/* * kerneltop.c: show top kernel functions - performance counters showcase Build with: cc -O6 -Wall `pkg-config --cflags --libs glib-2.0` -o kerneltop kerneltop.c Sample output: ------------------------------------------------------------------------------ KernelTop: 2669 irqs/sec [NMI, cache-misses/cache-refs], (all, cpu: 2) ------------------------------------------------------------------------------ weight RIP kernel function ______ ________________ _______________ 35.20 - ffffffff804ce74b : skb_copy_and_csum_dev 33.00 - ffffffff804cb740 : sock_alloc_send_skb 31.26 - ffffffff804ce808 : skb_push 22.43 - ffffffff80510004 : tcp_established_options 19.00 - ffffffff8027d250 : find_get_page 15.76 - ffffffff804e4fc9 : eth_type_trans 15.20 - ffffffff804d8baa : dst_release 14.86 - ffffffff804cf5d8 : skb_release_head_state 14.00 - ffffffff802217d5 : read_hpet 12.00 - ffffffff804ffb7f : __ip_local_out 11.97 - ffffffff804fc0c8 : ip_local_deliver_finish 8.54 - ffffffff805001a3 : ip_queue_xmit Started by Ingo Molnar Improvements and fixes by: Arjan van de Ven Yanmin Zhang Mike Galbraith Released under the GPL v2. (and only v2, not any later version) */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "perfcounters.h" const char *event_types [] = { "CPU cycles", "instructions", "cache-refs", "cache-misses", "branches", "branch-misses", "bus cycles" }; const unsigned int default_count[] = { 1000000, 1000000, 10000, 10000, 1000000, 10000, }; static int nr_counters = -1; static __u64 count_filter = 100; static int event_count[MAX_COUNTERS]; static unsigned long event_id[MAX_COUNTERS]; static int event_raw[MAX_COUNTERS]; static int tid = -1; static int profile_cpu = -1; static int nr_cpus = 0; static int nmi = 1; static int group = 0; static char *vmlinux; static char *sym_filter; static unsigned long filter_start; static unsigned long filter_end; static int delay_secs = 2; static int zero; static int dump_symtab; struct source_line { uint64_t EIP; unsigned long count; char *line; }; static GList *lines; static void display_help(void) { printf( "Usage: kerneltop []\n\n" "KernelTop Options (up to %d event types can be specified at once):\n\n", MAX_COUNTERS); printf( " -e EID --event_id=EID # event type ID [default: 0]\n" " 0: CPU cycles\n" " 1: instructions\n" " 2: cache accesses\n" " 3: cache misses\n" " 4: branch instructions\n" " 5: branch prediction misses\n" " 6: bus cycles\n\n" " rNNN: raw PMU events (eventsel+umask)\n\n" " -c CNT --count=CNT # event period to sample\n\n" " -C CPU --cpu=CPU # CPU (-1 for all) [default: -1]\n" " -p PID --pid=PID # PID of sampled task (-1 for all) [default: -1]\n\n" " -d delay --delay= # sampling/display delay [default: 2]\n" " -f CNT --filter=CNT # min-event-count filter [default: 100]\n\n" " -s symbol --symbol= # function to be showed annotated one-shot\n" " -x path --vmlinux= # the vmlinux binary, required for -s use:\n" " -z --zero # zero counts after display\n" " -D --dump_symtab # dump symbol table to stderr on startup\n" "\n"); exit(0); } static void process_options(int argc, char *argv[]) { int error = 0, counter; for (;;) { int option_index = 0; /** Options for getopt */ static struct option long_options[] = { {"count", required_argument, NULL, 'c'}, {"cpu", required_argument, NULL, 'C'}, {"delay", required_argument, NULL, 'd'}, {"dump_symtab", no_argument, NULL, 'D'}, {"event_id", required_argument, NULL, 'e'}, {"filter", required_argument, NULL, 'f'}, {"group", required_argument, NULL, 'g'}, {"help", no_argument, NULL, 'h'}, {"nmi", required_argument, NULL, 'n'}, {"pid", required_argument, NULL, 'p'}, {"vmlinux", required_argument, NULL, 'x'}, {"symbol", required_argument, NULL, 's'}, {"zero", no_argument, NULL, 'z'}, {NULL, 0, NULL, 0 } }; int c = getopt_long(argc, argv, "c:C:d:De:f:g:hn:p:s:x:z", long_options, &option_index); if (c == -1) break; switch (c) { case 'c': if (nr_counters == -1) nr_counters = 0; event_count[nr_counters] = atoi(optarg); break; case 'C': /* CPU and PID are mutually exclusive */ if (tid != -1) { printf("WARNING: CPU switch overriding PID\n"); sleep(1); tid = -1; } profile_cpu = atoi(optarg); break; case 'd': delay_secs = atoi(optarg); break; case 'D': dump_symtab = 1; break; case 'e': nr_counters++; if (nr_counters == MAX_COUNTERS) { error = 1; break; } if (*optarg == 'r') { event_raw[nr_counters] = 1; ++optarg; } event_id[nr_counters] = strtol(optarg, NULL, 16); break; case 'f': count_filter = atoi(optarg); break; case 'g': group = atoi(optarg); break; case 'h': display_help(); break; case 'n': nmi = atoi(optarg); break; case 'p': /* CPU and PID are mutually exclusive */ if (profile_cpu != -1) { printf("WARNING: PID switch overriding CPU\n"); sleep(1); profile_cpu = -1; } tid = atoi(optarg); break; case 's': sym_filter = strdup(optarg); break; case 'x': vmlinux = strdup(optarg); break; case 'z': zero = 1; break; default: error = 1; break; } } if (error) display_help(); nr_counters++; if (nr_counters < 1) nr_counters = 1; for (counter = 0; counter < nr_counters; counter++) { if (event_count[counter]) continue; if (event_id[counter] < PERF_HW_EVENTS_MAX) event_count[counter] = default_count[event_id[counter]]; else event_count[counter] = 100000; } } static uint64_t min_ip; static uint64_t max_ip = -1ll; struct sym_entry { unsigned long long addr; char *sym; unsigned long count[MAX_COUNTERS]; int skip; GList *source; }; #define MAX_SYMS 100000 static int sym_table_count; struct sym_entry *sym_filter_entry; static struct sym_entry sym_table[MAX_SYMS]; static void show_details(struct sym_entry *sym); /* * Ordering weight: count-1 * count-1 * ... / count-n */ static double sym_weight(const struct sym_entry *sym) { double weight; int counter; weight = sym->count[0]; for (counter = 1; counter < nr_counters-1; counter++) weight *= sym->count[counter]; weight /= (sym->count[counter] + 1); return weight; } static int compare(const void *__sym1, const void *__sym2) { const struct sym_entry *sym1 = __sym1, *sym2 = __sym2; return sym_weight(sym1) < sym_weight(sym2); } static time_t last_refresh; static long events; static long userspace_events; static const char CONSOLE_CLEAR[] = ""; static struct sym_entry tmp[MAX_SYMS]; static void print_sym_table(void) { int i, printed; int counter; float events_per_sec = events/delay_secs; float kevents_per_sec = (events-userspace_events)/delay_secs; memcpy(tmp, sym_table, sizeof(sym_table[0])*sym_table_count); qsort(tmp, sym_table_count, sizeof(tmp[0]), compare); write(1, CONSOLE_CLEAR, strlen(CONSOLE_CLEAR)); printf( "------------------------------------------------------------------------------\n"); printf( " KernelTop:%8.0f irqs/sec kernel:%3.1f%% [%s, ", events_per_sec, 100.0 - (100.0*((events_per_sec-kevents_per_sec)/events_per_sec)), nmi ? "NMI" : "IRQ"); if (nr_counters == 1) printf("%d ", event_count[0]); for (counter = 0; counter < nr_counters; counter++) { if (counter) printf("/"); if (event_id[counter] < PERF_HW_EVENTS_MAX) printf( "%s", event_types[event_id[counter]]); else printf( "raw:%04lx", event_id[counter]); } printf( "], "); if (tid != -1) printf(" (tid: %d", tid); else printf(" (all"); if (profile_cpu != -1) printf(", cpu: %d)\n", profile_cpu); else { if (tid != -1) printf(")\n"); else printf(", %d CPUs)\n", nr_cpus); } printf("------------------------------------------------------------------------------\n\n"); if (nr_counters == 1) printf(" events"); else printf(" weight events"); printf(" RIP kernel function\n" " ______ ______ ________________ _______________\n\n" ); printed = 0; for (i = 0; i < sym_table_count; i++) { int count; if (nr_counters == 1) { if (printed <= 18 && tmp[i].count[0] >= count_filter) { printf("%19.2f - %016llx : %s\n", sym_weight(tmp + i), tmp[i].addr, tmp[i].sym); printed++; } } else { if (printed <= 18 && tmp[i].count[0] >= count_filter) { printf("%8.1f %10ld - %016llx : %s\n", sym_weight(tmp + i), tmp[i].count[0], tmp[i].addr, tmp[i].sym); printed++; } } /* * Add decay to the counts: */ for (count = 0; count < nr_counters; count++) sym_table[i].count[count] = zero ? 0 : sym_table[i].count[count] * 7 / 8; } if (sym_filter_entry) show_details(sym_filter_entry); last_refresh = time(NULL); { struct pollfd stdin_poll = { .fd = 0, .events = POLLIN }; if (poll(&stdin_poll, 1, 0) == 1) { printf("key pressed - exiting.\n"); exit(0); } } } static int read_symbol(FILE *in, struct sym_entry *s) { static int filter_match = 0; char *sym, stype; char str[500]; int rc, pos; rc = fscanf(in, "%llx %c %499s", &s->addr, &stype, str); if (rc == EOF) return -1; assert(rc == 3); /* skip until end of line: */ pos = strlen(str); do { rc = fgetc(in); if (rc == '\n' || rc == EOF || pos >= 499) break; str[pos] = rc; pos++; } while (1); str[pos] = 0; sym = str; /* Filter out known duplicates and non-text symbols. */ if (!strcmp(sym, "_text")) return 1; if (!min_ip && !strcmp(sym, "_stext")) return 1; if (!strcmp(sym, "_etext") || !strcmp(sym, "_sinittext")) return 1; if (stype != 'T' && stype != 't') return 1; if (!strncmp("init_module", sym, 11) || !strncmp("cleanup_module", sym, 14)) return 1; if (strstr(sym, "_text_start") || strstr(sym, "_text_end")) return 1; s->sym = malloc(strlen(str)); assert(s->sym); strcpy((char *)s->sym, str); s->skip = 0; /* Tag events to be skipped. */ if (!strcmp("default_idle", s->sym) || !strcmp("cpu_idle", s->sym)) s->skip = 1; if (!strcmp("enter_idle", s->sym) || !strcmp("exit_idle", s->sym)) s->skip = 1; if (filter_match == 1) { filter_end = s->addr; filter_match = -1; if (filter_end - filter_start > 10000) { printf("hm, too large filter symbol <%s> - skipping.\n", sym_filter); printf("symbol filter start: %016lx\n", filter_start); printf(" end: %016lx\n", filter_end); filter_end = filter_start = 0; sym_filter = NULL; sleep(1); } } if (filter_match == 0 && sym_filter && !strcmp(s->sym, sym_filter)) { filter_match = 1; filter_start = s->addr; } return 0; } int compare_addr(const void *__sym1, const void *__sym2) { const struct sym_entry *sym1 = __sym1, *sym2 = __sym2; return sym1->addr > sym2->addr; } static void sort_symbol_table(void) { int i, dups; do { qsort(sym_table, sym_table_count, sizeof(sym_table[0]), compare_addr); for (i = 0, dups = 0; i < sym_table_count; i++) { if (sym_table[i].addr == sym_table[i+1].addr) { sym_table[i+1].addr = -1ll; dups++; } } sym_table_count -= dups; } while(dups); } static void parse_symbols(void) { struct sym_entry *last; FILE *kallsyms = fopen("/proc/kallsyms", "r"); if (!kallsyms) { printf("Could not open /proc/kallsyms - no CONFIG_KALLSYMS_ALL=y?\n"); exit(-1); } while (!feof(kallsyms)) { if (read_symbol(kallsyms, &sym_table[sym_table_count]) == 0) { sym_table_count++; assert(sym_table_count <= MAX_SYMS); } } sort_symbol_table(); min_ip = sym_table[0].addr; max_ip = sym_table[sym_table_count-1].addr; last = sym_table + sym_table_count++; last->addr = -1ll; last->sym = ""; if (filter_end) { int count; for (count=0; count < sym_table_count; count ++) { if (!strcmp(sym_table[count].sym, sym_filter)) { sym_filter_entry = &sym_table[count]; break; } } } if (dump_symtab) { int i; for (i = 0; i < sym_table_count; i++) fprintf(stderr, "%llx %s\n", sym_table[i].addr, sym_table[i].sym); } } static void parse_vmlinux(char *filename) { FILE *file; char command[PATH_MAX*2]; if (!filename) return; sprintf(command, "objdump --start-address=0x%016lx --stop-address=0x%016lx -dS %s", filter_start, filter_end, filename); file = popen(command, "r"); if (!file) return; while (!feof(file)) { struct source_line *src; size_t dummy = 0; char *c; src = malloc(sizeof(struct source_line)); assert(src != NULL); memset(src, 0, sizeof(struct source_line)); if (getline(&src->line, &dummy, file) < 0) break; if (!src->line) break; c = strchr(src->line, '\n'); if (c) *c = 0; lines = g_list_prepend(lines, src); if (strlen(src->line)>8 && src->line[8] == ':') src->EIP = strtoull(src->line, NULL, 16); if (strlen(src->line)>8 && src->line[16] == ':') src->EIP = strtoull(src->line, NULL, 16); } pclose(file); lines = g_list_reverse(lines); } static void record_precise_ip(uint64_t ip) { struct source_line *line; GList *item; item = g_list_first(lines); while (item) { line = item->data; if (line->EIP == ip) line->count++; if (line->EIP > ip) break; item = g_list_next(item); } } static void lookup_sym_in_vmlinux(struct sym_entry *sym) { struct source_line *line; GList *item; char pattern[PATH_MAX]; sprintf(pattern, "<%s>:", sym->sym); item = g_list_first(lines); while (item) { line = item->data; if (strstr(line->line, pattern)) { sym->source = item; break; } item = g_list_next(item); } } void show_lines(GList *item_queue, int item_queue_count) { int i; struct source_line *line; for (i = 0; i < item_queue_count; i++) { line = item_queue->data; printf("%8li\t%s\n", line->count, line->line); item_queue = g_list_next(item_queue); } } #define TRACE_COUNT 3 static void show_details(struct sym_entry *sym) { struct source_line *line; GList *item; int displayed = 0; GList *item_queue = NULL; int item_queue_count = 0; if (!sym->source) lookup_sym_in_vmlinux(sym); if (!sym->source) return; printf("Showing details for %s\n", sym->sym); item = sym->source; while (item) { line = item->data; if (displayed && strstr(line->line, ">:")) break; if (!item_queue_count) item_queue = item; item_queue_count ++; if (line->count >= count_filter) { show_lines(item_queue, item_queue_count); item_queue_count = 0; item_queue = NULL; } else if (item_queue_count > TRACE_COUNT) { item_queue = g_list_next(item_queue); item_queue_count --; } line->count = 0; displayed++; if (displayed > 300) break; item = g_list_next(item); } } /* * Binary search in the histogram table and record the hit: */ static void record_ip(uint64_t ip, int counter) { int left_idx, middle_idx, right_idx, idx; unsigned long left, middle, right; record_precise_ip(ip); left_idx = 0; right_idx = sym_table_count-1; assert(ip <= max_ip && ip >= min_ip); while (left_idx + 1 < right_idx) { middle_idx = (left_idx + right_idx) / 2; left = sym_table[ left_idx].addr; middle = sym_table[middle_idx].addr; right = sym_table[ right_idx].addr; if (!(left <= middle && middle <= right)) { printf("%016lx...\n%016lx...\n%016lx\n", left, middle, right); printf("%d %d %d\n", left_idx, middle_idx, right_idx); } assert(left <= middle && middle <= right); if (!(left <= ip && ip <= right)) { printf(" left: %016lx\n", left); printf(" ip: %016lx\n", ip); printf("right: %016lx\n", right); } assert(left <= ip && ip <= right); /* * [ left .... target .... middle .... right ] * => right := middle */ if (ip < middle) { right_idx = middle_idx; continue; } /* * [ left .... middle ... target ... right ] * => left := middle */ left_idx = middle_idx; } idx = left_idx; if (!sym_table[idx].skip) sym_table[idx].count[counter]++; else events--; } static void process_event(uint64_t ip, int counter) { events++; if (ip < min_ip || ip > max_ip) { userspace_events++; return; } record_ip(ip, counter); } int main(int argc, char *argv[]) { struct pollfd event_array[MAX_NR_CPUS][MAX_COUNTERS]; struct perf_counter_hw_event hw_event; int fd[MAX_NR_CPUS][MAX_COUNTERS]; int i, counter, group_fd; unsigned int cpu; uint64_t ip; ssize_t res; int ret; process_options(argc, argv); nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (tid != -1 || profile_cpu != -1) nr_cpus = 1; assert(nr_cpus <= MAX_NR_CPUS); for (i = 0; i < nr_cpus; i++) { group_fd = -1; for (counter = 0; counter < nr_counters; counter++) { cpu = profile_cpu; if (tid == -1 && profile_cpu == -1) cpu = i; memset(&hw_event, 0, sizeof(hw_event)); hw_event.type = event_id[counter]; hw_event.raw = event_raw[counter]; hw_event.irq_period = event_count[counter]; hw_event.record_type = PERF_RECORD_IRQ; hw_event.nmi = nmi; fd[i][counter] = sys_perf_counter_open(&hw_event, tid, cpu, group_fd, 0); fcntl(fd[i][counter], F_SETFL, O_NONBLOCK); if (fd[i][counter] < 0) { printf("kerneltop error: syscall returned with %d (%s)\n", fd[i][counter], strerror(-fd[i][counter])); if (fd[i][counter] == -1) printf("Are you root?\n"); exit(-1); } assert(fd[i][counter] >= 0); /* * First counter acts as the group leader: */ if (group && group_fd == -1) group_fd = fd[i][counter]; event_array[i][counter].fd = fd[i][counter]; event_array[i][counter].events = POLLIN; } } parse_symbols(); if (vmlinux && sym_filter_entry) parse_vmlinux(vmlinux); printf("KernelTop refresh period: %d seconds\n", delay_secs); last_refresh = time(NULL); while (1) { int hits = events; for (i = 0; i < nr_cpus; i++) { for (counter = 0; counter < nr_counters; counter++) { res = read(fd[i][counter], (char *) &ip, sizeof(ip)); if (res > 0) { assert(res == sizeof(ip)); process_event(ip, counter); } } } if (time(NULL) >= last_refresh + delay_secs) { print_sym_table(); events = userspace_events = 0; } if (hits == events) ret = poll(event_array[0], nr_cpus, 1000); hits = events; } return 0; }