REG_PPC_MMUCFG: *val = get_reg_val(id, vcpu->arch.mmucfg); break; case KVM_REG_PPC_EPTCFG: *val = get_reg_val(id, vcpu->arch.eptcfg); break; case KVM_REG_PPC_TLB0CFG: case KVM_REG_PPC_TLB1CFG: case KVM_REG_PPC_TLB2CFG: case KVM_REG_PPC_TLB3CFG: i = id - KVM_REG_PPC_TLB0CFG; *val = get_reg_val(id, vcpu->arch.tlbcfg[i]); break; case KVM_REG_PPC_TLB0PS: case KVM_REG_PPC_TLB1PS: case KVM_REG_PPC_TLB2PS: case KVM_REG_PPC_TLB3PS: i = id - KVM_REG_PPC_TLB0PS; *val = get_reg_val(id, vcpu->arch.tlbps[i]); break; default: r = -EINVAL; break; } return r; } int kvmppc_set_one_reg_e500_tlb(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val) { int r = 0; long int i; switch (id) { case KVM_REG_PPC_MAS0: vcpu->arch.shared->mas0 = set_reg_val(id, *val); break; case KVM_REG_PPC_MAS1: vcpu->arch.shared->mas1 = set_reg_val(id, *val); break; case KVM_REG_PPC_MAS2: vcpu->arch.shared->mas2 = set_reg_val(id, *val); break; case KVM_REG_PPC_MAS7_3: vcpu->arch.shared->mas7_3 = set_reg_val(id, *val); break; case KVM_REG_PPC_MAS4: vcpu->arch.shared->mas4 = set_reg_val(id, *val); break; case KVM_REG_PPC_MAS6: vcpu->arch.shared->mas6 = set_reg_val(id, *val); break; /* Only allow MMU registers to be set to the config supported by KVM */ case KVM_REG_PPC_MMUCFG: { u32 reg = set_reg_val(id, *val); if (reg != vcpu->arch.mmucfg) r = -EINVAL; break; } case KVM_REG_PPC_EPTCFG: { u32 reg = set_reg_val(id, *val); if (reg != vcpu->arch.eptcfg) r = -EINVAL; break; } case KVM_REG_PPC_TLB0CFG: case KVM_REG_PPC_TLB1CFG: case KVM_REG_PPC_TLB2CFG: case KVM_REG_PPC_TLB3CFG: { /* MMU geometry (N_ENTRY/ASSOC) can be set only using SW_TLB */ u32 reg = set_reg_val(id, *val); i = id - KVM_REG_PPC_TLB0CFG; if (reg != vcpu->arch.tlbcfg[i]) r = -EINVAL; break; } case KVM_REG_PPC_TLB0PS: case KVM_REG_PPC_TLB1PS: case KVM_REG_PPC_TLB2PS: case KVM_REG_PPC_TLB3PS: { u32 reg = set_reg_val(id, *val); i = id - KVM_REG_PPC_TLB0PS; if (reg != vcpu->arch.tlbps[i]) r = -EINVAL; break; } default: r = -EINVAL; break; } return r; } static int vcpu_mmu_geometry_update(struct kvm_vcpu *vcpu, struct kvm_book3e_206_tlb_params *params) { vcpu->arch.tlbcfg[0] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); if (params->tlb_sizes[0] <= 2048) vcpu->arch.tlbcfg[0] |= params->tlb_sizes[0]; vcpu->arch.tlbcfg[0] |= params->tlb_ways[0] << TLBnCFG_ASSOC_SHIFT; vcpu->arch.tlbcfg[1] &= ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); vcpu->arch.tlbcfg[1] |= params->tlb_sizes[1]; vcpu->arch.tlbcfg[1] |= params->tlb_ways[1] << TLBnCFG_ASSOC_SHIFT; return 0; } int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu, struct kvm_config_tlb *cfg) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); struct kvm_book3e_206_tlb_params params; char *virt; struct page **pages; struct tlbe_priv *privs[2] = {}; u64 *g2h_bitmap; size_t array_len; u32 sets; int num_pages, ret, i; if (cfg->mmu_type != KVM_MMU_FSL_BOOKE_NOHV) return -EINVAL; if (copy_from_user(¶ms, (void __user *)(uintptr_t)cfg->params, sizeof(params))) return -EFAULT; if (params.tlb_sizes[1] > 64) return -EINVAL; if (params.tlb_ways[1] != params.tlb_sizes[1]) return -EINVAL; if (params.tlb_sizes[2] != 0 || params.tlb_sizes[3] != 0) return -EINVAL; if (params.tlb_ways[2] != 0 || params.tlb_ways[3] != 0) return -EINVAL; if (!is_power_of_2(params.tlb_ways[0])) return -EINVAL; sets = params.tlb_sizes[0] >> ilog2(params.tlb_ways[0]); if (!is_power_of_2(sets)) return -EINVAL; array_len = params.tlb_sizes[0] + params.tlb_sizes[1]; array_len *= sizeof(struct kvm_book3e_206_tlb_entry); if (cfg->array_len < array_len) return -EINVAL; num_pages = DIV_ROUND_UP(cfg->array + array_len - 1, PAGE_SIZE) - cfg->array / PAGE_SIZE; pages = kmalloc_array(num_pages, sizeof(*pages), GFP_KERNEL); if (!pages) return -ENOMEM; ret = get_user_pages_fast(cfg->array, num_pages, 1, pages); if (ret < 0) goto free_pages; if (ret != num_pages) { num_pages = ret; ret = -EFAULT; goto put_pages; } virt = vmap(pages, num_pages, VM_MAP, PAGE_KERNEL); if (!virt) { ret = -ENOMEM; goto put_pages; } privs[0] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[0], GFP_KERNEL); if (!privs[0]) { ret = -ENOMEM; goto put_pages; } privs[1] = kzalloc(sizeof(struct tlbe_priv) * params.tlb_sizes[1], GFP_KERNEL); if (!privs[1]) { ret = -ENOMEM; goto free_privs_first; } g2h_bitmap = kzalloc(sizeof(u64) * params.tlb_sizes[1], GFP_KERNEL); if (!g2h_bitmap) { ret = -ENOMEM; goto free_privs_second; } free_gtlb(vcpu_e500); vcpu_e500->gtlb_priv[0] = privs[0]; vcpu_e500->gtlb_priv[1] = privs[1]; vcpu_e500->g2h_tlb1_map = g2h_bitmap; vcpu_e500->gtlb_arch = (struct kvm_book3e_206_tlb_entry *) (virt + (cfg->array & (PAGE_SIZE - 1))); vcpu_e500->gtlb_params[0].entries = params.tlb_sizes[0]; vcpu_e500->gtlb_params[1].entries = params.tlb_sizes[1]; vcpu_e500->gtlb_offset[0] = 0; vcpu_e500->gtlb_offset[1] = params.tlb_sizes[0]; /* Update vcpu's MMU geometry based on SW_TLB input */ vcpu_mmu_geometry_update(vcpu, ¶ms); vcpu_e500->shared_tlb_pages = pages; vcpu_e500->num_shared_tlb_pages = num_pages; vcpu_e500->gtlb_params[0].ways = params.tlb_ways[0]; vcpu_e500->gtlb_params[0].sets = sets; vcpu_e500->gtlb_params[1].ways = params.tlb_sizes[1]; vcpu_e500->gtlb_params[1].sets = 1; kvmppc_recalc_tlb1map_range(vcpu_e500); return 0; free_privs_second: kfree(privs[1]); free_privs_first: kfree(privs[0]); put_pages: for (i = 0; i < num_pages; i++) put_page(pages[i]); free_pages: kfree(pages); return ret; } int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu, struct kvm_dirty_tlb *dirty) { struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); kvmppc_recalc_tlb1map_range(vcpu_e500); kvmppc_core_flush_tlb(vcpu); return 0; } /* Vcpu's MMU default configuration */ static int vcpu_mmu_init(struct kvm_vcpu *vcpu, struct kvmppc_e500_tlb_params *params) { /* Initialize RASIZE, PIDSIZE, NTLBS and MAVN fields with host values*/ vcpu->arch.mmucfg = mfspr(SPRN_MMUCFG) & ~MMUCFG_LPIDSIZE; /* Initialize TLBnCFG fields with host values and SW_TLB geometry*/ vcpu->arch.tlbcfg[0] = mfspr(SPRN_TLB0CFG) & ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); vcpu->arch.tlbcfg[0] |= params[0].entries; vcpu->arch.tlbcfg[0] |= params[0].ways << TLBnCFG_ASSOC_SHIFT; vcpu->arch.tlbcfg[1] = mfspr(SPRN_TLB1CFG) & ~(TLBnCFG_N_ENTRY | TLBnCFG_ASSOC); vcpu->arch.tlbcfg[1] |= params[1].entries; vcpu->arch.tlbcfg[1] |= params[1].ways << TLBnCFG_ASSOC_SHIFT; if (has_feature(vcpu, VCPU_FTR_MMU_V2)) { vcpu->arch.tlbps[0] = mfspr(SPRN_TLB0PS); vcpu->arch.tlbps[1] = mfspr(SPRN_TLB1PS); vcpu->arch.mmucfg &= ~MMUCFG_LRAT; /* Guest mmu emulation currently doesn't handle E.PT */ vcpu->arch.eptcfg = 0; vcpu->arch.tlbcfg[0] &= ~TLBnCFG_PT; vcpu->arch.tlbcfg[1] &= ~TLBnCFG_IND; } return 0; } int kvmppc_e500_tlb_init(struct kvmppc_vcpu_e500 *vcpu_e500) { struct kvm_vcpu *vcpu = &vcpu_e500->vcpu; int entry_size = sizeof(struct kvm_book3e_206_tlb_entry); int entries = KVM_E500_TLB0_SIZE + KVM_E500_TLB1_SIZE; if (e500_mmu_host_init(vcpu_e500)) goto err; vcpu_e500->gtlb_params[0].entries = KVM_E500_TLB0_SIZE; vcpu_e500->gtlb_params[1].entries = KVM_E500_TLB1_SIZE; vcpu_e500->gtlb_params[0].ways = KVM_E500_TLB0_WAY_NUM; vcpu_e500->gtlb_params[0].sets = KVM_E500_TLB0_SIZE / KVM_E500_TLB0_WAY_NUM; vcpu_e500->gtlb_params[1].ways = KVM_E500_TLB1_SIZE; vcpu_e500->gtlb_params[1].sets = 1; vcpu_e500->gtlb_arch = kmalloc(entries * entry_size, GFP_KERNEL); if (!vcpu_e500->gtlb_arch) return -ENOMEM; vcpu_e500->gtlb_offset[0] = 0; vcpu_e500->gtlb_offset[1] = KVM_E500_TLB0_SIZE; vcpu_e500->gtlb_priv[0] = kzalloc(sizeof(struct tlbe_ref) * vcpu_e500->gtlb_params[0].entries, GFP_KERNEL); if (!vcpu_e500->gtlb_priv[0]) goto err; vcpu_e500->gtlb_priv[1] = kzalloc(sizeof(struct tlbe_ref) * vcpu_e500->gtlb_params[1].entries, GFP_KERNEL); if (!vcpu_e500->gtlb_priv[1]) goto err; vcpu_e500->g2h_tlb1_map = kzalloc(sizeof(u64) * vcpu_e500->gtlb_params[1].entries, GFP_KERNEL); if (!vcpu_e500->g2h_tlb1_map) goto err; vcpu_mmu_init(vcpu, vcpu_e500->gtlb_params); kvmppc_recalc_tlb1map_range(vcpu_e500); return 0; err: free_gtlb(vcpu_e500); return -1; } void kvmppc_e500_tlb_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) { free_gtlb(vcpu_e500); e500_mmu_host_uninit(vcpu_e500); }