/* * Copyright (C) 2014 Linaro Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #ifndef __ASM_CPUFEATURE_H #define __ASM_CPUFEATURE_H #include #include /* * In the arm64 world (as in the ARM world), elf_hwcap is used both internally * in the kernel and for user space to keep track of which optional features * are supported by the current system. So let's map feature 'x' to HWCAP_x. * Note that HWCAP_x constants are bit fields so we need to take the log. */ #define MAX_CPU_FEATURES (8 * sizeof(elf_hwcap)) #define cpu_feature(x) ilog2(HWCAP_ ## x) #define ARM64_WORKAROUND_CLEAN_CACHE 0 #define ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE 1 #define ARM64_WORKAROUND_845719 2 #define ARM64_HAS_SYSREG_GIC_CPUIF 3 #define ARM64_HAS_PAN 4 #define ARM64_HAS_LSE_ATOMICS 5 #define ARM64_NCAPS 6 #ifndef __ASSEMBLY__ #include /* CPU feature register tracking */ enum ftr_type { FTR_EXACT, /* Use a predefined safe value */ FTR_LOWER_SAFE, /* Smaller value is safe */ FTR_HIGHER_SAFE,/* Bigger value is safe */ }; #define FTR_STRICT true /* SANITY check strict matching required */ #define FTR_NONSTRICT false /* SANITY check ignored */ struct arm64_ftr_bits { bool strict; /* CPU Sanity check: strict matching required ? */ enum ftr_type type; u8 shift; u8 width; s64 safe_val; /* safe value for discrete features */ }; /* * @arm64_ftr_reg - Feature register * @strict_mask Bits which should match across all CPUs for sanity. * @sys_val Safe value across the CPUs (system view) */ struct arm64_ftr_reg { u32 sys_id; const char *name; u64 strict_mask; u64 sys_val; struct arm64_ftr_bits *ftr_bits; }; struct arm64_cpu_capabilities { const char *desc; u16 capability; bool (*matches)(const struct arm64_cpu_capabilities *); void (*enable)(void); union { struct { /* To be used for erratum handling only */ u32 midr_model; u32 midr_range_min, midr_range_max; }; struct { /* Feature register checking */ int field_pos; int min_field_value; }; }; }; extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS); static inline bool cpu_have_feature(unsigned int num) { return elf_hwcap & (1UL << num); } static inline bool cpus_have_cap(unsigned int num) { if (num >= ARM64_NCAPS) return false; return test_bit(num, cpu_hwcaps); } static inline void cpus_set_cap(unsigned int num) { if (num >= ARM64_NCAPS) pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n", num, ARM64_NCAPS); else __set_bit(num, cpu_hwcaps); } static inline int __attribute_const__ cpuid_feature_extract_field_width(u64 features, int field, int width) { return (s64)(features << (64 - width - field)) >> (64 - width); } static inline int __attribute_const__ cpuid_feature_extract_field(u64 features, int field) { return cpuid_feature_extract_field_width(features, field, 4); } static inline u64 arm64_ftr_mask(struct arm64_ftr_bits *ftrp) { return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift); } static inline s64 arm64_ftr_value(struct arm64_ftr_bits *ftrp, u64 val) { return cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width); } static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0) { return cpuid_feature_extract_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 || cpuid_feature_extract_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1; } void __init setup_cpu_features(void); void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps, const char *info); void check_local_cpu_errata(void); void check_local_cpu_features(void); u64 read_system_reg(u32 id); static inline bool cpu_supports_mixed_endian_el0(void) { return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1)); } static inline bool system_supports_mixed_endian_el0(void) { return id_aa64mmfr0_mixed_endian_el0(read_system_reg(SYS_ID_AA64MMFR0_EL1)); } #endif /* __ASSEMBLY__ */ #endif