/******************************************************************************* * * Intel Ethernet Controller XL710 Family Linux Driver * Copyright(c) 2013 - 2014 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along * with this program. If not, see . * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * ******************************************************************************/ /* Local includes */ #include "i40e.h" #include "i40e_diag.h" #ifdef CONFIG_I40E_VXLAN #include #endif const char i40e_driver_name[] = "i40e"; static const char i40e_driver_string[] = "Intel(R) Ethernet Connection XL710 Network Driver"; #define DRV_KERN "-k" #define DRV_VERSION_MAJOR 1 #define DRV_VERSION_MINOR 2 #define DRV_VERSION_BUILD 6 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \ __stringify(DRV_VERSION_MINOR) "." \ __stringify(DRV_VERSION_BUILD) DRV_KERN const char i40e_driver_version_str[] = DRV_VERSION; static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation."; /* a bit of forward declarations */ static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi); static void i40e_handle_reset_warning(struct i40e_pf *pf); static int i40e_add_vsi(struct i40e_vsi *vsi); static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi); static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit); static int i40e_setup_misc_vector(struct i40e_pf *pf); static void i40e_determine_queue_usage(struct i40e_pf *pf); static int i40e_setup_pf_filter_control(struct i40e_pf *pf); static void i40e_fdir_sb_setup(struct i40e_pf *pf); static int i40e_veb_get_bw_info(struct i40e_veb *veb); /* i40e_pci_tbl - PCI Device ID Table * * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id i40e_pci_tbl[] = { {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_A), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0}, {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0}, /* required last entry */ {0, } }; MODULE_DEVICE_TABLE(pci, i40e_pci_tbl); #define I40E_MAX_VF_COUNT 128 static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); MODULE_AUTHOR("Intel Corporation, "); MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION); /** * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested * @alignment: what to align the allocation to **/ int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem, u64 size, u32 alignment) { struct i40e_pf *pf = (struct i40e_pf *)hw->back; mem->size = ALIGN(size, alignment); mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size, &mem->pa, GFP_KERNEL); if (!mem->va) return -ENOMEM; return 0; } /** * i40e_free_dma_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem) { struct i40e_pf *pf = (struct i40e_pf *)hw->back; dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa); mem->va = NULL; mem->pa = 0; mem->size = 0; return 0; } /** * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to fill out * @size: size of memory requested **/ int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem, u32 size) { mem->size = size; mem->va = kzalloc(size, GFP_KERNEL); if (!mem->va) return -ENOMEM; return 0; } /** * i40e_free_virt_mem_d - OS specific memory free for shared code * @hw: pointer to the HW structure * @mem: ptr to mem struct to free **/ int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem) { /* it's ok to kfree a NULL pointer */ kfree(mem->va); mem->va = NULL; mem->size = 0; return 0; } /** * i40e_get_lump - find a lump of free generic resource * @pf: board private structure * @pile: the pile of resource to search * @needed: the number of items needed * @id: an owner id to stick on the items assigned * * Returns the base item index of the lump, or negative for error * * The search_hint trick and lack of advanced fit-finding only work * because we're highly likely to have all the same size lump requests. * Linear search time and any fragmentation should be minimal. **/ static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile, u16 needed, u16 id) { int ret = -ENOMEM; int i, j; if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) { dev_info(&pf->pdev->dev, "param err: pile=%p needed=%d id=0x%04x\n", pile, needed, id); return -EINVAL; } /* start the linear search with an imperfect hint */ i = pile->search_hint; while (i < pile->num_entries) { /* skip already allocated entries */ if (pile->list[i] & I40E_PILE_VALID_BIT) { i++; continue; } /* do we have enough in this lump? */ for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) { if (pile->list[i+j] & I40E_PILE_VALID_BIT) break; } if (j == needed) { /* there was enough, so assign it to the requestor */ for (j = 0; j < needed; j++) pile->list[i+j] = id | I40E_PILE_VALID_BIT; ret = i; pile->search_hint = i + j; break; } else { /* not enough, so skip over it and continue looking */ i += j; } } return ret; } /** * i40e_put_lump - return a lump of generic resource * @pile: the pile of resource to search * @index: the base item index * @id: the owner id of the items assigned * * Returns the count of items in the lump **/ static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id) { int valid_id = (id | I40E_PILE_VALID_BIT); int count = 0; int i; if (!pile || index >= pile->num_entries) return -EINVAL; for (i = index; i < pile->num_entries && pile->list[i] == valid_id; i++) { pile->list[i] = 0; count++; } if (count && index < pile->search_hint) pile->search_hint = index; return count; } /** * i40e_service_event_schedule - Schedule the service task to wake up * @pf: board private structure * * If not already scheduled, this puts the task into the work queue **/ static void i40e_service_event_schedule(struct i40e_pf *pf) { if (!test_bit(__I40E_DOWN, &pf->state) && !test_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state) && !test_and_set_bit(__I40E_SERVICE_SCHED, &pf->state)) schedule_work(&pf->service_task); } /** * i40e_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure * * If any port has noticed a Tx timeout, it is likely that the whole * device is munged, not just the one netdev port, so go for the full * reset. **/ #ifdef I40E_FCOE void i40e_tx_timeout(struct net_device *netdev) #else static void i40e_tx_timeout(struct net_device *netdev) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; pf->tx_timeout_count++; if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20))) pf->tx_timeout_recovery_level = 1; pf->tx_timeout_last_recovery = jiffies; netdev_info(netdev, "tx_timeout recovery level %d\n", pf->tx_timeout_recovery_level); switch (pf->tx_timeout_recovery_level) { case 0: /* disable and re-enable queues for the VSI */ if (in_interrupt()) { set_bit(__I40E_REINIT_REQUESTED, &pf->state); set_bit(__I40E_REINIT_REQUESTED, &vsi->state); } else { i40e_vsi_reinit_locked(vsi); } break; case 1: set_bit(__I40E_PF_RESET_REQUESTED, &pf->state); break; case 2: set_bit(__I40E_CORE_RESET_REQUESTED, &pf->state); break; case 3: set_bit(__I40E_GLOBAL_RESET_REQUESTED, &pf->state); break; default: netdev_err(netdev, "tx_timeout recovery unsuccessful\n"); set_bit(__I40E_DOWN_REQUESTED, &pf->state); set_bit(__I40E_DOWN_REQUESTED, &vsi->state); break; } i40e_service_event_schedule(pf); pf->tx_timeout_recovery_level++; } /** * i40e_release_rx_desc - Store the new tail and head values * @rx_ring: ring to bump * @val: new head index **/ static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val) { rx_ring->next_to_use = val; /* Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); writel(val, rx_ring->tail); } /** * i40e_get_vsi_stats_struct - Get System Network Statistics * @vsi: the VSI we care about * * Returns the address of the device statistics structure. * The statistics are actually updated from the service task. **/ struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi) { return &vsi->net_stats; } /** * i40e_get_netdev_stats_struct - Get statistics for netdev interface * @netdev: network interface device structure * * Returns the address of the device statistics structure. * The statistics are actually updated from the service task. **/ #ifdef I40E_FCOE struct rtnl_link_stats64 *i40e_get_netdev_stats_struct( struct net_device *netdev, struct rtnl_link_stats64 *stats) #else static struct rtnl_link_stats64 *i40e_get_netdev_stats_struct( struct net_device *netdev, struct rtnl_link_stats64 *stats) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_ring *tx_ring, *rx_ring; struct i40e_vsi *vsi = np->vsi; struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi); int i; if (test_bit(__I40E_DOWN, &vsi->state)) return stats; if (!vsi->tx_rings) return stats; rcu_read_lock(); for (i = 0; i < vsi->num_queue_pairs; i++) { u64 bytes, packets; unsigned int start; tx_ring = ACCESS_ONCE(vsi->tx_rings[i]); if (!tx_ring) continue; do { start = u64_stats_fetch_begin_irq(&tx_ring->syncp); packets = tx_ring->stats.packets; bytes = tx_ring->stats.bytes; } while (u64_stats_fetch_retry_irq(&tx_ring->syncp, start)); stats->tx_packets += packets; stats->tx_bytes += bytes; rx_ring = &tx_ring[1]; do { start = u64_stats_fetch_begin_irq(&rx_ring->syncp); packets = rx_ring->stats.packets; bytes = rx_ring->stats.bytes; } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start)); stats->rx_packets += packets; stats->rx_bytes += bytes; } rcu_read_unlock(); /* following stats updated by i40e_watchdog_subtask() */ stats->multicast = vsi_stats->multicast; stats->tx_errors = vsi_stats->tx_errors; stats->tx_dropped = vsi_stats->tx_dropped; stats->rx_errors = vsi_stats->rx_errors; stats->rx_crc_errors = vsi_stats->rx_crc_errors; stats->rx_length_errors = vsi_stats->rx_length_errors; return stats; } /** * i40e_vsi_reset_stats - Resets all stats of the given vsi * @vsi: the VSI to have its stats reset **/ void i40e_vsi_reset_stats(struct i40e_vsi *vsi) { struct rtnl_link_stats64 *ns; int i; if (!vsi) return; ns = i40e_get_vsi_stats_struct(vsi); memset(ns, 0, sizeof(*ns)); memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets)); memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats)); memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets)); if (vsi->rx_rings && vsi->rx_rings[0]) { for (i = 0; i < vsi->num_queue_pairs; i++) { memset(&vsi->rx_rings[i]->stats, 0 , sizeof(vsi->rx_rings[i]->stats)); memset(&vsi->rx_rings[i]->rx_stats, 0 , sizeof(vsi->rx_rings[i]->rx_stats)); memset(&vsi->tx_rings[i]->stats, 0 , sizeof(vsi->tx_rings[i]->stats)); memset(&vsi->tx_rings[i]->tx_stats, 0, sizeof(vsi->tx_rings[i]->tx_stats)); } } vsi->stat_offsets_loaded = false; } /** * i40e_pf_reset_stats - Reset all of the stats for the given pf * @pf: the PF to be reset **/ void i40e_pf_reset_stats(struct i40e_pf *pf) { int i; memset(&pf->stats, 0, sizeof(pf->stats)); memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets)); pf->stat_offsets_loaded = false; for (i = 0; i < I40E_MAX_VEB; i++) { if (pf->veb[i]) { memset(&pf->veb[i]->stats, 0, sizeof(pf->veb[i]->stats)); memset(&pf->veb[i]->stats_offsets, 0, sizeof(pf->veb[i]->stats_offsets)); pf->veb[i]->stat_offsets_loaded = false; } } } /** * i40e_stat_update48 - read and update a 48 bit stat from the chip * @hw: ptr to the hardware info * @hireg: the high 32 bit reg to read * @loreg: the low 32 bit reg to read * @offset_loaded: has the initial offset been loaded yet * @offset: ptr to current offset value * @stat: ptr to the stat * * Since the device stats are not reset at PFReset, they likely will not * be zeroed when the driver starts. We'll save the first values read * and use them as offsets to be subtracted from the raw values in order * to report stats that count from zero. In the process, we also manage * the potential roll-over. **/ static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg, bool offset_loaded, u64 *offset, u64 *stat) { u64 new_data; if (hw->device_id == I40E_DEV_ID_QEMU) { new_data = rd32(hw, loreg); new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32; } else { new_data = rd64(hw, loreg); } if (!offset_loaded) *offset = new_data; if (likely(new_data >= *offset)) *stat = new_data - *offset; else *stat = (new_data + ((u64)1 << 48)) - *offset; *stat &= 0xFFFFFFFFFFFFULL; } /** * i40e_stat_update32 - read and update a 32 bit stat from the chip * @hw: ptr to the hardware info * @reg: the hw reg to read * @offset_loaded: has the initial offset been loaded yet * @offset: ptr to current offset value * @stat: ptr to the stat **/ static void i40e_stat_update32(struct i40e_hw *hw, u32 reg, bool offset_loaded, u64 *offset, u64 *stat) { u32 new_data; new_data = rd32(hw, reg); if (!offset_loaded) *offset = new_data; if (likely(new_data >= *offset)) *stat = (u32)(new_data - *offset); else *stat = (u32)((new_data + ((u64)1 << 32)) - *offset); } /** * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters. * @vsi: the VSI to be updated **/ void i40e_update_eth_stats(struct i40e_vsi *vsi) { int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx); struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; struct i40e_eth_stats *oes; struct i40e_eth_stats *es; /* device's eth stats */ es = &vsi->eth_stats; oes = &vsi->eth_stats_offsets; /* Gather up the stats that the hw collects */ i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), vsi->stat_offsets_loaded, &oes->tx_errors, &es->tx_errors); i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx), vsi->stat_offsets_loaded, &oes->rx_discards, &es->rx_discards); i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx), vsi->stat_offsets_loaded, &oes->rx_unknown_protocol, &es->rx_unknown_protocol); i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx), vsi->stat_offsets_loaded, &oes->tx_errors, &es->tx_errors); i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx), I40E_GLV_GORCL(stat_idx), vsi->stat_offsets_loaded, &oes->rx_bytes, &es->rx_bytes); i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx), I40E_GLV_UPRCL(stat_idx), vsi->stat_offsets_loaded, &oes->rx_unicast, &es->rx_unicast); i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx), I40E_GLV_MPRCL(stat_idx), vsi->stat_offsets_loaded, &oes->rx_multicast, &es->rx_multicast); i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx), I40E_GLV_BPRCL(stat_idx), vsi->stat_offsets_loaded, &oes->rx_broadcast, &es->rx_broadcast); i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx), I40E_GLV_GOTCL(stat_idx), vsi->stat_offsets_loaded, &oes->tx_bytes, &es->tx_bytes); i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx), I40E_GLV_UPTCL(stat_idx), vsi->stat_offsets_loaded, &oes->tx_unicast, &es->tx_unicast); i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx), I40E_GLV_MPTCL(stat_idx), vsi->stat_offsets_loaded, &oes->tx_multicast, &es->tx_multicast); i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx), I40E_GLV_BPTCL(stat_idx), vsi->stat_offsets_loaded, &oes->tx_broadcast, &es->tx_broadcast); vsi->stat_offsets_loaded = true; } /** * i40e_update_veb_stats - Update Switch component statistics * @veb: the VEB being updated **/ static void i40e_update_veb_stats(struct i40e_veb *veb) { struct i40e_pf *pf = veb->pf; struct i40e_hw *hw = &pf->hw; struct i40e_eth_stats *oes; struct i40e_eth_stats *es; /* device's eth stats */ int idx = 0; idx = veb->stats_idx; es = &veb->stats; oes = &veb->stats_offsets; /* Gather up the stats that the hw collects */ i40e_stat_update32(hw, I40E_GLSW_TDPC(idx), veb->stat_offsets_loaded, &oes->tx_discards, &es->tx_discards); if (hw->revision_id > 0) i40e_stat_update32(hw, I40E_GLSW_RUPP(idx), veb->stat_offsets_loaded, &oes->rx_unknown_protocol, &es->rx_unknown_protocol); i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx), veb->stat_offsets_loaded, &oes->rx_bytes, &es->rx_bytes); i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx), veb->stat_offsets_loaded, &oes->rx_unicast, &es->rx_unicast); i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx), veb->stat_offsets_loaded, &oes->rx_multicast, &es->rx_multicast); i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx), veb->stat_offsets_loaded, &oes->rx_broadcast, &es->rx_broadcast); i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx), veb->stat_offsets_loaded, &oes->tx_bytes, &es->tx_bytes); i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx), veb->stat_offsets_loaded, &oes->tx_unicast, &es->tx_unicast); i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx), veb->stat_offsets_loaded, &oes->tx_multicast, &es->tx_multicast); i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx), veb->stat_offsets_loaded, &oes->tx_broadcast, &es->tx_broadcast); veb->stat_offsets_loaded = true; } #ifdef I40E_FCOE /** * i40e_update_fcoe_stats - Update FCoE-specific ethernet statistics counters. * @vsi: the VSI that is capable of doing FCoE **/ static void i40e_update_fcoe_stats(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; struct i40e_fcoe_stats *ofs; struct i40e_fcoe_stats *fs; /* device's eth stats */ int idx; if (vsi->type != I40E_VSI_FCOE) return; idx = (pf->pf_seid - I40E_BASE_PF_SEID) + I40E_FCOE_PF_STAT_OFFSET; fs = &vsi->fcoe_stats; ofs = &vsi->fcoe_stats_offsets; i40e_stat_update32(hw, I40E_GL_FCOEPRC(idx), vsi->fcoe_stat_offsets_loaded, &ofs->rx_fcoe_packets, &fs->rx_fcoe_packets); i40e_stat_update48(hw, I40E_GL_FCOEDWRCH(idx), I40E_GL_FCOEDWRCL(idx), vsi->fcoe_stat_offsets_loaded, &ofs->rx_fcoe_dwords, &fs->rx_fcoe_dwords); i40e_stat_update32(hw, I40E_GL_FCOERPDC(idx), vsi->fcoe_stat_offsets_loaded, &ofs->rx_fcoe_dropped, &fs->rx_fcoe_dropped); i40e_stat_update32(hw, I40E_GL_FCOEPTC(idx), vsi->fcoe_stat_offsets_loaded, &ofs->tx_fcoe_packets, &fs->tx_fcoe_packets); i40e_stat_update48(hw, I40E_GL_FCOEDWTCH(idx), I40E_GL_FCOEDWTCL(idx), vsi->fcoe_stat_offsets_loaded, &ofs->tx_fcoe_dwords, &fs->tx_fcoe_dwords); i40e_stat_update32(hw, I40E_GL_FCOECRC(idx), vsi->fcoe_stat_offsets_loaded, &ofs->fcoe_bad_fccrc, &fs->fcoe_bad_fccrc); i40e_stat_update32(hw, I40E_GL_FCOELAST(idx), vsi->fcoe_stat_offsets_loaded, &ofs->fcoe_last_error, &fs->fcoe_last_error); i40e_stat_update32(hw, I40E_GL_FCOEDDPC(idx), vsi->fcoe_stat_offsets_loaded, &ofs->fcoe_ddp_count, &fs->fcoe_ddp_count); vsi->fcoe_stat_offsets_loaded = true; } #endif /** * i40e_update_link_xoff_rx - Update XOFF received in link flow control mode * @pf: the corresponding PF * * Update the Rx XOFF counter (PAUSE frames) in link flow control mode **/ static void i40e_update_link_xoff_rx(struct i40e_pf *pf) { struct i40e_hw_port_stats *osd = &pf->stats_offsets; struct i40e_hw_port_stats *nsd = &pf->stats; struct i40e_hw *hw = &pf->hw; u64 xoff = 0; u16 i, v; if ((hw->fc.current_mode != I40E_FC_FULL) && (hw->fc.current_mode != I40E_FC_RX_PAUSE)) return; xoff = nsd->link_xoff_rx; i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port), pf->stat_offsets_loaded, &osd->link_xoff_rx, &nsd->link_xoff_rx); /* No new LFC xoff rx */ if (!(nsd->link_xoff_rx - xoff)) return; /* Clear the __I40E_HANG_CHECK_ARMED bit for all Tx rings */ for (v = 0; v < pf->num_alloc_vsi; v++) { struct i40e_vsi *vsi = pf->vsi[v]; if (!vsi || !vsi->tx_rings[0]) continue; for (i = 0; i < vsi->num_queue_pairs; i++) { struct i40e_ring *ring = vsi->tx_rings[i]; clear_bit(__I40E_HANG_CHECK_ARMED, &ring->state); } } } /** * i40e_update_prio_xoff_rx - Update XOFF received in PFC mode * @pf: the corresponding PF * * Update the Rx XOFF counter (PAUSE frames) in PFC mode **/ static void i40e_update_prio_xoff_rx(struct i40e_pf *pf) { struct i40e_hw_port_stats *osd = &pf->stats_offsets; struct i40e_hw_port_stats *nsd = &pf->stats; bool xoff[I40E_MAX_TRAFFIC_CLASS] = {false}; struct i40e_dcbx_config *dcb_cfg; struct i40e_hw *hw = &pf->hw; u16 i, v; u8 tc; dcb_cfg = &hw->local_dcbx_config; /* See if DCB enabled with PFC TC */ if (!(pf->flags & I40E_FLAG_DCB_ENABLED) || !(dcb_cfg->pfc.pfcenable)) { i40e_update_link_xoff_rx(pf); return; } for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { u64 prio_xoff = nsd->priority_xoff_rx[i]; i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i), pf->stat_offsets_loaded, &osd->priority_xoff_rx[i], &nsd->priority_xoff_rx[i]); /* No new PFC xoff rx */ if (!(nsd->priority_xoff_rx[i] - prio_xoff)) continue; /* Get the TC for given priority */ tc = dcb_cfg->etscfg.prioritytable[i]; xoff[tc] = true; } /* Clear the __I40E_HANG_CHECK_ARMED bit for Tx rings */ for (v = 0; v < pf->num_alloc_vsi; v++) { struct i40e_vsi *vsi = pf->vsi[v]; if (!vsi || !vsi->tx_rings[0]) continue; for (i = 0; i < vsi->num_queue_pairs; i++) { struct i40e_ring *ring = vsi->tx_rings[i]; tc = ring->dcb_tc; if (xoff[tc]) clear_bit(__I40E_HANG_CHECK_ARMED, &ring->state); } } } /** * i40e_update_vsi_stats - Update the vsi statistics counters. * @vsi: the VSI to be updated * * There are a few instances where we store the same stat in a * couple of different structs. This is partly because we have * the netdev stats that need to be filled out, which is slightly * different from the "eth_stats" defined by the chip and used in * VF communications. We sort it out here. **/ static void i40e_update_vsi_stats(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; struct rtnl_link_stats64 *ons; struct rtnl_link_stats64 *ns; /* netdev stats */ struct i40e_eth_stats *oes; struct i40e_eth_stats *es; /* device's eth stats */ u32 tx_restart, tx_busy; struct i40e_ring *p; u32 rx_page, rx_buf; u64 bytes, packets; unsigned int start; u64 rx_p, rx_b; u64 tx_p, tx_b; u16 q; if (test_bit(__I40E_DOWN, &vsi->state) || test_bit(__I40E_CONFIG_BUSY, &pf->state)) return; ns = i40e_get_vsi_stats_struct(vsi); ons = &vsi->net_stats_offsets; es = &vsi->eth_stats; oes = &vsi->eth_stats_offsets; /* Gather up the netdev and vsi stats that the driver collects * on the fly during packet processing */ rx_b = rx_p = 0; tx_b = tx_p = 0; tx_restart = tx_busy = 0; rx_page = 0; rx_buf = 0; rcu_read_lock(); for (q = 0; q < vsi->num_queue_pairs; q++) { /* locate Tx ring */ p = ACCESS_ONCE(vsi->tx_rings[q]); do { start = u64_stats_fetch_begin_irq(&p->syncp); packets = p->stats.packets; bytes = p->stats.bytes; } while (u64_stats_fetch_retry_irq(&p->syncp, start)); tx_b += bytes; tx_p += packets; tx_restart += p->tx_stats.restart_queue; tx_busy += p->tx_stats.tx_busy; /* Rx queue is part of the same block as Tx queue */ p = &p[1]; do { start = u64_stats_fetch_begin_irq(&p->syncp); packets = p->stats.packets; bytes = p->stats.bytes; } while (u64_stats_fetch_retry_irq(&p->syncp, start)); rx_b += bytes; rx_p += packets; rx_buf += p->rx_stats.alloc_buff_failed; rx_page += p->rx_stats.alloc_page_failed; } rcu_read_unlock(); vsi->tx_restart = tx_restart; vsi->tx_busy = tx_busy; vsi->rx_page_failed = rx_page; vsi->rx_buf_failed = rx_buf; ns->rx_packets = rx_p; ns->rx_bytes = rx_b; ns->tx_packets = tx_p; ns->tx_bytes = tx_b; /* update netdev stats from eth stats */ i40e_update_eth_stats(vsi); ons->tx_errors = oes->tx_errors; ns->tx_errors = es->tx_errors; ons->multicast = oes->rx_multicast; ns->multicast = es->rx_multicast; ons->rx_dropped = oes->rx_discards; ns->rx_dropped = es->rx_discards; ons->tx_dropped = oes->tx_discards; ns->tx_dropped = es->tx_discards; /* pull in a couple PF stats if this is the main vsi */ if (vsi == pf->vsi[pf->lan_vsi]) { ns->rx_crc_errors = pf->stats.crc_errors; ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes; ns->rx_length_errors = pf->stats.rx_length_errors; } } /** * i40e_update_pf_stats - Update the pf statistics counters. * @pf: the PF to be updated **/ static void i40e_update_pf_stats(struct i40e_pf *pf) { struct i40e_hw_port_stats *osd = &pf->stats_offsets; struct i40e_hw_port_stats *nsd = &pf->stats; struct i40e_hw *hw = &pf->hw; u32 val; int i; i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port), I40E_GLPRT_GORCL(hw->port), pf->stat_offsets_loaded, &osd->eth.rx_bytes, &nsd->eth.rx_bytes); i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port), I40E_GLPRT_GOTCL(hw->port), pf->stat_offsets_loaded, &osd->eth.tx_bytes, &nsd->eth.tx_bytes); i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port), pf->stat_offsets_loaded, &osd->eth.rx_discards, &nsd->eth.rx_discards); i40e_stat_update32(hw, I40E_GLPRT_TDPC(hw->port), pf->stat_offsets_loaded, &osd->eth.tx_discards, &nsd->eth.tx_discards); i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port), I40E_GLPRT_UPRCL(hw->port), pf->stat_offsets_loaded, &osd->eth.rx_unicast, &nsd->eth.rx_unicast); i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port), I40E_GLPRT_MPRCL(hw->port), pf->stat_offsets_loaded, &osd->eth.rx_multicast, &nsd->eth.rx_multicast); i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port), I40E_GLPRT_BPRCL(hw->port), pf->stat_offsets_loaded, &osd->eth.rx_broadcast, &nsd->eth.rx_broadcast); i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port), I40E_GLPRT_UPTCL(hw->port), pf->stat_offsets_loaded, &osd->eth.tx_unicast, &nsd->eth.tx_unicast); i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port), I40E_GLPRT_MPTCL(hw->port), pf->stat_offsets_loaded, &osd->eth.tx_multicast, &nsd->eth.tx_multicast); i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port), I40E_GLPRT_BPTCL(hw->port), pf->stat_offsets_loaded, &osd->eth.tx_broadcast, &nsd->eth.tx_broadcast); i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port), pf->stat_offsets_loaded, &osd->tx_dropped_link_down, &nsd->tx_dropped_link_down); i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port), pf->stat_offsets_loaded, &osd->crc_errors, &nsd->crc_errors); i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port), pf->stat_offsets_loaded, &osd->illegal_bytes, &nsd->illegal_bytes); i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port), pf->stat_offsets_loaded, &osd->mac_local_faults, &nsd->mac_local_faults); i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port), pf->stat_offsets_loaded, &osd->mac_remote_faults, &nsd->mac_remote_faults); i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port), pf->stat_offsets_loaded, &osd->rx_length_errors, &nsd->rx_length_errors); i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port), pf->stat_offsets_loaded, &osd->link_xon_rx, &nsd->link_xon_rx); i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port), pf->stat_offsets_loaded, &osd->link_xon_tx, &nsd->link_xon_tx); i40e_update_prio_xoff_rx(pf); /* handles I40E_GLPRT_LXOFFRXC */ i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port), pf->stat_offsets_loaded, &osd->link_xoff_tx, &nsd->link_xoff_tx); for (i = 0; i < 8; i++) { i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i), pf->stat_offsets_loaded, &osd->priority_xon_rx[i], &nsd->priority_xon_rx[i]); i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i), pf->stat_offsets_loaded, &osd->priority_xon_tx[i], &nsd->priority_xon_tx[i]); i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i), pf->stat_offsets_loaded, &osd->priority_xoff_tx[i], &nsd->priority_xoff_tx[i]); i40e_stat_update32(hw, I40E_GLPRT_RXON2OFFCNT(hw->port, i), pf->stat_offsets_loaded, &osd->priority_xon_2_xoff[i], &nsd->priority_xon_2_xoff[i]); } i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port), I40E_GLPRT_PRC64L(hw->port), pf->stat_offsets_loaded, &osd->rx_size_64, &nsd->rx_size_64); i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port), I40E_GLPRT_PRC127L(hw->port), pf->stat_offsets_loaded, &osd->rx_size_127, &nsd->rx_size_127); i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port), I40E_GLPRT_PRC255L(hw->port), pf->stat_offsets_loaded, &osd->rx_size_255, &nsd->rx_size_255); i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port), I40E_GLPRT_PRC511L(hw->port), pf->stat_offsets_loaded, &osd->rx_size_511, &nsd->rx_size_511); i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port), I40E_GLPRT_PRC1023L(hw->port), pf->stat_offsets_loaded, &osd->rx_size_1023, &nsd->rx_size_1023); i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port), I40E_GLPRT_PRC1522L(hw->port), pf->stat_offsets_loaded, &osd->rx_size_1522, &nsd->rx_size_1522); i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port), I40E_GLPRT_PRC9522L(hw->port), pf->stat_offsets_loaded, &osd->rx_size_big, &nsd->rx_size_big); i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port), I40E_GLPRT_PTC64L(hw->port), pf->stat_offsets_loaded, &osd->tx_size_64, &nsd->tx_size_64); i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port), I40E_GLPRT_PTC127L(hw->port), pf->stat_offsets_loaded, &osd->tx_size_127, &nsd->tx_size_127); i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port), I40E_GLPRT_PTC255L(hw->port), pf->stat_offsets_loaded, &osd->tx_size_255, &nsd->tx_size_255); i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port), I40E_GLPRT_PTC511L(hw->port), pf->stat_offsets_loaded, &osd->tx_size_511, &nsd->tx_size_511); i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port), I40E_GLPRT_PTC1023L(hw->port), pf->stat_offsets_loaded, &osd->tx_size_1023, &nsd->tx_size_1023); i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port), I40E_GLPRT_PTC1522L(hw->port), pf->stat_offsets_loaded, &osd->tx_size_1522, &nsd->tx_size_1522); i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port), I40E_GLPRT_PTC9522L(hw->port), pf->stat_offsets_loaded, &osd->tx_size_big, &nsd->tx_size_big); i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port), pf->stat_offsets_loaded, &osd->rx_undersize, &nsd->rx_undersize); i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port), pf->stat_offsets_loaded, &osd->rx_fragments, &nsd->rx_fragments); i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port), pf->stat_offsets_loaded, &osd->rx_oversize, &nsd->rx_oversize); i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port), pf->stat_offsets_loaded, &osd->rx_jabber, &nsd->rx_jabber); /* FDIR stats */ i40e_stat_update32(hw, I40E_GLQF_PCNT(pf->fd_atr_cnt_idx), pf->stat_offsets_loaded, &osd->fd_atr_match, &nsd->fd_atr_match); i40e_stat_update32(hw, I40E_GLQF_PCNT(pf->fd_sb_cnt_idx), pf->stat_offsets_loaded, &osd->fd_sb_match, &nsd->fd_sb_match); val = rd32(hw, I40E_PRTPM_EEE_STAT); nsd->tx_lpi_status = (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >> I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT; nsd->rx_lpi_status = (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >> I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT; i40e_stat_update32(hw, I40E_PRTPM_TLPIC, pf->stat_offsets_loaded, &osd->tx_lpi_count, &nsd->tx_lpi_count); i40e_stat_update32(hw, I40E_PRTPM_RLPIC, pf->stat_offsets_loaded, &osd->rx_lpi_count, &nsd->rx_lpi_count); pf->stat_offsets_loaded = true; } /** * i40e_update_stats - Update the various statistics counters. * @vsi: the VSI to be updated * * Update the various stats for this VSI and its related entities. **/ void i40e_update_stats(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; if (vsi == pf->vsi[pf->lan_vsi]) i40e_update_pf_stats(pf); i40e_update_vsi_stats(vsi); #ifdef I40E_FCOE i40e_update_fcoe_stats(vsi); #endif } /** * i40e_find_filter - Search VSI filter list for specific mac/vlan filter * @vsi: the VSI to be searched * @macaddr: the MAC address * @vlan: the vlan * @is_vf: make sure its a vf filter, else doesn't matter * @is_netdev: make sure its a netdev filter, else doesn't matter * * Returns ptr to the filter object or NULL **/ static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi, u8 *macaddr, s16 vlan, bool is_vf, bool is_netdev) { struct i40e_mac_filter *f; if (!vsi || !macaddr) return NULL; list_for_each_entry(f, &vsi->mac_filter_list, list) { if ((ether_addr_equal(macaddr, f->macaddr)) && (vlan == f->vlan) && (!is_vf || f->is_vf) && (!is_netdev || f->is_netdev)) return f; } return NULL; } /** * i40e_find_mac - Find a mac addr in the macvlan filters list * @vsi: the VSI to be searched * @macaddr: the MAC address we are searching for * @is_vf: make sure its a vf filter, else doesn't matter * @is_netdev: make sure its a netdev filter, else doesn't matter * * Returns the first filter with the provided MAC address or NULL if * MAC address was not found **/ struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, u8 *macaddr, bool is_vf, bool is_netdev) { struct i40e_mac_filter *f; if (!vsi || !macaddr) return NULL; list_for_each_entry(f, &vsi->mac_filter_list, list) { if ((ether_addr_equal(macaddr, f->macaddr)) && (!is_vf || f->is_vf) && (!is_netdev || f->is_netdev)) return f; } return NULL; } /** * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode * @vsi: the VSI to be searched * * Returns true if VSI is in vlan mode or false otherwise **/ bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi) { struct i40e_mac_filter *f; /* Only -1 for all the filters denotes not in vlan mode * so we have to go through all the list in order to make sure */ list_for_each_entry(f, &vsi->mac_filter_list, list) { if (f->vlan >= 0) return true; } return false; } /** * i40e_put_mac_in_vlan - Make macvlan filters from macaddrs and vlans * @vsi: the VSI to be searched * @macaddr: the mac address to be filtered * @is_vf: true if it is a vf * @is_netdev: true if it is a netdev * * Goes through all the macvlan filters and adds a * macvlan filter for each unique vlan that already exists * * Returns first filter found on success, else NULL **/ struct i40e_mac_filter *i40e_put_mac_in_vlan(struct i40e_vsi *vsi, u8 *macaddr, bool is_vf, bool is_netdev) { struct i40e_mac_filter *f; list_for_each_entry(f, &vsi->mac_filter_list, list) { if (!i40e_find_filter(vsi, macaddr, f->vlan, is_vf, is_netdev)) { if (!i40e_add_filter(vsi, macaddr, f->vlan, is_vf, is_netdev)) return NULL; } } return list_first_entry_or_null(&vsi->mac_filter_list, struct i40e_mac_filter, list); } /** * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM * @vsi: the PF Main VSI - inappropriate for any other VSI * @macaddr: the MAC address * * Some older firmware configurations set up a default promiscuous VLAN * filter that needs to be removed. **/ static int i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr) { struct i40e_aqc_remove_macvlan_element_data element; struct i40e_pf *pf = vsi->back; i40e_status aq_ret; /* Only appropriate for the PF main VSI */ if (vsi->type != I40E_VSI_MAIN) return -EINVAL; memset(&element, 0, sizeof(element)); ether_addr_copy(element.mac_addr, macaddr); element.vlan_tag = 0; element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH | I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; aq_ret = i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); if (aq_ret) return -ENOENT; return 0; } /** * i40e_add_filter - Add a mac/vlan filter to the VSI * @vsi: the VSI to be searched * @macaddr: the MAC address * @vlan: the vlan * @is_vf: make sure its a vf filter, else doesn't matter * @is_netdev: make sure its a netdev filter, else doesn't matter * * Returns ptr to the filter object or NULL when no memory available. **/ struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi, u8 *macaddr, s16 vlan, bool is_vf, bool is_netdev) { struct i40e_mac_filter *f; if (!vsi || !macaddr) return NULL; f = i40e_find_filter(vsi, macaddr, vlan, is_vf, is_netdev); if (!f) { f = kzalloc(sizeof(*f), GFP_ATOMIC); if (!f) goto add_filter_out; ether_addr_copy(f->macaddr, macaddr); f->vlan = vlan; f->changed = true; INIT_LIST_HEAD(&f->list); list_add(&f->list, &vsi->mac_filter_list); } /* increment counter and add a new flag if needed */ if (is_vf) { if (!f->is_vf) { f->is_vf = true; f->counter++; } } else if (is_netdev) { if (!f->is_netdev) { f->is_netdev = true; f->counter++; } } else { f->counter++; } /* changed tells sync_filters_subtask to * push the filter down to the firmware */ if (f->changed) { vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; vsi->back->flags |= I40E_FLAG_FILTER_SYNC; } add_filter_out: return f; } /** * i40e_del_filter - Remove a mac/vlan filter from the VSI * @vsi: the VSI to be searched * @macaddr: the MAC address * @vlan: the vlan * @is_vf: make sure it's a vf filter, else doesn't matter * @is_netdev: make sure it's a netdev filter, else doesn't matter **/ void i40e_del_filter(struct i40e_vsi *vsi, u8 *macaddr, s16 vlan, bool is_vf, bool is_netdev) { struct i40e_mac_filter *f; if (!vsi || !macaddr) return; f = i40e_find_filter(vsi, macaddr, vlan, is_vf, is_netdev); if (!f || f->counter == 0) return; if (is_vf) { if (f->is_vf) { f->is_vf = false; f->counter--; } } else if (is_netdev) { if (f->is_netdev) { f->is_netdev = false; f->counter--; } } else { /* make sure we don't remove a filter in use by vf or netdev */ int min_f = 0; min_f += (f->is_vf ? 1 : 0); min_f += (f->is_netdev ? 1 : 0); if (f->counter > min_f) f->counter--; } /* counter == 0 tells sync_filters_subtask to * remove the filter from the firmware's list */ if (f->counter == 0) { f->changed = true; vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; vsi->back->flags |= I40E_FLAG_FILTER_SYNC; } } /** * i40e_set_mac - NDO callback to set mac address * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure **/ #ifdef I40E_FCOE int i40e_set_mac(struct net_device *netdev, void *p) #else static int i40e_set_mac(struct net_device *netdev, void *p) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; struct sockaddr *addr = p; struct i40e_mac_filter *f; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) { netdev_info(netdev, "already using mac address %pM\n", addr->sa_data); return 0; } if (test_bit(__I40E_DOWN, &vsi->back->state) || test_bit(__I40E_RESET_RECOVERY_PENDING, &vsi->back->state)) return -EADDRNOTAVAIL; if (ether_addr_equal(hw->mac.addr, addr->sa_data)) netdev_info(netdev, "returning to hw mac address %pM\n", hw->mac.addr); else netdev_info(netdev, "set new mac address %pM\n", addr->sa_data); if (vsi->type == I40E_VSI_MAIN) { i40e_status ret; ret = i40e_aq_mac_address_write(&vsi->back->hw, I40E_AQC_WRITE_TYPE_LAA_WOL, addr->sa_data, NULL); if (ret) { netdev_info(netdev, "Addr change for Main VSI failed: %d\n", ret); return -EADDRNOTAVAIL; } } if (ether_addr_equal(netdev->dev_addr, hw->mac.addr)) { struct i40e_aqc_remove_macvlan_element_data element; memset(&element, 0, sizeof(element)); ether_addr_copy(element.mac_addr, netdev->dev_addr); element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); } else { i40e_del_filter(vsi, netdev->dev_addr, I40E_VLAN_ANY, false, false); } if (ether_addr_equal(addr->sa_data, hw->mac.addr)) { struct i40e_aqc_add_macvlan_element_data element; memset(&element, 0, sizeof(element)); ether_addr_copy(element.mac_addr, hw->mac.addr); element.flags = cpu_to_le16(I40E_AQC_MACVLAN_ADD_PERFECT_MATCH); i40e_aq_add_macvlan(&pf->hw, vsi->seid, &element, 1, NULL); } else { f = i40e_add_filter(vsi, addr->sa_data, I40E_VLAN_ANY, false, false); if (f) f->is_laa = true; } i40e_sync_vsi_filters(vsi); ether_addr_copy(netdev->dev_addr, addr->sa_data); return 0; } /** * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc * @vsi: the VSI being setup * @ctxt: VSI context structure * @enabled_tc: Enabled TCs bitmap * @is_add: True if called before Add VSI * * Setup VSI queue mapping for enabled traffic classes. **/ #ifdef I40E_FCOE void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, struct i40e_vsi_context *ctxt, u8 enabled_tc, bool is_add) #else static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi, struct i40e_vsi_context *ctxt, u8 enabled_tc, bool is_add) #endif { struct i40e_pf *pf = vsi->back; u16 sections = 0; u8 netdev_tc = 0; u16 numtc = 0; u16 qcount; u8 offset; u16 qmap; int i; u16 num_tc_qps = 0; sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID; offset = 0; if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { /* Find numtc from enabled TC bitmap */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (enabled_tc & (1 << i)) /* TC is enabled */ numtc++; } if (!numtc) { dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n"); numtc = 1; } } else { /* At least TC0 is enabled in case of non-DCB case */ numtc = 1; } vsi->tc_config.numtc = numtc; vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1; /* Number of queues per enabled TC */ /* In MFP case we can have a much lower count of MSIx * vectors available and so we need to lower the used * q count. */ qcount = min_t(int, vsi->alloc_queue_pairs, pf->num_lan_msix); num_tc_qps = qcount / numtc; num_tc_qps = min_t(int, num_tc_qps, I40E_MAX_QUEUES_PER_TC); /* Setup queue offset/count for all TCs for given VSI */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { /* See if the given TC is enabled for the given VSI */ if (vsi->tc_config.enabled_tc & (1 << i)) { /* TC is enabled */ int pow, num_qps; switch (vsi->type) { case I40E_VSI_MAIN: qcount = min_t(int, pf->rss_size, num_tc_qps); break; #ifdef I40E_FCOE case I40E_VSI_FCOE: qcount = num_tc_qps; break; #endif case I40E_VSI_FDIR: case I40E_VSI_SRIOV: case I40E_VSI_VMDQ2: default: qcount = num_tc_qps; WARN_ON(i != 0); break; } vsi->tc_config.tc_info[i].qoffset = offset; vsi->tc_config.tc_info[i].qcount = qcount; /* find the power-of-2 of the number of queue pairs */ num_qps = qcount; pow = 0; while (num_qps && ((1 << pow) < qcount)) { pow++; num_qps >>= 1; } vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++; qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) | (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT); offset += qcount; } else { /* TC is not enabled so set the offset to * default queue and allocate one queue * for the given TC. */ vsi->tc_config.tc_info[i].qoffset = 0; vsi->tc_config.tc_info[i].qcount = 1; vsi->tc_config.tc_info[i].netdev_tc = 0; qmap = 0; } ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); } /* Set actual Tx/Rx queue pairs */ vsi->num_queue_pairs = offset; /* Scheduler section valid can only be set for ADD VSI */ if (is_add) { sections |= I40E_AQ_VSI_PROP_SCHED_VALID; ctxt->info.up_enable_bits = enabled_tc; } if (vsi->type == I40E_VSI_SRIOV) { ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG); for (i = 0; i < vsi->num_queue_pairs; i++) ctxt->info.queue_mapping[i] = cpu_to_le16(vsi->base_queue + i); } else { ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG); ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue); } ctxt->info.valid_sections |= cpu_to_le16(sections); } /** * i40e_set_rx_mode - NDO callback to set the netdev filters * @netdev: network interface device structure **/ #ifdef I40E_FCOE void i40e_set_rx_mode(struct net_device *netdev) #else static void i40e_set_rx_mode(struct net_device *netdev) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_mac_filter *f, *ftmp; struct i40e_vsi *vsi = np->vsi; struct netdev_hw_addr *uca; struct netdev_hw_addr *mca; struct netdev_hw_addr *ha; /* add addr if not already in the filter list */ netdev_for_each_uc_addr(uca, netdev) { if (!i40e_find_mac(vsi, uca->addr, false, true)) { if (i40e_is_vsi_in_vlan(vsi)) i40e_put_mac_in_vlan(vsi, uca->addr, false, true); else i40e_add_filter(vsi, uca->addr, I40E_VLAN_ANY, false, true); } } netdev_for_each_mc_addr(mca, netdev) { if (!i40e_find_mac(vsi, mca->addr, false, true)) { if (i40e_is_vsi_in_vlan(vsi)) i40e_put_mac_in_vlan(vsi, mca->addr, false, true); else i40e_add_filter(vsi, mca->addr, I40E_VLAN_ANY, false, true); } } /* remove filter if not in netdev list */ list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) { bool found = false; if (!f->is_netdev) continue; if (is_multicast_ether_addr(f->macaddr)) { netdev_for_each_mc_addr(mca, netdev) { if (ether_addr_equal(mca->addr, f->macaddr)) { found = true; break; } } } else { netdev_for_each_uc_addr(uca, netdev) { if (ether_addr_equal(uca->addr, f->macaddr)) { found = true; break; } } for_each_dev_addr(netdev, ha) { if (ether_addr_equal(ha->addr, f->macaddr)) { found = true; break; } } } if (!found) i40e_del_filter( vsi, f->macaddr, I40E_VLAN_ANY, false, true); } /* check for other flag changes */ if (vsi->current_netdev_flags != vsi->netdev->flags) { vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; vsi->back->flags |= I40E_FLAG_FILTER_SYNC; } } /** * i40e_sync_vsi_filters - Update the VSI filter list to the HW * @vsi: ptr to the VSI * * Push any outstanding VSI filter changes through the AdminQ. * * Returns 0 or error value **/ int i40e_sync_vsi_filters(struct i40e_vsi *vsi) { struct i40e_mac_filter *f, *ftmp; bool promisc_forced_on = false; bool add_happened = false; int filter_list_len = 0; u32 changed_flags = 0; i40e_status aq_ret = 0; struct i40e_pf *pf; int num_add = 0; int num_del = 0; u16 cmd_flags; /* empty array typed pointers, kcalloc later */ struct i40e_aqc_add_macvlan_element_data *add_list; struct i40e_aqc_remove_macvlan_element_data *del_list; while (test_and_set_bit(__I40E_CONFIG_BUSY, &vsi->state)) usleep_range(1000, 2000); pf = vsi->back; if (vsi->netdev) { changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags; vsi->current_netdev_flags = vsi->netdev->flags; } if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) { vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED; filter_list_len = pf->hw.aq.asq_buf_size / sizeof(struct i40e_aqc_remove_macvlan_element_data); del_list = kcalloc(filter_list_len, sizeof(struct i40e_aqc_remove_macvlan_element_data), GFP_KERNEL); if (!del_list) return -ENOMEM; list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) { if (!f->changed) continue; if (f->counter != 0) continue; f->changed = false; cmd_flags = 0; /* add to delete list */ ether_addr_copy(del_list[num_del].mac_addr, f->macaddr); del_list[num_del].vlan_tag = cpu_to_le16((u16)(f->vlan == I40E_VLAN_ANY ? 0 : f->vlan)); cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; del_list[num_del].flags = cmd_flags; num_del++; /* unlink from filter list */ list_del(&f->list); kfree(f); /* flush a full buffer */ if (num_del == filter_list_len) { aq_ret = i40e_aq_remove_macvlan(&pf->hw, vsi->seid, del_list, num_del, NULL); num_del = 0; memset(del_list, 0, sizeof(*del_list)); if (aq_ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ENOENT) dev_info(&pf->pdev->dev, "ignoring delete macvlan error, err %d, aq_err %d while flushing a full buffer\n", aq_ret, pf->hw.aq.asq_last_status); } } if (num_del) { aq_ret = i40e_aq_remove_macvlan(&pf->hw, vsi->seid, del_list, num_del, NULL); num_del = 0; if (aq_ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ENOENT) dev_info(&pf->pdev->dev, "ignoring delete macvlan error, err %d, aq_err %d\n", aq_ret, pf->hw.aq.asq_last_status); } kfree(del_list); del_list = NULL; /* do all the adds now */ filter_list_len = pf->hw.aq.asq_buf_size / sizeof(struct i40e_aqc_add_macvlan_element_data), add_list = kcalloc(filter_list_len, sizeof(struct i40e_aqc_add_macvlan_element_data), GFP_KERNEL); if (!add_list) return -ENOMEM; list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) { if (!f->changed) continue; if (f->counter == 0) continue; f->changed = false; add_happened = true; cmd_flags = 0; /* add to add array */ ether_addr_copy(add_list[num_add].mac_addr, f->macaddr); add_list[num_add].vlan_tag = cpu_to_le16( (u16)(f->vlan == I40E_VLAN_ANY ? 0 : f->vlan)); add_list[num_add].queue_number = 0; cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH; add_list[num_add].flags = cpu_to_le16(cmd_flags); num_add++; /* flush a full buffer */ if (num_add == filter_list_len) { aq_ret = i40e_aq_add_macvlan(&pf->hw, vsi->seid, add_list, num_add, NULL); num_add = 0; if (aq_ret) break; memset(add_list, 0, sizeof(*add_list)); } } if (num_add) { aq_ret = i40e_aq_add_macvlan(&pf->hw, vsi->seid, add_list, num_add, NULL); num_add = 0; } kfree(add_list); add_list = NULL; if (add_happened && aq_ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_EINVAL) { dev_info(&pf->pdev->dev, "add filter failed, err %d, aq_err %d\n", aq_ret, pf->hw.aq.asq_last_status); if ((pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOSPC) && !test_bit(__I40E_FILTER_OVERFLOW_PROMISC, &vsi->state)) { promisc_forced_on = true; set_bit(__I40E_FILTER_OVERFLOW_PROMISC, &vsi->state); dev_info(&pf->pdev->dev, "promiscuous mode forced on\n"); } } } /* check for changes in promiscuous modes */ if (changed_flags & IFF_ALLMULTI) { bool cur_multipromisc; cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI); aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw, vsi->seid, cur_multipromisc, NULL); if (aq_ret) dev_info(&pf->pdev->dev, "set multi promisc failed, err %d, aq_err %d\n", aq_ret, pf->hw.aq.asq_last_status); } if ((changed_flags & IFF_PROMISC) || promisc_forced_on) { bool cur_promisc; cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) || test_bit(__I40E_FILTER_OVERFLOW_PROMISC, &vsi->state)); aq_ret = i40e_aq_set_vsi_unicast_promiscuous(&vsi->back->hw, vsi->seid, cur_promisc, NULL); if (aq_ret) dev_info(&pf->pdev->dev, "set uni promisc failed, err %d, aq_err %d\n", aq_ret, pf->hw.aq.asq_last_status); aq_ret = i40e_aq_set_vsi_broadcast(&vsi->back->hw, vsi->seid, cur_promisc, NULL); if (aq_ret) dev_info(&pf->pdev->dev, "set brdcast promisc failed, err %d, aq_err %d\n", aq_ret, pf->hw.aq.asq_last_status); } clear_bit(__I40E_CONFIG_BUSY, &vsi->state); return 0; } /** * i40e_sync_filters_subtask - Sync the VSI filter list with HW * @pf: board private structure **/ static void i40e_sync_filters_subtask(struct i40e_pf *pf) { int v; if (!pf || !(pf->flags & I40E_FLAG_FILTER_SYNC)) return; pf->flags &= ~I40E_FLAG_FILTER_SYNC; for (v = 0; v < pf->num_alloc_vsi; v++) { if (pf->vsi[v] && (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) i40e_sync_vsi_filters(pf->vsi[v]); } } /** * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure **/ static int i40e_change_mtu(struct net_device *netdev, int new_mtu) { struct i40e_netdev_priv *np = netdev_priv(netdev); int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; struct i40e_vsi *vsi = np->vsi; /* MTU < 68 is an error and causes problems on some kernels */ if ((new_mtu < 68) || (max_frame > I40E_MAX_RXBUFFER)) return -EINVAL; netdev_info(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu); netdev->mtu = new_mtu; if (netif_running(netdev)) i40e_vsi_reinit_locked(vsi); return 0; } /** * i40e_ioctl - Access the hwtstamp interface * @netdev: network interface device structure * @ifr: interface request data * @cmd: ioctl command **/ int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_pf *pf = np->vsi->back; switch (cmd) { case SIOCGHWTSTAMP: return i40e_ptp_get_ts_config(pf, ifr); case SIOCSHWTSTAMP: return i40e_ptp_set_ts_config(pf, ifr); default: return -EOPNOTSUPP; } } /** * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI * @vsi: the vsi being adjusted **/ void i40e_vlan_stripping_enable(struct i40e_vsi *vsi) { struct i40e_vsi_context ctxt; i40e_status ret; if ((vsi->info.valid_sections & cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0)) return; /* already enabled */ vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH; ctxt.seid = vsi->seid; memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); if (ret) { dev_info(&vsi->back->pdev->dev, "%s: update vsi failed, aq_err=%d\n", __func__, vsi->back->hw.aq.asq_last_status); } } /** * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI * @vsi: the vsi being adjusted **/ void i40e_vlan_stripping_disable(struct i40e_vsi *vsi) { struct i40e_vsi_context ctxt; i40e_status ret; if ((vsi->info.valid_sections & cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) && ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) == I40E_AQ_VSI_PVLAN_EMOD_MASK)) return; /* already disabled */ vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL | I40E_AQ_VSI_PVLAN_EMOD_NOTHING; ctxt.seid = vsi->seid; memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); if (ret) { dev_info(&vsi->back->pdev->dev, "%s: update vsi failed, aq_err=%d\n", __func__, vsi->back->hw.aq.asq_last_status); } } /** * i40e_vlan_rx_register - Setup or shutdown vlan offload * @netdev: network interface to be adjusted * @features: netdev features to test if VLAN offload is enabled or not **/ static void i40e_vlan_rx_register(struct net_device *netdev, u32 features) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; if (features & NETIF_F_HW_VLAN_CTAG_RX) i40e_vlan_stripping_enable(vsi); else i40e_vlan_stripping_disable(vsi); } /** * i40e_vsi_add_vlan - Add vsi membership for given vlan * @vsi: the vsi being configured * @vid: vlan id to be added (0 = untagged only , -1 = any) **/ int i40e_vsi_add_vlan(struct i40e_vsi *vsi, s16 vid) { struct i40e_mac_filter *f, *add_f; bool is_netdev, is_vf; is_vf = (vsi->type == I40E_VSI_SRIOV); is_netdev = !!(vsi->netdev); if (is_netdev) { add_f = i40e_add_filter(vsi, vsi->netdev->dev_addr, vid, is_vf, is_netdev); if (!add_f) { dev_info(&vsi->back->pdev->dev, "Could not add vlan filter %d for %pM\n", vid, vsi->netdev->dev_addr); return -ENOMEM; } } list_for_each_entry(f, &vsi->mac_filter_list, list) { add_f = i40e_add_filter(vsi, f->macaddr, vid, is_vf, is_netdev); if (!add_f) { dev_info(&vsi->back->pdev->dev, "Could not add vlan filter %d for %pM\n", vid, f->macaddr); return -ENOMEM; } } /* Now if we add a vlan tag, make sure to check if it is the first * tag (i.e. a "tag" -1 does exist) and if so replace the -1 "tag" * with 0, so we now accept untagged and specified tagged traffic * (and not any taged and untagged) */ if (vid > 0) { if (is_netdev && i40e_find_filter(vsi, vsi->netdev->dev_addr, I40E_VLAN_ANY, is_vf, is_netdev)) { i40e_del_filter(vsi, vsi->netdev->dev_addr, I40E_VLAN_ANY, is_vf, is_netdev); add_f = i40e_add_filter(vsi, vsi->netdev->dev_addr, 0, is_vf, is_netdev); if (!add_f) { dev_info(&vsi->back->pdev->dev, "Could not add filter 0 for %pM\n", vsi->netdev->dev_addr); return -ENOMEM; } } } /* Do not assume that I40E_VLAN_ANY should be reset to VLAN 0 */ if (vid > 0 && !vsi->info.pvid) { list_for_each_entry(f, &vsi->mac_filter_list, list) { if (i40e_find_filter(vsi, f->macaddr, I40E_VLAN_ANY, is_vf, is_netdev)) { i40e_del_filter(vsi, f->macaddr, I40E_VLAN_ANY, is_vf, is_netdev); add_f = i40e_add_filter(vsi, f->macaddr, 0, is_vf, is_netdev); if (!add_f) { dev_info(&vsi->back->pdev->dev, "Could not add filter 0 for %pM\n", f->macaddr); return -ENOMEM; } } } } if (test_bit(__I40E_DOWN, &vsi->back->state) || test_bit(__I40E_RESET_RECOVERY_PENDING, &vsi->back->state)) return 0; return i40e_sync_vsi_filters(vsi); } /** * i40e_vsi_kill_vlan - Remove vsi membership for given vlan * @vsi: the vsi being configured * @vid: vlan id to be removed (0 = untagged only , -1 = any) * * Return: 0 on success or negative otherwise **/ int i40e_vsi_kill_vlan(struct i40e_vsi *vsi, s16 vid) { struct net_device *netdev = vsi->netdev; struct i40e_mac_filter *f, *add_f; bool is_vf, is_netdev; int filter_count = 0; is_vf = (vsi->type == I40E_VSI_SRIOV); is_netdev = !!(netdev); if (is_netdev) i40e_del_filter(vsi, netdev->dev_addr, vid, is_vf, is_netdev); list_for_each_entry(f, &vsi->mac_filter_list, list) i40e_del_filter(vsi, f->macaddr, vid, is_vf, is_netdev); /* go through all the filters for this VSI and if there is only * vid == 0 it means there are no other filters, so vid 0 must * be replaced with -1. This signifies that we should from now * on accept any traffic (with any tag present, or untagged) */ list_for_each_entry(f, &vsi->mac_filter_list, list) { if (is_netdev) { if (f->vlan && ether_addr_equal(netdev->dev_addr, f->macaddr)) filter_count++; } if (f->vlan) filter_count++; } if (!filter_count && is_netdev) { i40e_del_filter(vsi, netdev->dev_addr, 0, is_vf, is_netdev); f = i40e_add_filter(vsi, netdev->dev_addr, I40E_VLAN_ANY, is_vf, is_netdev); if (!f) { dev_info(&vsi->back->pdev->dev, "Could not add filter %d for %pM\n", I40E_VLAN_ANY, netdev->dev_addr); return -ENOMEM; } } if (!filter_count) { list_for_each_entry(f, &vsi->mac_filter_list, list) { i40e_del_filter(vsi, f->macaddr, 0, is_vf, is_netdev); add_f = i40e_add_filter(vsi, f->macaddr, I40E_VLAN_ANY, is_vf, is_netdev); if (!add_f) { dev_info(&vsi->back->pdev->dev, "Could not add filter %d for %pM\n", I40E_VLAN_ANY, f->macaddr); return -ENOMEM; } } } if (test_bit(__I40E_DOWN, &vsi->back->state) || test_bit(__I40E_RESET_RECOVERY_PENDING, &vsi->back->state)) return 0; return i40e_sync_vsi_filters(vsi); } /** * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload * @netdev: network interface to be adjusted * @vid: vlan id to be added * * net_device_ops implementation for adding vlan ids **/ #ifdef I40E_FCOE int i40e_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) #else static int i40e_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; int ret = 0; if (vid > 4095) return -EINVAL; netdev_info(netdev, "adding %pM vid=%d\n", netdev->dev_addr, vid); /* If the network stack called us with vid = 0 then * it is asking to receive priority tagged packets with * vlan id 0. Our HW receives them by default when configured * to receive untagged packets so there is no need to add an * extra filter for vlan 0 tagged packets. */ if (vid) ret = i40e_vsi_add_vlan(vsi, vid); if (!ret && (vid < VLAN_N_VID)) set_bit(vid, vsi->active_vlans); return ret; } /** * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload * @netdev: network interface to be adjusted * @vid: vlan id to be removed * * net_device_ops implementation for removing vlan ids **/ #ifdef I40E_FCOE int i40e_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) #else static int i40e_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; netdev_info(netdev, "removing %pM vid=%d\n", netdev->dev_addr, vid); /* return code is ignored as there is nothing a user * can do about failure to remove and a log message was * already printed from the other function */ i40e_vsi_kill_vlan(vsi, vid); clear_bit(vid, vsi->active_vlans); return 0; } /** * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up * @vsi: the vsi being brought back up **/ static void i40e_restore_vlan(struct i40e_vsi *vsi) { u16 vid; if (!vsi->netdev) return; i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features); for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) i40e_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid); } /** * i40e_vsi_add_pvid - Add pvid for the VSI * @vsi: the vsi being adjusted * @vid: the vlan id to set as a PVID **/ int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid) { struct i40e_vsi_context ctxt; i40e_status aq_ret; vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); vsi->info.pvid = cpu_to_le16(vid); vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED | I40E_AQ_VSI_PVLAN_INSERT_PVID | I40E_AQ_VSI_PVLAN_EMOD_STR; ctxt.seid = vsi->seid; memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); aq_ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); if (aq_ret) { dev_info(&vsi->back->pdev->dev, "%s: update vsi failed, aq_err=%d\n", __func__, vsi->back->hw.aq.asq_last_status); return -ENOENT; } return 0; } /** * i40e_vsi_remove_pvid - Remove the pvid from the VSI * @vsi: the vsi being adjusted * * Just use the vlan_rx_register() service to put it back to normal **/ void i40e_vsi_remove_pvid(struct i40e_vsi *vsi) { i40e_vlan_stripping_disable(vsi); vsi->info.pvid = 0; } /** * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources * @vsi: ptr to the VSI * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi) { int i, err = 0; for (i = 0; i < vsi->num_queue_pairs && !err; i++) err = i40e_setup_tx_descriptors(vsi->tx_rings[i]); return err; } /** * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues * @vsi: ptr to the VSI * * Free VSI's transmit software resources **/ static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi) { int i; if (!vsi->tx_rings) return; for (i = 0; i < vsi->num_queue_pairs; i++) if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) i40e_free_tx_resources(vsi->tx_rings[i]); } /** * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources * @vsi: ptr to the VSI * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi) { int i, err = 0; for (i = 0; i < vsi->num_queue_pairs && !err; i++) err = i40e_setup_rx_descriptors(vsi->rx_rings[i]); #ifdef I40E_FCOE i40e_fcoe_setup_ddp_resources(vsi); #endif return err; } /** * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues * @vsi: ptr to the VSI * * Free all receive software resources **/ static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi) { int i; if (!vsi->rx_rings) return; for (i = 0; i < vsi->num_queue_pairs; i++) if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) i40e_free_rx_resources(vsi->rx_rings[i]); #ifdef I40E_FCOE i40e_fcoe_free_ddp_resources(vsi); #endif } /** * i40e_config_xps_tx_ring - Configure XPS for a Tx ring * @ring: The Tx ring to configure * * This enables/disables XPS for a given Tx descriptor ring * based on the TCs enabled for the VSI that ring belongs to. **/ static void i40e_config_xps_tx_ring(struct i40e_ring *ring) { struct i40e_vsi *vsi = ring->vsi; cpumask_var_t mask; if (ring->q_vector && ring->netdev) { /* Single TC mode enable XPS */ if (vsi->tc_config.numtc <= 1 && !test_and_set_bit(__I40E_TX_XPS_INIT_DONE, &ring->state)) { netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask, ring->queue_index); } else if (alloc_cpumask_var(&mask, GFP_KERNEL)) { /* Disable XPS to allow selection based on TC */ bitmap_zero(cpumask_bits(mask), nr_cpumask_bits); netif_set_xps_queue(ring->netdev, mask, ring->queue_index); free_cpumask_var(mask); } } } /** * i40e_configure_tx_ring - Configure a transmit ring context and rest * @ring: The Tx ring to configure * * Configure the Tx descriptor ring in the HMC context. **/ static int i40e_configure_tx_ring(struct i40e_ring *ring) { struct i40e_vsi *vsi = ring->vsi; u16 pf_q = vsi->base_queue + ring->queue_index; struct i40e_hw *hw = &vsi->back->hw; struct i40e_hmc_obj_txq tx_ctx; i40e_status err = 0; u32 qtx_ctl = 0; /* some ATR related tx ring init */ if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) { ring->atr_sample_rate = vsi->back->atr_sample_rate; ring->atr_count = 0; } else { ring->atr_sample_rate = 0; } /* configure XPS */ i40e_config_xps_tx_ring(ring); /* clear the context structure first */ memset(&tx_ctx, 0, sizeof(tx_ctx)); tx_ctx.new_context = 1; tx_ctx.base = (ring->dma / 128); tx_ctx.qlen = ring->count; tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)); #ifdef I40E_FCOE tx_ctx.fc_ena = (vsi->type == I40E_VSI_FCOE); #endif tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP); /* FDIR VSI tx ring can still use RS bit and writebacks */ if (vsi->type != I40E_VSI_FDIR) tx_ctx.head_wb_ena = 1; tx_ctx.head_wb_addr = ring->dma + (ring->count * sizeof(struct i40e_tx_desc)); /* As part of VSI creation/update, FW allocates certain * Tx arbitration queue sets for each TC enabled for * the VSI. The FW returns the handles to these queue * sets as part of the response buffer to Add VSI, * Update VSI, etc. AQ commands. It is expected that * these queue set handles be associated with the Tx * queues by the driver as part of the TX queue context * initialization. This has to be done regardless of * DCB as by default everything is mapped to TC0. */ tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]); tx_ctx.rdylist_act = 0; /* clear the context in the HMC */ err = i40e_clear_lan_tx_queue_context(hw, pf_q); if (err) { dev_info(&vsi->back->pdev->dev, "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n", ring->queue_index, pf_q, err); return -ENOMEM; } /* set the context in the HMC */ err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx); if (err) { dev_info(&vsi->back->pdev->dev, "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n", ring->queue_index, pf_q, err); return -ENOMEM; } /* Now associate this queue with this PCI function */ if (vsi->type == I40E_VSI_VMDQ2) { qtx_ctl = I40E_QTX_CTL_VM_QUEUE; qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) & I40E_QTX_CTL_VFVM_INDX_MASK; } else { qtx_ctl = I40E_QTX_CTL_PF_QUEUE; } qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) & I40E_QTX_CTL_PF_INDX_MASK); wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl); i40e_flush(hw); clear_bit(__I40E_HANG_CHECK_ARMED, &ring->state); /* cache tail off for easier writes later */ ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q); return 0; } /** * i40e_configure_rx_ring - Configure a receive ring context * @ring: The Rx ring to configure * * Configure the Rx descriptor ring in the HMC context. **/ static int i40e_configure_rx_ring(struct i40e_ring *ring) { struct i40e_vsi *vsi = ring->vsi; u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len; u16 pf_q = vsi->base_queue + ring->queue_index; struct i40e_hw *hw = &vsi->back->hw; struct i40e_hmc_obj_rxq rx_ctx; i40e_status err = 0; ring->state = 0; /* clear the context structure first */ memset(&rx_ctx, 0, sizeof(rx_ctx)); ring->rx_buf_len = vsi->rx_buf_len; ring->rx_hdr_len = vsi->rx_hdr_len; rx_ctx.dbuff = ring->rx_buf_len >> I40E_RXQ_CTX_DBUFF_SHIFT; rx_ctx.hbuff = ring->rx_hdr_len >> I40E_RXQ_CTX_HBUFF_SHIFT; rx_ctx.base = (ring->dma / 128); rx_ctx.qlen = ring->count; if (vsi->back->flags & I40E_FLAG_16BYTE_RX_DESC_ENABLED) { set_ring_16byte_desc_enabled(ring); rx_ctx.dsize = 0; } else { rx_ctx.dsize = 1; } rx_ctx.dtype = vsi->dtype; if (vsi->dtype) { set_ring_ps_enabled(ring); rx_ctx.hsplit_0 = I40E_RX_SPLIT_L2 | I40E_RX_SPLIT_IP | I40E_RX_SPLIT_TCP_UDP | I40E_RX_SPLIT_SCTP; } else { rx_ctx.hsplit_0 = 0; } rx_ctx.rxmax = min_t(u16, vsi->max_frame, (chain_len * ring->rx_buf_len)); if (hw->revision_id == 0) rx_ctx.lrxqthresh = 0; else rx_ctx.lrxqthresh = 2; rx_ctx.crcstrip = 1; rx_ctx.l2tsel = 1; rx_ctx.showiv = 1; #ifdef I40E_FCOE rx_ctx.fc_ena = (vsi->type == I40E_VSI_FCOE); #endif /* set the prefena field to 1 because the manual says to */ rx_ctx.prefena = 1; /* clear the context in the HMC */ err = i40e_clear_lan_rx_queue_context(hw, pf_q); if (err) { dev_info(&vsi->back->pdev->dev, "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", ring->queue_index, pf_q, err); return -ENOMEM; } /* set the context in the HMC */ err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx); if (err) { dev_info(&vsi->back->pdev->dev, "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n", ring->queue_index, pf_q, err); return -ENOMEM; } /* cache tail for quicker writes, and clear the reg before use */ ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q); writel(0, ring->tail); i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring)); return 0; } /** * i40e_vsi_configure_tx - Configure the VSI for Tx * @vsi: VSI structure describing this set of rings and resources * * Configure the Tx VSI for operation. **/ static int i40e_vsi_configure_tx(struct i40e_vsi *vsi) { int err = 0; u16 i; for (i = 0; (i < vsi->num_queue_pairs) && !err; i++) err = i40e_configure_tx_ring(vsi->tx_rings[i]); return err; } /** * i40e_vsi_configure_rx - Configure the VSI for Rx * @vsi: the VSI being configured * * Configure the Rx VSI for operation. **/ static int i40e_vsi_configure_rx(struct i40e_vsi *vsi) { int err = 0; u16 i; if (vsi->netdev && (vsi->netdev->mtu > ETH_DATA_LEN)) vsi->max_frame = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; else vsi->max_frame = I40E_RXBUFFER_2048; /* figure out correct receive buffer length */ switch (vsi->back->flags & (I40E_FLAG_RX_1BUF_ENABLED | I40E_FLAG_RX_PS_ENABLED)) { case I40E_FLAG_RX_1BUF_ENABLED: vsi->rx_hdr_len = 0; vsi->rx_buf_len = vsi->max_frame; vsi->dtype = I40E_RX_DTYPE_NO_SPLIT; break; case I40E_FLAG_RX_PS_ENABLED: vsi->rx_hdr_len = I40E_RX_HDR_SIZE; vsi->rx_buf_len = I40E_RXBUFFER_2048; vsi->dtype = I40E_RX_DTYPE_HEADER_SPLIT; break; default: vsi->rx_hdr_len = I40E_RX_HDR_SIZE; vsi->rx_buf_len = I40E_RXBUFFER_2048; vsi->dtype = I40E_RX_DTYPE_SPLIT_ALWAYS; break; } #ifdef I40E_FCOE /* setup rx buffer for FCoE */ if ((vsi->type == I40E_VSI_FCOE) && (vsi->back->flags & I40E_FLAG_FCOE_ENABLED)) { vsi->rx_hdr_len = 0; vsi->rx_buf_len = I40E_RXBUFFER_3072; vsi->max_frame = I40E_RXBUFFER_3072; vsi->dtype = I40E_RX_DTYPE_NO_SPLIT; } #endif /* I40E_FCOE */ /* round up for the chip's needs */ vsi->rx_hdr_len = ALIGN(vsi->rx_hdr_len, (1 << I40E_RXQ_CTX_HBUFF_SHIFT)); vsi->rx_buf_len = ALIGN(vsi->rx_buf_len, (1 << I40E_RXQ_CTX_DBUFF_SHIFT)); /* set up individual rings */ for (i = 0; i < vsi->num_queue_pairs && !err; i++) err = i40e_configure_rx_ring(vsi->rx_rings[i]); return err; } /** * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC * @vsi: ptr to the VSI **/ static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi) { struct i40e_ring *tx_ring, *rx_ring; u16 qoffset, qcount; int i, n; if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) { /* Reset the TC information */ for (i = 0; i < vsi->num_queue_pairs; i++) { rx_ring = vsi->rx_rings[i]; tx_ring = vsi->tx_rings[i]; rx_ring->dcb_tc = 0; tx_ring->dcb_tc = 0; } } for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) { if (!(vsi->tc_config.enabled_tc & (1 << n))) continue; qoffset = vsi->tc_config.tc_info[n].qoffset; qcount = vsi->tc_config.tc_info[n].qcount; for (i = qoffset; i < (qoffset + qcount); i++) { rx_ring = vsi->rx_rings[i]; tx_ring = vsi->tx_rings[i]; rx_ring->dcb_tc = n; tx_ring->dcb_tc = n; } } } /** * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI * @vsi: ptr to the VSI **/ static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi) { if (vsi->netdev) i40e_set_rx_mode(vsi->netdev); } /** * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters * @vsi: Pointer to the targeted VSI * * This function replays the hlist on the hw where all the SB Flow Director * filters were saved. **/ static void i40e_fdir_filter_restore(struct i40e_vsi *vsi) { struct i40e_fdir_filter *filter; struct i40e_pf *pf = vsi->back; struct hlist_node *node; if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) return; hlist_for_each_entry_safe(filter, node, &pf->fdir_filter_list, fdir_node) { i40e_add_del_fdir(vsi, filter, true); } } /** * i40e_vsi_configure - Set up the VSI for action * @vsi: the VSI being configured **/ static int i40e_vsi_configure(struct i40e_vsi *vsi) { int err; i40e_set_vsi_rx_mode(vsi); i40e_restore_vlan(vsi); i40e_vsi_config_dcb_rings(vsi); err = i40e_vsi_configure_tx(vsi); if (!err) err = i40e_vsi_configure_rx(vsi); return err; } /** * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW * @vsi: the VSI being configured **/ static void i40e_vsi_configure_msix(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; struct i40e_q_vector *q_vector; struct i40e_hw *hw = &pf->hw; u16 vector; int i, q; u32 val; u32 qp; /* The interrupt indexing is offset by 1 in the PFINT_ITRn * and PFINT_LNKLSTn registers, e.g.: * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts) */ qp = vsi->base_queue; vector = vsi->base_vector; for (i = 0; i < vsi->num_q_vectors; i++, vector++) { q_vector = vsi->q_vectors[i]; q_vector->rx.itr = ITR_TO_REG(vsi->rx_itr_setting); q_vector->rx.latency_range = I40E_LOW_LATENCY; wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1), q_vector->rx.itr); q_vector->tx.itr = ITR_TO_REG(vsi->tx_itr_setting); q_vector->tx.latency_range = I40E_LOW_LATENCY; wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1), q_vector->tx.itr); /* Linked list for the queuepairs assigned to this vector */ wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp); for (q = 0; q < q_vector->num_ringpairs; q++) { val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) | (qp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)| (I40E_QUEUE_TYPE_TX << I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT); wr32(hw, I40E_QINT_RQCTL(qp), val); val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) | ((qp+1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT)| (I40E_QUEUE_TYPE_RX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); /* Terminate the linked list */ if (q == (q_vector->num_ringpairs - 1)) val |= (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); wr32(hw, I40E_QINT_TQCTL(qp), val); qp++; } } i40e_flush(hw); } /** * i40e_enable_misc_int_causes - enable the non-queue interrupts * @hw: ptr to the hardware info **/ static void i40e_enable_misc_int_causes(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 val; /* clear things first */ wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */ rd32(hw, I40E_PFINT_ICR0); /* read to clear */ val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK | I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK | I40E_PFINT_ICR0_ENA_GRST_MASK | I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK | I40E_PFINT_ICR0_ENA_GPIO_MASK | I40E_PFINT_ICR0_ENA_HMC_ERR_MASK | I40E_PFINT_ICR0_ENA_VFLR_MASK | I40E_PFINT_ICR0_ENA_ADMINQ_MASK; if (pf->flags & I40E_FLAG_PTP) val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; wr32(hw, I40E_PFINT_ICR0_ENA, val); /* SW_ITR_IDX = 0, but don't change INTENA */ wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK | I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK); /* OTHER_ITR_IDX = 0 */ wr32(hw, I40E_PFINT_STAT_CTL0, 0); } /** * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW * @vsi: the VSI being configured **/ static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi) { struct i40e_q_vector *q_vector = vsi->q_vectors[0]; struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; u32 val; /* set the ITR configuration */ q_vector->rx.itr = ITR_TO_REG(vsi->rx_itr_setting); q_vector->rx.latency_range = I40E_LOW_LATENCY; wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.itr); q_vector->tx.itr = ITR_TO_REG(vsi->tx_itr_setting); q_vector->tx.latency_range = I40E_LOW_LATENCY; wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.itr); i40e_enable_misc_int_causes(pf); /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */ wr32(hw, I40E_PFINT_LNKLST0, 0); /* Associate the queue pair to the vector and enable the queue int */ val = I40E_QINT_RQCTL_CAUSE_ENA_MASK | (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) | (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT); wr32(hw, I40E_QINT_RQCTL(0), val); val = I40E_QINT_TQCTL_CAUSE_ENA_MASK | (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) | (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT); wr32(hw, I40E_QINT_TQCTL(0), val); i40e_flush(hw); } /** * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0 * @pf: board private structure **/ void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; wr32(hw, I40E_PFINT_DYN_CTL0, I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); i40e_flush(hw); } /** * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0 * @pf: board private structure **/ void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u32 val; val = I40E_PFINT_DYN_CTL0_INTENA_MASK | I40E_PFINT_DYN_CTL0_CLEARPBA_MASK | (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT); wr32(hw, I40E_PFINT_DYN_CTL0, val); i40e_flush(hw); } /** * i40e_irq_dynamic_enable - Enable default interrupt generation settings * @vsi: pointer to a vsi * @vector: enable a particular Hw Interrupt vector **/ void i40e_irq_dynamic_enable(struct i40e_vsi *vsi, int vector) { struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; u32 val; val = I40E_PFINT_DYN_CTLN_INTENA_MASK | I40E_PFINT_DYN_CTLN_CLEARPBA_MASK | (I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT); wr32(hw, I40E_PFINT_DYN_CTLN(vector - 1), val); /* skip the flush */ } /** * i40e_irq_dynamic_disable - Disable default interrupt generation settings * @vsi: pointer to a vsi * @vector: disable a particular Hw Interrupt vector **/ void i40e_irq_dynamic_disable(struct i40e_vsi *vsi, int vector) { struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; u32 val; val = I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT; wr32(hw, I40E_PFINT_DYN_CTLN(vector - 1), val); i40e_flush(hw); } /** * i40e_msix_clean_rings - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector **/ static irqreturn_t i40e_msix_clean_rings(int irq, void *data) { struct i40e_q_vector *q_vector = data; if (!q_vector->tx.ring && !q_vector->rx.ring) return IRQ_HANDLED; napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts * @vsi: the VSI being configured * @basename: name for the vector * * Allocates MSI-X vectors and requests interrupts from the kernel. **/ static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename) { int q_vectors = vsi->num_q_vectors; struct i40e_pf *pf = vsi->back; int base = vsi->base_vector; int rx_int_idx = 0; int tx_int_idx = 0; int vector, err; for (vector = 0; vector < q_vectors; vector++) { struct i40e_q_vector *q_vector = vsi->q_vectors[vector]; if (q_vector->tx.ring && q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "TxRx", rx_int_idx++); tx_int_idx++; } else if (q_vector->rx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "rx", rx_int_idx++); } else if (q_vector->tx.ring) { snprintf(q_vector->name, sizeof(q_vector->name) - 1, "%s-%s-%d", basename, "tx", tx_int_idx++); } else { /* skip this unused q_vector */ continue; } err = request_irq(pf->msix_entries[base + vector].vector, vsi->irq_handler, 0, q_vector->name, q_vector); if (err) { dev_info(&pf->pdev->dev, "%s: request_irq failed, error: %d\n", __func__, err); goto free_queue_irqs; } /* assign the mask for this irq */ irq_set_affinity_hint(pf->msix_entries[base + vector].vector, &q_vector->affinity_mask); } vsi->irqs_ready = true; return 0; free_queue_irqs: while (vector) { vector--; irq_set_affinity_hint(pf->msix_entries[base + vector].vector, NULL); free_irq(pf->msix_entries[base + vector].vector, &(vsi->q_vectors[vector])); } return err; } /** * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI * @vsi: the VSI being un-configured **/ static void i40e_vsi_disable_irq(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; int base = vsi->base_vector; int i; for (i = 0; i < vsi->num_queue_pairs; i++) { wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), 0); wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), 0); } if (pf->flags & I40E_FLAG_MSIX_ENABLED) { for (i = vsi->base_vector; i < (vsi->num_q_vectors + vsi->base_vector); i++) wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0); i40e_flush(hw); for (i = 0; i < vsi->num_q_vectors; i++) synchronize_irq(pf->msix_entries[i + base].vector); } else { /* Legacy and MSI mode - this stops all interrupt handling */ wr32(hw, I40E_PFINT_ICR0_ENA, 0); wr32(hw, I40E_PFINT_DYN_CTL0, 0); i40e_flush(hw); synchronize_irq(pf->pdev->irq); } } /** * i40e_vsi_enable_irq - Enable IRQ for the given VSI * @vsi: the VSI being configured **/ static int i40e_vsi_enable_irq(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; int i; if (pf->flags & I40E_FLAG_MSIX_ENABLED) { for (i = vsi->base_vector; i < (vsi->num_q_vectors + vsi->base_vector); i++) i40e_irq_dynamic_enable(vsi, i); } else { i40e_irq_dynamic_enable_icr0(pf); } i40e_flush(&pf->hw); return 0; } /** * i40e_stop_misc_vector - Stop the vector that handles non-queue events * @pf: board private structure **/ static void i40e_stop_misc_vector(struct i40e_pf *pf) { /* Disable ICR 0 */ wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0); i40e_flush(&pf->hw); } /** * i40e_intr - MSI/Legacy and non-queue interrupt handler * @irq: interrupt number * @data: pointer to a q_vector * * This is the handler used for all MSI/Legacy interrupts, and deals * with both queue and non-queue interrupts. This is also used in * MSIX mode to handle the non-queue interrupts. **/ static irqreturn_t i40e_intr(int irq, void *data) { struct i40e_pf *pf = (struct i40e_pf *)data; struct i40e_hw *hw = &pf->hw; irqreturn_t ret = IRQ_NONE; u32 icr0, icr0_remaining; u32 val, ena_mask; icr0 = rd32(hw, I40E_PFINT_ICR0); ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA); /* if sharing a legacy IRQ, we might get called w/o an intr pending */ if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0) goto enable_intr; /* if interrupt but no bits showing, must be SWINT */ if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) || (icr0 & I40E_PFINT_ICR0_SWINT_MASK)) pf->sw_int_count++; /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */ if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) { /* temporarily disable queue cause for NAPI processing */ u32 qval = rd32(hw, I40E_QINT_RQCTL(0)); qval &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK; wr32(hw, I40E_QINT_RQCTL(0), qval); qval = rd32(hw, I40E_QINT_TQCTL(0)); qval &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK; wr32(hw, I40E_QINT_TQCTL(0), qval); if (!test_bit(__I40E_DOWN, &pf->state)) napi_schedule(&pf->vsi[pf->lan_vsi]->q_vectors[0]->napi); } if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) { ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK; set_bit(__I40E_ADMINQ_EVENT_PENDING, &pf->state); } if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) { ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; set_bit(__I40E_MDD_EVENT_PENDING, &pf->state); } if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) { ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK; set_bit(__I40E_VFLR_EVENT_PENDING, &pf->state); } if (icr0 & I40E_PFINT_ICR0_GRST_MASK) { if (!test_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state)) set_bit(__I40E_RESET_INTR_RECEIVED, &pf->state); ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK; val = rd32(hw, I40E_GLGEN_RSTAT); val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK) >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT; if (val == I40E_RESET_CORER) { pf->corer_count++; } else if (val == I40E_RESET_GLOBR) { pf->globr_count++; } else if (val == I40E_RESET_EMPR) { pf->empr_count++; set_bit(__I40E_EMP_RESET_REQUESTED, &pf->state); } } if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) { icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK; dev_info(&pf->pdev->dev, "HMC error interrupt\n"); } if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) { u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0); if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) { icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK; i40e_ptp_tx_hwtstamp(pf); } } /* If a critical error is pending we have no choice but to reset the * device. * Report and mask out any remaining unexpected interrupts. */ icr0_remaining = icr0 & ena_mask; if (icr0_remaining) { dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n", icr0_remaining); if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) || (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) || (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) { dev_info(&pf->pdev->dev, "device will be reset\n"); set_bit(__I40E_PF_RESET_REQUESTED, &pf->state); i40e_service_event_schedule(pf); } ena_mask &= ~icr0_remaining; } ret = IRQ_HANDLED; enable_intr: /* re-enable interrupt causes */ wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask); if (!test_bit(__I40E_DOWN, &pf->state)) { i40e_service_event_schedule(pf); i40e_irq_dynamic_enable_icr0(pf); } return ret; } /** * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes * @tx_ring: tx ring to clean * @budget: how many cleans we're allowed * * Returns true if there's any budget left (e.g. the clean is finished) **/ static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget) { struct i40e_vsi *vsi = tx_ring->vsi; u16 i = tx_ring->next_to_clean; struct i40e_tx_buffer *tx_buf; struct i40e_tx_desc *tx_desc; tx_buf = &tx_ring->tx_bi[i]; tx_desc = I40E_TX_DESC(tx_ring, i); i -= tx_ring->count; do { struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch; /* if next_to_watch is not set then there is no work pending */ if (!eop_desc) break; /* prevent any other reads prior to eop_desc */ read_barrier_depends(); /* if the descriptor isn't done, no work yet to do */ if (!(eop_desc->cmd_type_offset_bsz & cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE))) break; /* clear next_to_watch to prevent false hangs */ tx_buf->next_to_watch = NULL; tx_desc->buffer_addr = 0; tx_desc->cmd_type_offset_bsz = 0; /* move past filter desc */ tx_buf++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buf = tx_ring->tx_bi; tx_desc = I40E_TX_DESC(tx_ring, 0); } /* unmap skb header data */ dma_unmap_single(tx_ring->dev, dma_unmap_addr(tx_buf, dma), dma_unmap_len(tx_buf, len), DMA_TO_DEVICE); if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB) kfree(tx_buf->raw_buf); tx_buf->raw_buf = NULL; tx_buf->tx_flags = 0; tx_buf->next_to_watch = NULL; dma_unmap_len_set(tx_buf, len, 0); tx_desc->buffer_addr = 0; tx_desc->cmd_type_offset_bsz = 0; /* move us past the eop_desc for start of next FD desc */ tx_buf++; tx_desc++; i++; if (unlikely(!i)) { i -= tx_ring->count; tx_buf = tx_ring->tx_bi; tx_desc = I40E_TX_DESC(tx_ring, 0); } /* update budget accounting */ budget--; } while (likely(budget)); i += tx_ring->count; tx_ring->next_to_clean = i; if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) { i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx + vsi->base_vector); } return budget > 0; } /** * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring * @irq: interrupt number * @data: pointer to a q_vector **/ static irqreturn_t i40e_fdir_clean_ring(int irq, void *data) { struct i40e_q_vector *q_vector = data; struct i40e_vsi *vsi; if (!q_vector->tx.ring) return IRQ_HANDLED; vsi = q_vector->tx.ring->vsi; i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit); return IRQ_HANDLED; } /** * i40e_map_vector_to_qp - Assigns the queue pair to the vector * @vsi: the VSI being configured * @v_idx: vector index * @qp_idx: queue pair index **/ static void map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx) { struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx]; struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx]; tx_ring->q_vector = q_vector; tx_ring->next = q_vector->tx.ring; q_vector->tx.ring = tx_ring; q_vector->tx.count++; rx_ring->q_vector = q_vector; rx_ring->next = q_vector->rx.ring; q_vector->rx.ring = rx_ring; q_vector->rx.count++; } /** * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors * @vsi: the VSI being configured * * This function maps descriptor rings to the queue-specific vectors * we were allotted through the MSI-X enabling code. Ideally, we'd have * one vector per queue pair, but on a constrained vector budget, we * group the queue pairs as "efficiently" as possible. **/ static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi) { int qp_remaining = vsi->num_queue_pairs; int q_vectors = vsi->num_q_vectors; int num_ringpairs; int v_start = 0; int qp_idx = 0; /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to * group them so there are multiple queues per vector. * It is also important to go through all the vectors available to be * sure that if we don't use all the vectors, that the remaining vectors * are cleared. This is especially important when decreasing the * number of queues in use. */ for (; v_start < q_vectors; v_start++) { struct i40e_q_vector *q_vector = vsi->q_vectors[v_start]; num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start); q_vector->num_ringpairs = num_ringpairs; q_vector->rx.count = 0; q_vector->tx.count = 0; q_vector->rx.ring = NULL; q_vector->tx.ring = NULL; while (num_ringpairs--) { map_vector_to_qp(vsi, v_start, qp_idx); qp_idx++; qp_remaining--; } } } /** * i40e_vsi_request_irq - Request IRQ from the OS * @vsi: the VSI being configured * @basename: name for the vector **/ static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename) { struct i40e_pf *pf = vsi->back; int err; if (pf->flags & I40E_FLAG_MSIX_ENABLED) err = i40e_vsi_request_irq_msix(vsi, basename); else if (pf->flags & I40E_FLAG_MSI_ENABLED) err = request_irq(pf->pdev->irq, i40e_intr, 0, pf->int_name, pf); else err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED, pf->int_name, pf); if (err) dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err); return err; } #ifdef CONFIG_NET_POLL_CONTROLLER /** * i40e_netpoll - A Polling 'interrupt'handler * @netdev: network interface device structure * * This is used by netconsole to send skbs without having to re-enable * interrupts. It's not called while the normal interrupt routine is executing. **/ #ifdef I40E_FCOE void i40e_netpoll(struct net_device *netdev) #else static void i40e_netpoll(struct net_device *netdev) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; int i; /* if interface is down do nothing */ if (test_bit(__I40E_DOWN, &vsi->state)) return; pf->flags |= I40E_FLAG_IN_NETPOLL; if (pf->flags & I40E_FLAG_MSIX_ENABLED) { for (i = 0; i < vsi->num_q_vectors; i++) i40e_msix_clean_rings(0, vsi->q_vectors[i]); } else { i40e_intr(pf->pdev->irq, netdev); } pf->flags &= ~I40E_FLAG_IN_NETPOLL; } #endif /** * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled * @pf: the PF being configured * @pf_q: the PF queue * @enable: enable or disable state of the queue * * This routine will wait for the given Tx queue of the PF to reach the * enabled or disabled state. * Returns -ETIMEDOUT in case of failing to reach the requested state after * multiple retries; else will return 0 in case of success. **/ static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable) { int i; u32 tx_reg; for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q)); if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) break; usleep_range(10, 20); } if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) return -ETIMEDOUT; return 0; } /** * i40e_vsi_control_tx - Start or stop a VSI's rings * @vsi: the VSI being configured * @enable: start or stop the rings **/ static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable) { struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; int i, j, pf_q, ret = 0; u32 tx_reg; pf_q = vsi->base_queue; for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { /* warn the TX unit of coming changes */ i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable); if (!enable) usleep_range(10, 20); for (j = 0; j < 50; j++) { tx_reg = rd32(hw, I40E_QTX_ENA(pf_q)); if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) == ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1)) break; usleep_range(1000, 2000); } /* Skip if the queue is already in the requested state */ if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK)) continue; /* turn on/off the queue */ if (enable) { wr32(hw, I40E_QTX_HEAD(pf_q), 0); tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK; } else { tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK; } wr32(hw, I40E_QTX_ENA(pf_q), tx_reg); /* No waiting for the Tx queue to disable */ if (!enable && test_bit(__I40E_PORT_TX_SUSPENDED, &pf->state)) continue; /* wait for the change to finish */ ret = i40e_pf_txq_wait(pf, pf_q, enable); if (ret) { dev_info(&pf->pdev->dev, "%s: VSI seid %d Tx ring %d %sable timeout\n", __func__, vsi->seid, pf_q, (enable ? "en" : "dis")); break; } } if (hw->revision_id == 0) mdelay(50); return ret; } /** * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled * @pf: the PF being configured * @pf_q: the PF queue * @enable: enable or disable state of the queue * * This routine will wait for the given Rx queue of the PF to reach the * enabled or disabled state. * Returns -ETIMEDOUT in case of failing to reach the requested state after * multiple retries; else will return 0 in case of success. **/ static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable) { int i; u32 rx_reg; for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) { rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q)); if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) break; usleep_range(10, 20); } if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT) return -ETIMEDOUT; return 0; } /** * i40e_vsi_control_rx - Start or stop a VSI's rings * @vsi: the VSI being configured * @enable: start or stop the rings **/ static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable) { struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; int i, j, pf_q, ret = 0; u32 rx_reg; pf_q = vsi->base_queue; for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { for (j = 0; j < 50; j++) { rx_reg = rd32(hw, I40E_QRX_ENA(pf_q)); if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) == ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1)) break; usleep_range(1000, 2000); } /* Skip if the queue is already in the requested state */ if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK)) continue; /* turn on/off the queue */ if (enable) rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK; else rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK; wr32(hw, I40E_QRX_ENA(pf_q), rx_reg); /* wait for the change to finish */ ret = i40e_pf_rxq_wait(pf, pf_q, enable); if (ret) { dev_info(&pf->pdev->dev, "%s: VSI seid %d Rx ring %d %sable timeout\n", __func__, vsi->seid, pf_q, (enable ? "en" : "dis")); break; } } return ret; } /** * i40e_vsi_control_rings - Start or stop a VSI's rings * @vsi: the VSI being configured * @enable: start or stop the rings **/ int i40e_vsi_control_rings(struct i40e_vsi *vsi, bool request) { int ret = 0; /* do rx first for enable and last for disable */ if (request) { ret = i40e_vsi_control_rx(vsi, request); if (ret) return ret; ret = i40e_vsi_control_tx(vsi, request); } else { /* Ignore return value, we need to shutdown whatever we can */ i40e_vsi_control_tx(vsi, request); i40e_vsi_control_rx(vsi, request); } return ret; } /** * i40e_vsi_free_irq - Free the irq association with the OS * @vsi: the VSI being configured **/ static void i40e_vsi_free_irq(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; int base = vsi->base_vector; u32 val, qp; int i; if (pf->flags & I40E_FLAG_MSIX_ENABLED) { if (!vsi->q_vectors) return; if (!vsi->irqs_ready) return; vsi->irqs_ready = false; for (i = 0; i < vsi->num_q_vectors; i++) { u16 vector = i + base; /* free only the irqs that were actually requested */ if (!vsi->q_vectors[i] || !vsi->q_vectors[i]->num_ringpairs) continue; /* clear the affinity_mask in the IRQ descriptor */ irq_set_affinity_hint(pf->msix_entries[vector].vector, NULL); free_irq(pf->msix_entries[vector].vector, vsi->q_vectors[i]); /* Tear down the interrupt queue link list * * We know that they come in pairs and always * the Rx first, then the Tx. To clear the * link list, stick the EOL value into the * next_q field of the registers. */ val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1)); qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; val |= I40E_QUEUE_END_OF_LIST << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val); while (qp != I40E_QUEUE_END_OF_LIST) { u32 next; val = rd32(hw, I40E_QINT_RQCTL(qp)); val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | I40E_QINT_RQCTL_MSIX0_INDX_MASK | I40E_QINT_RQCTL_CAUSE_ENA_MASK | I40E_QINT_RQCTL_INTEVENT_MASK); val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | I40E_QINT_RQCTL_NEXTQ_INDX_MASK); wr32(hw, I40E_QINT_RQCTL(qp), val); val = rd32(hw, I40E_QINT_TQCTL(qp)); next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK) >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT; val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | I40E_QINT_TQCTL_MSIX0_INDX_MASK | I40E_QINT_TQCTL_CAUSE_ENA_MASK | I40E_QINT_TQCTL_INTEVENT_MASK); val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | I40E_QINT_TQCTL_NEXTQ_INDX_MASK); wr32(hw, I40E_QINT_TQCTL(qp), val); qp = next; } } } else { free_irq(pf->pdev->irq, pf); val = rd32(hw, I40E_PFINT_LNKLST0); qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK) >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT; val |= I40E_QUEUE_END_OF_LIST << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT; wr32(hw, I40E_PFINT_LNKLST0, val); val = rd32(hw, I40E_QINT_RQCTL(qp)); val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK | I40E_QINT_RQCTL_MSIX0_INDX_MASK | I40E_QINT_RQCTL_CAUSE_ENA_MASK | I40E_QINT_RQCTL_INTEVENT_MASK); val |= (I40E_QINT_RQCTL_ITR_INDX_MASK | I40E_QINT_RQCTL_NEXTQ_INDX_MASK); wr32(hw, I40E_QINT_RQCTL(qp), val); val = rd32(hw, I40E_QINT_TQCTL(qp)); val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK | I40E_QINT_TQCTL_MSIX0_INDX_MASK | I40E_QINT_TQCTL_CAUSE_ENA_MASK | I40E_QINT_TQCTL_INTEVENT_MASK); val |= (I40E_QINT_TQCTL_ITR_INDX_MASK | I40E_QINT_TQCTL_NEXTQ_INDX_MASK); wr32(hw, I40E_QINT_TQCTL(qp), val); } } /** * i40e_free_q_vector - Free memory allocated for specific interrupt vector * @vsi: the VSI being configured * @v_idx: Index of vector to be freed * * This function frees the memory allocated to the q_vector. In addition if * NAPI is enabled it will delete any references to the NAPI struct prior * to freeing the q_vector. **/ static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx) { struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx]; struct i40e_ring *ring; if (!q_vector) return; /* disassociate q_vector from rings */ i40e_for_each_ring(ring, q_vector->tx) ring->q_vector = NULL; i40e_for_each_ring(ring, q_vector->rx) ring->q_vector = NULL; /* only VSI w/ an associated netdev is set up w/ NAPI */ if (vsi->netdev) netif_napi_del(&q_vector->napi); vsi->q_vectors[v_idx] = NULL; kfree_rcu(q_vector, rcu); } /** * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors * @vsi: the VSI being un-configured * * This frees the memory allocated to the q_vectors and * deletes references to the NAPI struct. **/ static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi) { int v_idx; for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) i40e_free_q_vector(vsi, v_idx); } /** * i40e_reset_interrupt_capability - Disable interrupt setup in OS * @pf: board private structure **/ static void i40e_reset_interrupt_capability(struct i40e_pf *pf) { /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */ if (pf->flags & I40E_FLAG_MSIX_ENABLED) { pci_disable_msix(pf->pdev); kfree(pf->msix_entries); pf->msix_entries = NULL; } else if (pf->flags & I40E_FLAG_MSI_ENABLED) { pci_disable_msi(pf->pdev); } pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED); } /** * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings * @pf: board private structure * * We go through and clear interrupt specific resources and reset the structure * to pre-load conditions **/ static void i40e_clear_interrupt_scheme(struct i40e_pf *pf) { int i; i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1); for (i = 0; i < pf->num_alloc_vsi; i++) if (pf->vsi[i]) i40e_vsi_free_q_vectors(pf->vsi[i]); i40e_reset_interrupt_capability(pf); } /** * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI * @vsi: the VSI being configured **/ static void i40e_napi_enable_all(struct i40e_vsi *vsi) { int q_idx; if (!vsi->netdev) return; for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) napi_enable(&vsi->q_vectors[q_idx]->napi); } /** * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI * @vsi: the VSI being configured **/ static void i40e_napi_disable_all(struct i40e_vsi *vsi) { int q_idx; if (!vsi->netdev) return; for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) napi_disable(&vsi->q_vectors[q_idx]->napi); } /** * i40e_vsi_close - Shut down a VSI * @vsi: the vsi to be quelled **/ static void i40e_vsi_close(struct i40e_vsi *vsi) { if (!test_and_set_bit(__I40E_DOWN, &vsi->state)) i40e_down(vsi); i40e_vsi_free_irq(vsi); i40e_vsi_free_tx_resources(vsi); i40e_vsi_free_rx_resources(vsi); } /** * i40e_quiesce_vsi - Pause a given VSI * @vsi: the VSI being paused **/ static void i40e_quiesce_vsi(struct i40e_vsi *vsi) { if (test_bit(__I40E_DOWN, &vsi->state)) return; /* No need to disable FCoE VSI when Tx suspended */ if ((test_bit(__I40E_PORT_TX_SUSPENDED, &vsi->back->state)) && vsi->type == I40E_VSI_FCOE) { dev_dbg(&vsi->back->pdev->dev, "%s: VSI seid %d skipping FCoE VSI disable\n", __func__, vsi->seid); return; } set_bit(__I40E_NEEDS_RESTART, &vsi->state); if (vsi->netdev && netif_running(vsi->netdev)) { vsi->netdev->netdev_ops->ndo_stop(vsi->netdev); } else { i40e_vsi_close(vsi); } } /** * i40e_unquiesce_vsi - Resume a given VSI * @vsi: the VSI being resumed **/ static void i40e_unquiesce_vsi(struct i40e_vsi *vsi) { if (!test_bit(__I40E_NEEDS_RESTART, &vsi->state)) return; clear_bit(__I40E_NEEDS_RESTART, &vsi->state); if (vsi->netdev && netif_running(vsi->netdev)) vsi->netdev->netdev_ops->ndo_open(vsi->netdev); else i40e_vsi_open(vsi); /* this clears the DOWN bit */ } /** * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF * @pf: the PF **/ static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf) { int v; for (v = 0; v < pf->num_alloc_vsi; v++) { if (pf->vsi[v]) i40e_quiesce_vsi(pf->vsi[v]); } } /** * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF * @pf: the PF **/ static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf) { int v; for (v = 0; v < pf->num_alloc_vsi; v++) { if (pf->vsi[v]) i40e_unquiesce_vsi(pf->vsi[v]); } } #ifdef CONFIG_I40E_DCB /** * i40e_vsi_wait_txq_disabled - Wait for VSI's queues to be disabled * @vsi: the VSI being configured * * This function waits for the given VSI's Tx queues to be disabled. **/ static int i40e_vsi_wait_txq_disabled(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; int i, pf_q, ret; pf_q = vsi->base_queue; for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) { /* Check and wait for the disable status of the queue */ ret = i40e_pf_txq_wait(pf, pf_q, false); if (ret) { dev_info(&pf->pdev->dev, "%s: VSI seid %d Tx ring %d disable timeout\n", __func__, vsi->seid, pf_q); return ret; } } return 0; } /** * i40e_pf_wait_txq_disabled - Wait for all queues of PF VSIs to be disabled * @pf: the PF * * This function waits for the Tx queues to be in disabled state for all the * VSIs that are managed by this PF. **/ static int i40e_pf_wait_txq_disabled(struct i40e_pf *pf) { int v, ret = 0; for (v = 0; v < pf->hw.func_caps.num_vsis; v++) { /* No need to wait for FCoE VSI queues */ if (pf->vsi[v] && pf->vsi[v]->type != I40E_VSI_FCOE) { ret = i40e_vsi_wait_txq_disabled(pf->vsi[v]); if (ret) break; } } return ret; } #endif /** * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP * @pf: pointer to pf * * Get TC map for ISCSI PF type that will include iSCSI TC * and LAN TC. **/ static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf) { struct i40e_dcb_app_priority_table app; struct i40e_hw *hw = &pf->hw; u8 enabled_tc = 1; /* TC0 is always enabled */ u8 tc, i; /* Get the iSCSI APP TLV */ struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; for (i = 0; i < dcbcfg->numapps; i++) { app = dcbcfg->app[i]; if (app.selector == I40E_APP_SEL_TCPIP && app.protocolid == I40E_APP_PROTOID_ISCSI) { tc = dcbcfg->etscfg.prioritytable[app.priority]; enabled_tc |= (1 << tc); break; } } return enabled_tc; } /** * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config * @dcbcfg: the corresponding DCBx configuration structure * * Return the number of TCs from given DCBx configuration **/ static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg) { u8 num_tc = 0; int i; /* Scan the ETS Config Priority Table to find * traffic class enabled for a given priority * and use the traffic class index to get the * number of traffic classes enabled */ for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { if (dcbcfg->etscfg.prioritytable[i] > num_tc) num_tc = dcbcfg->etscfg.prioritytable[i]; } /* Traffic class index starts from zero so * increment to return the actual count */ return num_tc + 1; } /** * i40e_dcb_get_enabled_tc - Get enabled traffic classes * @dcbcfg: the corresponding DCBx configuration structure * * Query the current DCB configuration and return the number of * traffic classes enabled from the given DCBX config **/ static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg) { u8 num_tc = i40e_dcb_get_num_tc(dcbcfg); u8 enabled_tc = 1; u8 i; for (i = 0; i < num_tc; i++) enabled_tc |= 1 << i; return enabled_tc; } /** * i40e_pf_get_num_tc - Get enabled traffic classes for PF * @pf: PF being queried * * Return number of traffic classes enabled for the given PF **/ static u8 i40e_pf_get_num_tc(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; u8 i, enabled_tc; u8 num_tc = 0; struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; /* If DCB is not enabled then always in single TC */ if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) return 1; /* SFP mode will be enabled for all TCs on port */ if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) return i40e_dcb_get_num_tc(dcbcfg); /* MFP mode return count of enabled TCs for this PF */ if (pf->hw.func_caps.iscsi) enabled_tc = i40e_get_iscsi_tc_map(pf); else enabled_tc = pf->hw.func_caps.enabled_tcmap; /* At least have TC0 */ enabled_tc = (enabled_tc ? enabled_tc : 0x1); for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (enabled_tc & (1 << i)) num_tc++; } return num_tc; } /** * i40e_pf_get_default_tc - Get bitmap for first enabled TC * @pf: PF being queried * * Return a bitmap for first enabled traffic class for this PF. **/ static u8 i40e_pf_get_default_tc(struct i40e_pf *pf) { u8 enabled_tc = pf->hw.func_caps.enabled_tcmap; u8 i = 0; if (!enabled_tc) return 0x1; /* TC0 */ /* Find the first enabled TC */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (enabled_tc & (1 << i)) break; } return 1 << i; } /** * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes * @pf: PF being queried * * Return a bitmap for enabled traffic classes for this PF. **/ static u8 i40e_pf_get_tc_map(struct i40e_pf *pf) { /* If DCB is not enabled for this PF then just return default TC */ if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) return i40e_pf_get_default_tc(pf); /* SFP mode we want PF to be enabled for all TCs */ if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config); /* MPF enabled and iSCSI PF type */ if (pf->hw.func_caps.iscsi) return i40e_get_iscsi_tc_map(pf); else return pf->hw.func_caps.enabled_tcmap; } /** * i40e_vsi_get_bw_info - Query VSI BW Information * @vsi: the VSI being queried * * Returns 0 on success, negative value on failure **/ static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi) { struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0}; struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0}; struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; i40e_status aq_ret; u32 tc_bw_max; int i; /* Get the VSI level BW configuration */ aq_ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL); if (aq_ret) { dev_info(&pf->pdev->dev, "couldn't get pf vsi bw config, err %d, aq_err %d\n", aq_ret, pf->hw.aq.asq_last_status); return -EINVAL; } /* Get the VSI level BW configuration per TC */ aq_ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config, NULL); if (aq_ret) { dev_info(&pf->pdev->dev, "couldn't get pf vsi ets bw config, err %d, aq_err %d\n", aq_ret, pf->hw.aq.asq_last_status); return -EINVAL; } if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) { dev_info(&pf->pdev->dev, "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n", bw_config.tc_valid_bits, bw_ets_config.tc_valid_bits); /* Still continuing */ } vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit); vsi->bw_max_quanta = bw_config.max_bw; tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) | (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16); for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i]; vsi->bw_ets_limit_credits[i] = le16_to_cpu(bw_ets_config.credits[i]); /* 3 bits out of 4 for each TC */ vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7); } return 0; } /** * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC * @vsi: the VSI being configured * @enabled_tc: TC bitmap * @bw_credits: BW shared credits per TC * * Returns 0 on success, negative value on failure **/ static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc, u8 *bw_share) { struct i40e_aqc_configure_vsi_tc_bw_data bw_data; i40e_status aq_ret; int i; bw_data.tc_valid_bits = enabled_tc; for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) bw_data.tc_bw_credits[i] = bw_share[i]; aq_ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid, &bw_data, NULL); if (aq_ret) { dev_info(&vsi->back->pdev->dev, "AQ command Config VSI BW allocation per TC failed = %d\n", vsi->back->hw.aq.asq_last_status); return -EINVAL; } for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) vsi->info.qs_handle[i] = bw_data.qs_handles[i]; return 0; } /** * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration * @vsi: the VSI being configured * @enabled_tc: TC map to be enabled * **/ static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc) { struct net_device *netdev = vsi->netdev; struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; u8 netdev_tc = 0; int i; struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config; if (!netdev) return; if (!enabled_tc) { netdev_reset_tc(netdev); return; } /* Set up actual enabled TCs on the VSI */ if (netdev_set_num_tc(netdev, vsi->tc_config.numtc)) return; /* set per TC queues for the VSI */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { /* Only set TC queues for enabled tcs * * e.g. For a VSI that has TC0 and TC3 enabled the * enabled_tc bitmap would be 0x00001001; the driver * will set the numtc for netdev as 2 that will be * referenced by the netdev layer as TC 0 and 1. */ if (vsi->tc_config.enabled_tc & (1 << i)) netdev_set_tc_queue(netdev, vsi->tc_config.tc_info[i].netdev_tc, vsi->tc_config.tc_info[i].qcount, vsi->tc_config.tc_info[i].qoffset); } /* Assign UP2TC map for the VSI */ for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) { /* Get the actual TC# for the UP */ u8 ets_tc = dcbcfg->etscfg.prioritytable[i]; /* Get the mapped netdev TC# for the UP */ netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc; netdev_set_prio_tc_map(netdev, i, netdev_tc); } } /** * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map * @vsi: the VSI being configured * @ctxt: the ctxt buffer returned from AQ VSI update param command **/ static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi, struct i40e_vsi_context *ctxt) { /* copy just the sections touched not the entire info * since not all sections are valid as returned by * update vsi params */ vsi->info.mapping_flags = ctxt->info.mapping_flags; memcpy(&vsi->info.queue_mapping, &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping)); memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping, sizeof(vsi->info.tc_mapping)); } /** * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map * @vsi: VSI to be configured * @enabled_tc: TC bitmap * * This configures a particular VSI for TCs that are mapped to the * given TC bitmap. It uses default bandwidth share for TCs across * VSIs to configure TC for a particular VSI. * * NOTE: * It is expected that the VSI queues have been quisced before calling * this function. **/ static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc) { u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0}; struct i40e_vsi_context ctxt; int ret = 0; int i; /* Check if enabled_tc is same as existing or new TCs */ if (vsi->tc_config.enabled_tc == enabled_tc) return ret; /* Enable ETS TCs with equal BW Share for now across all VSIs */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (enabled_tc & (1 << i)) bw_share[i] = 1; } ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share); if (ret) { dev_info(&vsi->back->pdev->dev, "Failed configuring TC map %d for VSI %d\n", enabled_tc, vsi->seid); goto out; } /* Update Queue Pairs Mapping for currently enabled UPs */ ctxt.seid = vsi->seid; ctxt.pf_num = vsi->back->hw.pf_id; ctxt.vf_num = 0; ctxt.uplink_seid = vsi->uplink_seid; memcpy(&ctxt.info, &vsi->info, sizeof(vsi->info)); i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); /* Update the VSI after updating the VSI queue-mapping information */ ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL); if (ret) { dev_info(&vsi->back->pdev->dev, "update vsi failed, aq_err=%d\n", vsi->back->hw.aq.asq_last_status); goto out; } /* update the local VSI info with updated queue map */ i40e_vsi_update_queue_map(vsi, &ctxt); vsi->info.valid_sections = 0; /* Update current VSI BW information */ ret = i40e_vsi_get_bw_info(vsi); if (ret) { dev_info(&vsi->back->pdev->dev, "Failed updating vsi bw info, aq_err=%d\n", vsi->back->hw.aq.asq_last_status); goto out; } /* Update the netdev TC setup */ i40e_vsi_config_netdev_tc(vsi, enabled_tc); out: return ret; } /** * i40e_veb_config_tc - Configure TCs for given VEB * @veb: given VEB * @enabled_tc: TC bitmap * * Configures given TC bitmap for VEB (switching) element **/ int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc) { struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0}; struct i40e_pf *pf = veb->pf; int ret = 0; int i; /* No TCs or already enabled TCs just return */ if (!enabled_tc || veb->enabled_tc == enabled_tc) return ret; bw_data.tc_valid_bits = enabled_tc; /* bw_data.absolute_credits is not set (relative) */ /* Enable ETS TCs with equal BW Share for now */ for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { if (enabled_tc & (1 << i)) bw_data.tc_bw_share_credits[i] = 1; } ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid, &bw_data, NULL); if (ret) { dev_info(&pf->pdev->dev, "veb bw config failed, aq_err=%d\n", pf->hw.aq.asq_last_status); goto out; } /* Update the BW information */ ret = i40e_veb_get_bw_info(veb); if (ret) { dev_info(&pf->pdev->dev, "Failed getting veb bw config, aq_err=%d\n", pf->hw.aq.asq_last_status); } out: return ret; } #ifdef CONFIG_I40E_DCB /** * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs * @pf: PF struct * * Reconfigure VEB/VSIs on a given PF; it is assumed that * the caller would've quiesce all the VSIs before calling * this function **/ static void i40e_dcb_reconfigure(struct i40e_pf *pf) { u8 tc_map = 0; int ret; u8 v; /* Enable the TCs available on PF to all VEBs */ tc_map = i40e_pf_get_tc_map(pf); for (v = 0; v < I40E_MAX_VEB; v++) { if (!pf->veb[v]) continue; ret = i40e_veb_config_tc(pf->veb[v], tc_map); if (ret) { dev_info(&pf->pdev->dev, "Failed configuring TC for VEB seid=%d\n", pf->veb[v]->seid); /* Will try to configure as many components */ } } /* Update each VSI */ for (v = 0; v < pf->num_alloc_vsi; v++) { if (!pf->vsi[v]) continue; /* - Enable all TCs for the LAN VSI #ifdef I40E_FCOE * - For FCoE VSI only enable the TC configured * as per the APP TLV #endif * - For all others keep them at TC0 for now */ if (v == pf->lan_vsi) tc_map = i40e_pf_get_tc_map(pf); else tc_map = i40e_pf_get_default_tc(pf); #ifdef I40E_FCOE if (pf->vsi[v]->type == I40E_VSI_FCOE) tc_map = i40e_get_fcoe_tc_map(pf); #endif /* #ifdef I40E_FCOE */ ret = i40e_vsi_config_tc(pf->vsi[v], tc_map); if (ret) { dev_info(&pf->pdev->dev, "Failed configuring TC for VSI seid=%d\n", pf->vsi[v]->seid); /* Will try to configure as many components */ } else { /* Re-configure VSI vectors based on updated TC map */ i40e_vsi_map_rings_to_vectors(pf->vsi[v]); if (pf->vsi[v]->netdev) i40e_dcbnl_set_all(pf->vsi[v]); } } } /** * i40e_resume_port_tx - Resume port Tx * @pf: PF struct * * Resume a port's Tx and issue a PF reset in case of failure to * resume. **/ static int i40e_resume_port_tx(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; int ret; ret = i40e_aq_resume_port_tx(hw, NULL); if (ret) { dev_info(&pf->pdev->dev, "AQ command Resume Port Tx failed = %d\n", pf->hw.aq.asq_last_status); /* Schedule PF reset to recover */ set_bit(__I40E_PF_RESET_REQUESTED, &pf->state); i40e_service_event_schedule(pf); } return ret; } /** * i40e_init_pf_dcb - Initialize DCB configuration * @pf: PF being configured * * Query the current DCB configuration and cache it * in the hardware structure **/ static int i40e_init_pf_dcb(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; int err = 0; /* Get the initial DCB configuration */ err = i40e_init_dcb(hw); if (!err) { /* Device/Function is not DCBX capable */ if ((!hw->func_caps.dcb) || (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) { dev_info(&pf->pdev->dev, "DCBX offload is not supported or is disabled for this PF.\n"); if (pf->flags & I40E_FLAG_MFP_ENABLED) goto out; } else { /* When status is not DISABLED then DCBX in FW */ pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED | DCB_CAP_DCBX_VER_IEEE; pf->flags |= I40E_FLAG_DCB_CAPABLE; /* Enable DCB tagging only when more than one TC */ if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1) pf->flags |= I40E_FLAG_DCB_ENABLED; dev_dbg(&pf->pdev->dev, "DCBX offload is supported for this PF.\n"); } } else { dev_info(&pf->pdev->dev, "AQ Querying DCB configuration failed: aq_err %d\n", pf->hw.aq.asq_last_status); } out: return err; } #endif /* CONFIG_I40E_DCB */ #define SPEED_SIZE 14 #define FC_SIZE 8 /** * i40e_print_link_message - print link up or down * @vsi: the VSI for which link needs a message */ static void i40e_print_link_message(struct i40e_vsi *vsi, bool isup) { char speed[SPEED_SIZE] = "Unknown"; char fc[FC_SIZE] = "RX/TX"; if (!isup) { netdev_info(vsi->netdev, "NIC Link is Down\n"); return; } /* Warn user if link speed on NPAR enabled partition is not at * least 10GB */ if (vsi->back->hw.func_caps.npar_enable && (vsi->back->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB || vsi->back->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB)) netdev_warn(vsi->netdev, "The partition detected link speed that is less than 10Gbps\n"); switch (vsi->back->hw.phy.link_info.link_speed) { case I40E_LINK_SPEED_40GB: strlcpy(speed, "40 Gbps", SPEED_SIZE); break; case I40E_LINK_SPEED_10GB: strlcpy(speed, "10 Gbps", SPEED_SIZE); break; case I40E_LINK_SPEED_1GB: strlcpy(speed, "1000 Mbps", SPEED_SIZE); break; case I40E_LINK_SPEED_100MB: strncpy(speed, "100 Mbps", SPEED_SIZE); break; default: break; } switch (vsi->back->hw.fc.current_mode) { case I40E_FC_FULL: strlcpy(fc, "RX/TX", FC_SIZE); break; case I40E_FC_TX_PAUSE: strlcpy(fc, "TX", FC_SIZE); break; case I40E_FC_RX_PAUSE: strlcpy(fc, "RX", FC_SIZE); break; default: strlcpy(fc, "None", FC_SIZE); break; } netdev_info(vsi->netdev, "NIC Link is Up %s Full Duplex, Flow Control: %s\n", speed, fc); } /** * i40e_up_complete - Finish the last steps of bringing up a connection * @vsi: the VSI being configured **/ static int i40e_up_complete(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; int err; if (pf->flags & I40E_FLAG_MSIX_ENABLED) i40e_vsi_configure_msix(vsi); else i40e_configure_msi_and_legacy(vsi); /* start rings */ err = i40e_vsi_control_rings(vsi, true); if (err) return err; clear_bit(__I40E_DOWN, &vsi->state); i40e_napi_enable_all(vsi); i40e_vsi_enable_irq(vsi); if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) && (vsi->netdev)) { i40e_print_link_message(vsi, true); netif_tx_start_all_queues(vsi->netdev); netif_carrier_on(vsi->netdev); } else if (vsi->netdev) { i40e_print_link_message(vsi, false); /* need to check for qualified module here*/ if ((pf->hw.phy.link_info.link_info & I40E_AQ_MEDIA_AVAILABLE) && (!(pf->hw.phy.link_info.an_info & I40E_AQ_QUALIFIED_MODULE))) netdev_err(vsi->netdev, "the driver failed to link because an unqualified module was detected."); } /* replay FDIR SB filters */ if (vsi->type == I40E_VSI_FDIR) { /* reset fd counters */ pf->fd_add_err = pf->fd_atr_cnt = 0; if (pf->fd_tcp_rule > 0) { pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED; dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 exist\n"); pf->fd_tcp_rule = 0; } i40e_fdir_filter_restore(vsi); } i40e_service_event_schedule(pf); return 0; } /** * i40e_vsi_reinit_locked - Reset the VSI * @vsi: the VSI being configured * * Rebuild the ring structs after some configuration * has changed, e.g. MTU size. **/ static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; WARN_ON(in_interrupt()); while (test_and_set_bit(__I40E_CONFIG_BUSY, &pf->state)) usleep_range(1000, 2000); i40e_down(vsi); /* Give a VF some time to respond to the reset. The * two second wait is based upon the watchdog cycle in * the VF driver. */ if (vsi->type == I40E_VSI_SRIOV) msleep(2000); i40e_up(vsi); clear_bit(__I40E_CONFIG_BUSY, &pf->state); } /** * i40e_up - Bring the connection back up after being down * @vsi: the VSI being configured **/ int i40e_up(struct i40e_vsi *vsi) { int err; err = i40e_vsi_configure(vsi); if (!err) err = i40e_up_complete(vsi); return err; } /** * i40e_down - Shutdown the connection processing * @vsi: the VSI being stopped **/ void i40e_down(struct i40e_vsi *vsi) { int i; /* It is assumed that the caller of this function * sets the vsi->state __I40E_DOWN bit. */ if (vsi->netdev) { netif_carrier_off(vsi->netdev); netif_tx_disable(vsi->netdev); } i40e_vsi_disable_irq(vsi); i40e_vsi_control_rings(vsi, false); i40e_napi_disable_all(vsi); for (i = 0; i < vsi->num_queue_pairs; i++) { i40e_clean_tx_ring(vsi->tx_rings[i]); i40e_clean_rx_ring(vsi->rx_rings[i]); } } /** * i40e_setup_tc - configure multiple traffic classes * @netdev: net device to configure * @tc: number of traffic classes to enable **/ #ifdef I40E_FCOE int i40e_setup_tc(struct net_device *netdev, u8 tc) #else static int i40e_setup_tc(struct net_device *netdev, u8 tc) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; u8 enabled_tc = 0; int ret = -EINVAL; int i; /* Check if DCB enabled to continue */ if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) { netdev_info(netdev, "DCB is not enabled for adapter\n"); goto exit; } /* Check if MFP enabled */ if (pf->flags & I40E_FLAG_MFP_ENABLED) { netdev_info(netdev, "Configuring TC not supported in MFP mode\n"); goto exit; } /* Check whether tc count is within enabled limit */ if (tc > i40e_pf_get_num_tc(pf)) { netdev_info(netdev, "TC count greater than enabled on link for adapter\n"); goto exit; } /* Generate TC map for number of tc requested */ for (i = 0; i < tc; i++) enabled_tc |= (1 << i); /* Requesting same TC configuration as already enabled */ if (enabled_tc == vsi->tc_config.enabled_tc) return 0; /* Quiesce VSI queues */ i40e_quiesce_vsi(vsi); /* Configure VSI for enabled TCs */ ret = i40e_vsi_config_tc(vsi, enabled_tc); if (ret) { netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n", vsi->seid); goto exit; } /* Unquiesce VSI */ i40e_unquiesce_vsi(vsi); exit: return ret; } /** * i40e_open - Called when a network interface is made active * @netdev: network interface device structure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the netdev watchdog subtask is * enabled, and the stack is notified that the interface is ready. * * Returns 0 on success, negative value on failure **/ #ifdef I40E_FCOE int i40e_open(struct net_device *netdev) #else static int i40e_open(struct net_device *netdev) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; int err; /* disallow open during test or if eeprom is broken */ if (test_bit(__I40E_TESTING, &pf->state) || test_bit(__I40E_BAD_EEPROM, &pf->state)) return -EBUSY; netif_carrier_off(netdev); err = i40e_vsi_open(vsi); if (err) return err; /* configure global TSO hardware offload settings */ wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH | TCP_FLAG_FIN) >> 16); wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH | TCP_FLAG_FIN | TCP_FLAG_CWR) >> 16); wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16); #ifdef CONFIG_I40E_VXLAN vxlan_get_rx_port(netdev); #endif return 0; } /** * i40e_vsi_open - * @vsi: the VSI to open * * Finish initialization of the VSI. * * Returns 0 on success, negative value on failure **/ int i40e_vsi_open(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; char int_name[I40E_INT_NAME_STR_LEN]; int err; /* allocate descriptors */ err = i40e_vsi_setup_tx_resources(vsi); if (err) goto err_setup_tx; err = i40e_vsi_setup_rx_resources(vsi); if (err) goto err_setup_rx; err = i40e_vsi_configure(vsi); if (err) goto err_setup_rx; if (vsi->netdev) { snprintf(int_name, sizeof(int_name) - 1, "%s-%s", dev_driver_string(&pf->pdev->dev), vsi->netdev->name); err = i40e_vsi_request_irq(vsi, int_name); if (err) goto err_setup_rx; /* Notify the stack of the actual queue counts. */ err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_queue_pairs); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_queue_pairs); if (err) goto err_set_queues; } else if (vsi->type == I40E_VSI_FDIR) { snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir", dev_driver_string(&pf->pdev->dev), dev_name(&pf->pdev->dev)); err = i40e_vsi_request_irq(vsi, int_name); } else { err = -EINVAL; goto err_setup_rx; } err = i40e_up_complete(vsi); if (err) goto err_up_complete; return 0; err_up_complete: i40e_down(vsi); err_set_queues: i40e_vsi_free_irq(vsi); err_setup_rx: i40e_vsi_free_rx_resources(vsi); err_setup_tx: i40e_vsi_free_tx_resources(vsi); if (vsi == pf->vsi[pf->lan_vsi]) i40e_do_reset(pf, (1 << __I40E_PF_RESET_REQUESTED)); return err; } /** * i40e_fdir_filter_exit - Cleans up the Flow Director accounting * @pf: Pointer to pf * * This function destroys the hlist where all the Flow Director * filters were saved. **/ static void i40e_fdir_filter_exit(struct i40e_pf *pf) { struct i40e_fdir_filter *filter; struct hlist_node *node2; hlist_for_each_entry_safe(filter, node2, &pf->fdir_filter_list, fdir_node) { hlist_del(&filter->fdir_node); kfree(filter); } pf->fdir_pf_active_filters = 0; } /** * i40e_close - Disables a network interface * @netdev: network interface device structure * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the driver's control, but * this netdev interface is disabled. * * Returns 0, this is not allowed to fail **/ #ifdef I40E_FCOE int i40e_close(struct net_device *netdev) #else static int i40e_close(struct net_device *netdev) #endif { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; i40e_vsi_close(vsi); return 0; } /** * i40e_do_reset - Start a PF or Core Reset sequence * @pf: board private structure * @reset_flags: which reset is requested * * The essential difference in resets is that the PF Reset * doesn't clear the packet buffers, doesn't reset the PE * firmware, and doesn't bother the other PFs on the chip. **/ void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags) { u32 val; WARN_ON(in_interrupt()); if (i40e_check_asq_alive(&pf->hw)) i40e_vc_notify_reset(pf); /* do the biggest reset indicated */ if (reset_flags & (1 << __I40E_GLOBAL_RESET_REQUESTED)) { /* Request a Global Reset * * This will start the chip's countdown to the actual full * chip reset event, and a warning interrupt to be sent * to all PFs, including the requestor. Our handler * for the warning interrupt will deal with the shutdown * and recovery of the switch setup. */ dev_dbg(&pf->pdev->dev, "GlobalR requested\n"); val = rd32(&pf->hw, I40E_GLGEN_RTRIG); val |= I40E_GLGEN_RTRIG_GLOBR_MASK; wr32(&pf->hw, I40E_GLGEN_RTRIG, val); } else if (reset_flags & (1 << __I40E_CORE_RESET_REQUESTED)) { /* Request a Core Reset * * Same as Global Reset, except does *not* include the MAC/PHY */ dev_dbg(&pf->pdev->dev, "CoreR requested\n"); val = rd32(&pf->hw, I40E_GLGEN_RTRIG); val |= I40E_GLGEN_RTRIG_CORER_MASK; wr32(&pf->hw, I40E_GLGEN_RTRIG, val); i40e_flush(&pf->hw); } else if (reset_flags & (1 << __I40E_EMP_RESET_REQUESTED)) { /* Request a Firmware Reset * * Same as Global reset, plus restarting the * embedded firmware engine. */ /* enable EMP Reset */ val = rd32(&pf->hw, I40E_GLGEN_RSTENA_EMP); val |= I40E_GLGEN_RSTENA_EMP_EMP_RST_ENA_MASK; wr32(&pf->hw, I40E_GLGEN_RSTENA_EMP, val); /* force the reset */ val = rd32(&pf->hw, I40E_GLGEN_RTRIG); val |= I40E_GLGEN_RTRIG_EMPFWR_MASK; wr32(&pf->hw, I40E_GLGEN_RTRIG, val); i40e_flush(&pf->hw); } else if (reset_flags & (1 << __I40E_PF_RESET_REQUESTED)) { /* Request a PF Reset * * Resets only the PF-specific registers * * This goes directly to the tear-down and rebuild of * the switch, since we need to do all the recovery as * for the Core Reset. */ dev_dbg(&pf->pdev->dev, "PFR requested\n"); i40e_handle_reset_warning(pf); } else if (reset_flags & (1 << __I40E_REINIT_REQUESTED)) { int v; /* Find the VSI(s) that requested a re-init */ dev_info(&pf->pdev->dev, "VSI reinit requested\n"); for (v = 0; v < pf->num_alloc_vsi; v++) { struct i40e_vsi *vsi = pf->vsi[v]; if (vsi != NULL && test_bit(__I40E_REINIT_REQUESTED, &vsi->state)) { i40e_vsi_reinit_locked(pf->vsi[v]); clear_bit(__I40E_REINIT_REQUESTED, &vsi->state); } } /* no further action needed, so return now */ return; } else if (reset_flags & (1 << __I40E_DOWN_REQUESTED)) { int v; /* Find the VSI(s) that needs to be brought down */ dev_info(&pf->pdev->dev, "VSI down requested\n"); for (v = 0; v < pf->num_alloc_vsi; v++) { struct i40e_vsi *vsi = pf->vsi[v]; if (vsi != NULL && test_bit(__I40E_DOWN_REQUESTED, &vsi->state)) { set_bit(__I40E_DOWN, &vsi->state); i40e_down(vsi); clear_bit(__I40E_DOWN_REQUESTED, &vsi->state); } } /* no further action needed, so return now */ return; } else { dev_info(&pf->pdev->dev, "bad reset request 0x%08x\n", reset_flags); return; } } #ifdef CONFIG_I40E_DCB /** * i40e_dcb_need_reconfig - Check if DCB needs reconfig * @pf: board private structure * @old_cfg: current DCB config * @new_cfg: new DCB config **/ bool i40e_dcb_need_reconfig(struct i40e_pf *pf, struct i40e_dcbx_config *old_cfg, struct i40e_dcbx_config *new_cfg) { bool need_reconfig = false; /* Check if ETS configuration has changed */ if (memcmp(&new_cfg->etscfg, &old_cfg->etscfg, sizeof(new_cfg->etscfg))) { /* If Priority Table has changed reconfig is needed */ if (memcmp(&new_cfg->etscfg.prioritytable, &old_cfg->etscfg.prioritytable, sizeof(new_cfg->etscfg.prioritytable))) { need_reconfig = true; dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n"); } if (memcmp(&new_cfg->etscfg.tcbwtable, &old_cfg->etscfg.tcbwtable, sizeof(new_cfg->etscfg.tcbwtable))) dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n"); if (memcmp(&new_cfg->etscfg.tsatable, &old_cfg->etscfg.tsatable, sizeof(new_cfg->etscfg.tsatable))) dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n"); } /* Check if PFC configuration has changed */ if (memcmp(&new_cfg->pfc, &old_cfg->pfc, sizeof(new_cfg->pfc))) { need_reconfig = true; dev_dbg(&pf->pdev->dev, "PFC config change detected.\n"); } /* Check if APP Table has changed */ if (memcmp(&new_cfg->app, &old_cfg->app, sizeof(new_cfg->app))) { need_reconfig = true; dev_dbg(&pf->pdev->dev, "APP Table change detected.\n"); } dev_dbg(&pf->pdev->dev, "%s: need_reconfig=%d\n", __func__, need_reconfig); return need_reconfig; } /** * i40e_handle_lldp_event - Handle LLDP Change MIB event * @pf: board private structure * @e: event info posted on ARQ **/ static int i40e_handle_lldp_event(struct i40e_pf *pf, struct i40e_arq_event_info *e) { struct i40e_aqc_lldp_get_mib *mib = (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw; struct i40e_hw *hw = &pf->hw; struct i40e_dcbx_config *dcbx_cfg = &hw->local_dcbx_config; struct i40e_dcbx_config tmp_dcbx_cfg; bool need_reconfig = false; int ret = 0; u8 type; /* Not DCB capable or capability disabled */ if (!(pf->flags & I40E_FLAG_DCB_CAPABLE)) return ret; /* Ignore if event is not for Nearest Bridge */ type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT) & I40E_AQ_LLDP_BRIDGE_TYPE_MASK); dev_dbg(&pf->pdev->dev, "%s: LLDP event mib bridge type 0x%x\n", __func__, type); if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE) return ret; /* Check MIB Type and return if event for Remote MIB update */ type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK; dev_dbg(&pf->pdev->dev, "%s: LLDP event mib type %s\n", __func__, type ? "remote" : "local"); if (type == I40E_AQ_LLDP_MIB_REMOTE) { /* Update the remote cached instance and return */ ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE, I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE, &hw->remote_dcbx_config); goto exit; } memset(&tmp_dcbx_cfg, 0, sizeof(tmp_dcbx_cfg)); /* Store the old configuration */ tmp_dcbx_cfg = *dcbx_cfg; /* Get updated DCBX data from firmware */ ret = i40e_get_dcb_config(&pf->hw); if (ret) { dev_info(&pf->pdev->dev, "Failed querying DCB configuration data from firmware.\n"); goto exit; } /* No change detected in DCBX configs */ if (!memcmp(&tmp_dcbx_cfg, dcbx_cfg, sizeof(tmp_dcbx_cfg))) { dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n"); goto exit; } need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg, dcbx_cfg); i40e_dcbnl_flush_apps(pf, dcbx_cfg); if (!need_reconfig) goto exit; /* Enable DCB tagging only when more than one TC */ if (i40e_dcb_get_num_tc(dcbx_cfg) > 1) pf->flags |= I40E_FLAG_DCB_ENABLED; else pf->flags &= ~I40E_FLAG_DCB_ENABLED; set_bit(__I40E_PORT_TX_SUSPENDED, &pf->state); /* Reconfiguration needed quiesce all VSIs */ i40e_pf_quiesce_all_vsi(pf); /* Changes in configuration update VEB/VSI */ i40e_dcb_reconfigure(pf); ret = i40e_resume_port_tx(pf); clear_bit(__I40E_PORT_TX_SUSPENDED, &pf->state); /* In case of error no point in resuming VSIs */ if (ret) goto exit; /* Wait for the PF's Tx queues to be disabled */ ret = i40e_pf_wait_txq_disabled(pf); if (!ret) i40e_pf_unquiesce_all_vsi(pf); exit: return ret; } #endif /* CONFIG_I40E_DCB */ /** * i40e_do_reset_safe - Protected reset path for userland calls. * @pf: board private structure * @reset_flags: which reset is requested * **/ void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags) { rtnl_lock(); i40e_do_reset(pf, reset_flags); rtnl_unlock(); } /** * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event * @pf: board private structure * @e: event info posted on ARQ * * Handler for LAN Queue Overflow Event generated by the firmware for PF * and VF queues **/ static void i40e_handle_lan_overflow_event(struct i40e_pf *pf, struct i40e_arq_event_info *e) { struct i40e_aqc_lan_overflow *data = (struct i40e_aqc_lan_overflow *)&e->desc.params.raw; u32 queue = le32_to_cpu(data->prtdcb_rupto); u32 qtx_ctl = le32_to_cpu(data->otx_ctl); struct i40e_hw *hw = &pf->hw; struct i40e_vf *vf; u16 vf_id; dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n", queue, qtx_ctl); /* Queue belongs to VF, find the VF and issue VF reset */ if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK) >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) { vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK) >> I40E_QTX_CTL_VFVM_INDX_SHIFT); vf_id -= hw->func_caps.vf_base_id; vf = &pf->vf[vf_id]; i40e_vc_notify_vf_reset(vf); /* Allow VF to process pending reset notification */ msleep(20); i40e_reset_vf(vf, false); } } /** * i40e_service_event_complete - Finish up the service event * @pf: board private structure **/ static void i40e_service_event_complete(struct i40e_pf *pf) { BUG_ON(!test_bit(__I40E_SERVICE_SCHED, &pf->state)); /* flush memory to make sure state is correct before next watchog */ smp_mb__before_atomic(); clear_bit(__I40E_SERVICE_SCHED, &pf->state); } /** * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters * @pf: board private structure **/ int i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf) { int val, fcnt_prog; val = rd32(&pf->hw, I40E_PFQF_FDSTAT); fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK); return fcnt_prog; } /** * i40e_get_current_fd_count - Get the count of total FD filters programmed * @pf: board private structure **/ int i40e_get_current_fd_count(struct i40e_pf *pf) { int val, fcnt_prog; val = rd32(&pf->hw, I40E_PFQF_FDSTAT); fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) + ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >> I40E_PFQF_FDSTAT_BEST_CNT_SHIFT); return fcnt_prog; } /** * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled * @pf: board private structure **/ void i40e_fdir_check_and_reenable(struct i40e_pf *pf) { u32 fcnt_prog, fcnt_avail; if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state)) return; /* Check if, FD SB or ATR was auto disabled and if there is enough room * to re-enable */ fcnt_prog = i40e_get_cur_guaranteed_fd_count(pf); fcnt_avail = pf->fdir_pf_filter_count; if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) || (pf->fd_add_err == 0) || (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) { if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) && (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) { pf->auto_disable_flags &= ~I40E_FLAG_FD_SB_ENABLED; dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n"); } } /* Wait for some more space to be available to turn on ATR */ if (fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM * 2)) { if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED)) { pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED; dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table now\n"); } } } #define I40E_MIN_FD_FLUSH_INTERVAL 10 /** * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB * @pf: board private structure **/ static void i40e_fdir_flush_and_replay(struct i40e_pf *pf) { int flush_wait_retry = 50; int reg; if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED))) return; if (time_after(jiffies, pf->fd_flush_timestamp + (I40E_MIN_FD_FLUSH_INTERVAL * HZ))) { set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state); pf->fd_flush_timestamp = jiffies; pf->auto_disable_flags |= I40E_FLAG_FD_SB_ENABLED; pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED; /* flush all filters */ wr32(&pf->hw, I40E_PFQF_CTL_1, I40E_PFQF_CTL_1_CLEARFDTABLE_MASK); i40e_flush(&pf->hw); pf->fd_flush_cnt++; pf->fd_add_err = 0; do { /* Check FD flush status every 5-6msec */ usleep_range(5000, 6000); reg = rd32(&pf->hw, I40E_PFQF_CTL_1); if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK)) break; } while (flush_wait_retry--); if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) { dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n"); } else { /* replay sideband filters */ i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]); pf->flags |= I40E_FLAG_FD_ATR_ENABLED; pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED; pf->auto_disable_flags &= ~I40E_FLAG_FD_SB_ENABLED; clear_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state); dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n"); } } } /** * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed * @pf: board private structure **/ int i40e_get_current_atr_cnt(struct i40e_pf *pf) { return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters; } /* We can see up to 256 filter programming desc in transit if the filters are * being applied really fast; before we see the first * filter miss error on Rx queue 0. Accumulating enough error messages before * reacting will make sure we don't cause flush too often. */ #define I40E_MAX_FD_PROGRAM_ERROR 256 /** * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table * @pf: board private structure **/ static void i40e_fdir_reinit_subtask(struct i40e_pf *pf) { /* if interface is down do nothing */ if (test_bit(__I40E_DOWN, &pf->state)) return; if (!(pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED))) return; if ((pf->fd_add_err >= I40E_MAX_FD_PROGRAM_ERROR) && (i40e_get_current_atr_cnt(pf) >= pf->fd_atr_cnt) && (i40e_get_current_atr_cnt(pf) > pf->fdir_pf_filter_count)) i40e_fdir_flush_and_replay(pf); i40e_fdir_check_and_reenable(pf); } /** * i40e_vsi_link_event - notify VSI of a link event * @vsi: vsi to be notified * @link_up: link up or down **/ static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up) { if (!vsi || test_bit(__I40E_DOWN, &vsi->state)) return; switch (vsi->type) { case I40E_VSI_MAIN: #ifdef I40E_FCOE case I40E_VSI_FCOE: #endif if (!vsi->netdev || !vsi->netdev_registered) break; if (link_up) { netif_carrier_on(vsi->netdev); netif_tx_wake_all_queues(vsi->netdev); } else { netif_carrier_off(vsi->netdev); netif_tx_stop_all_queues(vsi->netdev); } break; case I40E_VSI_SRIOV: case I40E_VSI_VMDQ2: case I40E_VSI_CTRL: case I40E_VSI_MIRROR: default: /* there is no notification for other VSIs */ break; } } /** * i40e_veb_link_event - notify elements on the veb of a link event * @veb: veb to be notified * @link_up: link up or down **/ static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up) { struct i40e_pf *pf; int i; if (!veb || !veb->pf) return; pf = veb->pf; /* depth first... */ for (i = 0; i < I40E_MAX_VEB; i++) if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid)) i40e_veb_link_event(pf->veb[i], link_up); /* ... now the local VSIs */ for (i = 0; i < pf->num_alloc_vsi; i++) if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid)) i40e_vsi_link_event(pf->vsi[i], link_up); } /** * i40e_link_event - Update netif_carrier status * @pf: board private structure **/ static void i40e_link_event(struct i40e_pf *pf) { bool new_link, old_link; struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi]; u8 new_link_speed, old_link_speed; /* set this to force the get_link_status call to refresh state */ pf->hw.phy.get_link_info = true; old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP); new_link = i40e_get_link_status(&pf->hw); old_link_speed = pf->hw.phy.link_info_old.link_speed; new_link_speed = pf->hw.phy.link_info.link_speed; if (new_link == old_link && new_link_speed == old_link_speed && (test_bit(__I40E_DOWN, &vsi->state) || new_link == netif_carrier_ok(vsi->netdev))) return; if (!test_bit(__I40E_DOWN, &vsi->state)) i40e_print_link_message(vsi, new_link); /* Notify the base of the switch tree connected to * the link. Floating VEBs are not notified. */ if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) i40e_veb_link_event(pf->veb[pf->lan_veb], new_link); else i40e_vsi_link_event(vsi, new_link); if (pf->vf) i40e_vc_notify_link_state(pf); if (pf->flags & I40E_FLAG_PTP) i40e_ptp_set_increment(pf); } /** * i40e_check_hang_subtask - Check for hung queues and dropped interrupts * @pf: board private structure * * Set the per-queue flags to request a check for stuck queues in the irq * clean functions, then force interrupts to be sure the irq clean is called. **/ static void i40e_check_hang_subtask(struct i40e_pf *pf) { int i, v; /* If we're down or resetting, just bail */ if (test_bit(__I40E_DOWN, &pf->state) || test_bit(__I40E_CONFIG_BUSY, &pf->state)) return; /* for each VSI/netdev * for each Tx queue * set the check flag * for each q_vector * force an interrupt */ for (v = 0; v < pf->num_alloc_vsi; v++) { struct i40e_vsi *vsi = pf->vsi[v]; int armed = 0; if (!pf->vsi[v] || test_bit(__I40E_DOWN, &vsi->state) || (vsi->netdev && !netif_carrier_ok(vsi->netdev))) continue; for (i = 0; i < vsi->num_queue_pairs; i++) { set_check_for_tx_hang(vsi->tx_rings[i]); if (test_bit(__I40E_HANG_CHECK_ARMED, &vsi->tx_rings[i]->state)) armed++; } if (armed) { if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) { wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, (I40E_PFINT_DYN_CTL0_INTENA_MASK | I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK | I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK | I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK)); } else { u16 vec = vsi->base_vector - 1; u32 val = (I40E_PFINT_DYN_CTLN_INTENA_MASK | I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK | I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK | I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK); for (i = 0; i < vsi->num_q_vectors; i++, vec++) wr32(&vsi->back->hw, I40E_PFINT_DYN_CTLN(vec), val); } i40e_flush(&vsi->back->hw); } } } /** * i40e_watchdog_subtask - periodic checks not using event driven response * @pf: board private structure **/ static void i40e_watchdog_subtask(struct i40e_pf *pf) { int i; /* if interface is down do nothing */ if (test_bit(__I40E_DOWN, &pf->state) || test_bit(__I40E_CONFIG_BUSY, &pf->state)) return; /* make sure we don't do these things too often */ if (time_before(jiffies, (pf->service_timer_previous + pf->service_timer_period))) return; pf->service_timer_previous = jiffies; i40e_check_hang_subtask(pf); i40e_link_event(pf); /* Update the stats for active netdevs so the network stack * can look at updated numbers whenever it cares to */ for (i = 0; i < pf->num_alloc_vsi; i++) if (pf->vsi[i] && pf->vsi[i]->netdev) i40e_update_stats(pf->vsi[i]); /* Update the stats for the active switching components */ for (i = 0; i < I40E_MAX_VEB; i++) if (pf->veb[i]) i40e_update_veb_stats(pf->veb[i]); i40e_ptp_rx_hang(pf->vsi[pf->lan_vsi]); } /** * i40e_reset_subtask - Set up for resetting the device and driver * @pf: board private structure **/ static void i40e_reset_subtask(struct i40e_pf *pf) { u32 reset_flags = 0; rtnl_lock(); if (test_bit(__I40E_REINIT_REQUESTED, &pf->state)) { reset_flags |= (1 << __I40E_REINIT_REQUESTED); clear_bit(__I40E_REINIT_REQUESTED, &pf->state); } if (test_bit(__I40E_PF_RESET_REQUESTED, &pf->state)) { reset_flags |= (1 << __I40E_PF_RESET_REQUESTED); clear_bit(__I40E_PF_RESET_REQUESTED, &pf->state); } if (test_bit(__I40E_CORE_RESET_REQUESTED, &pf->state)) { reset_flags |= (1 << __I40E_CORE_RESET_REQUESTED); clear_bit(__I40E_CORE_RESET_REQUESTED, &pf->state); } if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, &pf->state)) { reset_flags |= (1 << __I40E_GLOBAL_RESET_REQUESTED); clear_bit(__I40E_GLOBAL_RESET_REQUESTED, &pf->state); } if (test_bit(__I40E_DOWN_REQUESTED, &pf->state)) { reset_flags |= (1 << __I40E_DOWN_REQUESTED); clear_bit(__I40E_DOWN_REQUESTED, &pf->state); } /* If there's a recovery already waiting, it takes * precedence before starting a new reset sequence. */ if (test_bit(__I40E_RESET_INTR_RECEIVED, &pf->state)) { i40e_handle_reset_warning(pf); goto unlock; } /* If we're already down or resetting, just bail */ if (reset_flags && !test_bit(__I40E_DOWN, &pf->state) && !test_bit(__I40E_CONFIG_BUSY, &pf->state)) i40e_do_reset(pf, reset_flags); unlock: rtnl_unlock(); } /** * i40e_handle_link_event - Handle link event * @pf: board private structure * @e: event info posted on ARQ **/ static void i40e_handle_link_event(struct i40e_pf *pf, struct i40e_arq_event_info *e) { struct i40e_hw *hw = &pf->hw; struct i40e_aqc_get_link_status *status = (struct i40e_aqc_get_link_status *)&e->desc.params.raw; struct i40e_link_status *hw_link_info = &hw->phy.link_info; /* save off old link status information */ memcpy(&pf->hw.phy.link_info_old, hw_link_info, sizeof(pf->hw.phy.link_info_old)); /* Do a new status request to re-enable LSE reporting * and load new status information into the hw struct * This completely ignores any state information * in the ARQ event info, instead choosing to always * issue the AQ update link status command. */ i40e_link_event(pf); /* check for unqualified module, if link is down */ if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) && (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) && (!(status->link_info & I40E_AQ_LINK_UP))) dev_err(&pf->pdev->dev, "The driver failed to link because an unqualified module was detected.\n"); } /** * i40e_clean_adminq_subtask - Clean the AdminQ rings * @pf: board private structure **/ static void i40e_clean_adminq_subtask(struct i40e_pf *pf) { struct i40e_arq_event_info event; struct i40e_hw *hw = &pf->hw; u16 pending, i = 0; i40e_status ret; u16 opcode; u32 oldval; u32 val; /* Do not run clean AQ when PF reset fails */ if (test_bit(__I40E_RESET_FAILED, &pf->state)) return; /* check for error indications */ val = rd32(&pf->hw, pf->hw.aq.arq.len); oldval = val; if (val & I40E_PF_ARQLEN_ARQVFE_MASK) { dev_info(&pf->pdev->dev, "ARQ VF Error detected\n"); val &= ~I40E_PF_ARQLEN_ARQVFE_MASK; } if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) { dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n"); val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK; } if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) { dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n"); val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK; } if (oldval != val) wr32(&pf->hw, pf->hw.aq.arq.len, val); val = rd32(&pf->hw, pf->hw.aq.asq.len); oldval = val; if (val & I40E_PF_ATQLEN_ATQVFE_MASK) { dev_info(&pf->pdev->dev, "ASQ VF Error detected\n"); val &= ~I40E_PF_ATQLEN_ATQVFE_MASK; } if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) { dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n"); val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK; } if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) { dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n"); val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK; } if (oldval != val) wr32(&pf->hw, pf->hw.aq.asq.len, val); event.buf_len = I40E_MAX_AQ_BUF_SIZE; event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL); if (!event.msg_buf) return; do { ret = i40e_clean_arq_element(hw, &event, &pending); if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK) break; else if (ret) { dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret); break; } opcode = le16_to_cpu(event.desc.opcode); switch (opcode) { case i40e_aqc_opc_get_link_status: i40e_handle_link_event(pf, &event); break; case i40e_aqc_opc_send_msg_to_pf: ret = i40e_vc_process_vf_msg(pf, le16_to_cpu(event.desc.retval), le32_to_cpu(event.desc.cookie_high), le32_to_cpu(event.desc.cookie_low), event.msg_buf, event.msg_len); break; case i40e_aqc_opc_lldp_update_mib: dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n"); #ifdef CONFIG_I40E_DCB rtnl_lock(); ret = i40e_handle_lldp_event(pf, &event); rtnl_unlock(); #endif /* CONFIG_I40E_DCB */ break; case i40e_aqc_opc_event_lan_overflow: dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n"); i40e_handle_lan_overflow_event(pf, &event); break; case i40e_aqc_opc_send_msg_to_peer: dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n"); break; default: dev_info(&pf->pdev->dev, "ARQ Error: Unknown event 0x%04x received\n", opcode); break; } } while (pending && (i++ < pf->adminq_work_limit)); clear_bit(__I40E_ADMINQ_EVENT_PENDING, &pf->state); /* re-enable Admin queue interrupt cause */ val = rd32(hw, I40E_PFINT_ICR0_ENA); val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK; wr32(hw, I40E_PFINT_ICR0_ENA, val); i40e_flush(hw); kfree(event.msg_buf); } /** * i40e_verify_eeprom - make sure eeprom is good to use * @pf: board private structure **/ static void i40e_verify_eeprom(struct i40e_pf *pf) { int err; err = i40e_diag_eeprom_test(&pf->hw); if (err) { /* retry in case of garbage read */ err = i40e_diag_eeprom_test(&pf->hw); if (err) { dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n", err); set_bit(__I40E_BAD_EEPROM, &pf->state); } } if (!err && test_bit(__I40E_BAD_EEPROM, &pf->state)) { dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n"); clear_bit(__I40E_BAD_EEPROM, &pf->state); } } /** * i40e_reconstitute_veb - rebuild the VEB and anything connected to it * @veb: pointer to the VEB instance * * This is a recursive function that first builds the attached VSIs then * recurses in to build the next layer of VEB. We track the connections * through our own index numbers because the seid's from the HW could * change across the reset. **/ static int i40e_reconstitute_veb(struct i40e_veb *veb) { struct i40e_vsi *ctl_vsi = NULL; struct i40e_pf *pf = veb->pf; int v, veb_idx; int ret; /* build VSI that owns this VEB, temporarily attached to base VEB */ for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) { if (pf->vsi[v] && pf->vsi[v]->veb_idx == veb->idx && pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) { ctl_vsi = pf->vsi[v]; break; } } if (!ctl_vsi) { dev_info(&pf->pdev->dev, "missing owner VSI for veb_idx %d\n", veb->idx); ret = -ENOENT; goto end_reconstitute; } if (ctl_vsi != pf->vsi[pf->lan_vsi]) ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; ret = i40e_add_vsi(ctl_vsi); if (ret) { dev_info(&pf->pdev->dev, "rebuild of owner VSI failed: %d\n", ret); goto end_reconstitute; } i40e_vsi_reset_stats(ctl_vsi); /* create the VEB in the switch and move the VSI onto the VEB */ ret = i40e_add_veb(veb, ctl_vsi); if (ret) goto end_reconstitute; /* Enable LB mode for the main VSI now that it is on a VEB */ i40e_enable_pf_switch_lb(pf); /* create the remaining VSIs attached to this VEB */ for (v = 0; v < pf->num_alloc_vsi; v++) { if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi) continue; if (pf->vsi[v]->veb_idx == veb->idx) { struct i40e_vsi *vsi = pf->vsi[v]; vsi->uplink_seid = veb->seid; ret = i40e_add_vsi(vsi); if (ret) { dev_info(&pf->pdev->dev, "rebuild of vsi_idx %d failed: %d\n", v, ret); goto end_reconstitute; } i40e_vsi_reset_stats(vsi); } } /* create any VEBs attached to this VEB - RECURSION */ for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) { pf->veb[veb_idx]->uplink_seid = veb->seid; ret = i40e_reconstitute_veb(pf->veb[veb_idx]); if (ret) break; } } end_reconstitute: return ret; } /** * i40e_get_capabilities - get info about the HW * @pf: the PF struct **/ static int i40e_get_capabilities(struct i40e_pf *pf) { struct i40e_aqc_list_capabilities_element_resp *cap_buf; u16 data_size; int buf_len; int err; buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp); do { cap_buf = kzalloc(buf_len, GFP_KERNEL); if (!cap_buf) return -ENOMEM; /* this loads the data into the hw struct for us */ err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len, &data_size, i40e_aqc_opc_list_func_capabilities, NULL); /* data loaded, buffer no longer needed */ kfree(cap_buf); if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) { /* retry with a larger buffer */ buf_len = data_size; } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) { dev_info(&pf->pdev->dev, "capability discovery failed: aq=%d\n", pf->hw.aq.asq_last_status); return -ENODEV; } } while (err); if (((pf->hw.aq.fw_maj_ver == 2) && (pf->hw.aq.fw_min_ver < 22)) || (pf->hw.aq.fw_maj_ver < 2)) { pf->hw.func_caps.num_msix_vectors++; pf->hw.func_caps.num_msix_vectors_vf++; } if (pf->hw.debug_mask & I40E_DEBUG_USER) dev_info(&pf->pdev->dev, "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n", pf->hw.pf_id, pf->hw.func_caps.num_vfs, pf->hw.func_caps.num_msix_vectors, pf->hw.func_caps.num_msix_vectors_vf, pf->hw.func_caps.fd_filters_guaranteed, pf->hw.func_caps.fd_filters_best_effort, pf->hw.func_caps.num_tx_qp, pf->hw.func_caps.num_vsis); #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \ + pf->hw.func_caps.num_vfs) if (pf->hw.revision_id == 0 && (DEF_NUM_VSI > pf->hw.func_caps.num_vsis)) { dev_info(&pf->pdev->dev, "got num_vsis %d, setting num_vsis to %d\n", pf->hw.func_caps.num_vsis, DEF_NUM_VSI); pf->hw.func_caps.num_vsis = DEF_NUM_VSI; } return 0; } static int i40e_vsi_clear(struct i40e_vsi *vsi); /** * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband * @pf: board private structure **/ static void i40e_fdir_sb_setup(struct i40e_pf *pf) { struct i40e_vsi *vsi; int i; /* quick workaround for an NVM issue that leaves a critical register * uninitialized */ if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) { static const u32 hkey[] = { 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36, 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb, 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21, 0x95b3a76d}; for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++) wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]); } if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) return; /* find existing VSI and see if it needs configuring */ vsi = NULL; for (i = 0; i < pf->num_alloc_vsi; i++) { if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { vsi = pf->vsi[i]; break; } } /* create a new VSI if none exists */ if (!vsi) { vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR, pf->vsi[pf->lan_vsi]->seid, 0); if (!vsi) { dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n"); pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; return; } } i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring); } /** * i40e_fdir_teardown - release the Flow Director resources * @pf: board private structure **/ static void i40e_fdir_teardown(struct i40e_pf *pf) { int i; i40e_fdir_filter_exit(pf); for (i = 0; i < pf->num_alloc_vsi; i++) { if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { i40e_vsi_release(pf->vsi[i]); break; } } } /** * i40e_prep_for_reset - prep for the core to reset * @pf: board private structure * * Close up the VFs and other things in prep for pf Reset. **/ static void i40e_prep_for_reset(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; i40e_status ret = 0; u32 v; clear_bit(__I40E_RESET_INTR_RECEIVED, &pf->state); if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state)) return; dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n"); /* quiesce the VSIs and their queues that are not already DOWN */ i40e_pf_quiesce_all_vsi(pf); for (v = 0; v < pf->num_alloc_vsi; v++) { if (pf->vsi[v]) pf->vsi[v]->seid = 0; } i40e_shutdown_adminq(&pf->hw); /* call shutdown HMC */ if (hw->hmc.hmc_obj) { ret = i40e_shutdown_lan_hmc(hw); if (ret) dev_warn(&pf->pdev->dev, "shutdown_lan_hmc failed: %d\n", ret); } } /** * i40e_send_version - update firmware with driver version * @pf: PF struct */ static void i40e_send_version(struct i40e_pf *pf) { struct i40e_driver_version dv; dv.major_version = DRV_VERSION_MAJOR; dv.minor_version = DRV_VERSION_MINOR; dv.build_version = DRV_VERSION_BUILD; dv.subbuild_version = 0; strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string)); i40e_aq_send_driver_version(&pf->hw, &dv, NULL); } /** * i40e_reset_and_rebuild - reset and rebuild using a saved config * @pf: board private structure * @reinit: if the Main VSI needs to re-initialized. **/ static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit) { struct i40e_hw *hw = &pf->hw; u8 set_fc_aq_fail = 0; i40e_status ret; u32 v; /* Now we wait for GRST to settle out. * We don't have to delete the VEBs or VSIs from the hw switch * because the reset will make them disappear. */ ret = i40e_pf_reset(hw); if (ret) { dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret); set_bit(__I40E_RESET_FAILED, &pf->state); goto clear_recovery; } pf->pfr_count++; if (test_bit(__I40E_DOWN, &pf->state)) goto clear_recovery; dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n"); /* rebuild the basics for the AdminQ, HMC, and initial HW switch */ ret = i40e_init_adminq(&pf->hw); if (ret) { dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, %d\n", ret); goto clear_recovery; } /* re-verify the eeprom if we just had an EMP reset */ if (test_bit(__I40E_EMP_RESET_REQUESTED, &pf->state)) { clear_bit(__I40E_EMP_RESET_REQUESTED, &pf->state); i40e_verify_eeprom(pf); } i40e_clear_pxe_mode(hw); ret = i40e_get_capabilities(pf); if (ret) { dev_info(&pf->pdev->dev, "i40e_get_capabilities failed, %d\n", ret); goto end_core_reset; } ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, hw->func_caps.num_rx_qp, pf->fcoe_hmc_cntx_num, pf->fcoe_hmc_filt_num); if (ret) { dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret); goto end_core_reset; } ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); if (ret) { dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret); goto end_core_reset; } #ifdef CONFIG_I40E_DCB ret = i40e_init_pf_dcb(pf); if (ret) { dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret); pf->flags &= ~I40E_FLAG_DCB_CAPABLE; /* Continue without DCB enabled */ } #endif /* CONFIG_I40E_DCB */ #ifdef I40E_FCOE ret = i40e_init_pf_fcoe(pf); if (ret) dev_info(&pf->pdev->dev, "init_pf_fcoe failed: %d\n", ret); #endif /* do basic switch setup */ ret = i40e_setup_pf_switch(pf, reinit); if (ret) goto end_core_reset; /* driver is only interested in link up/down and module qualification * reports from firmware */ ret = i40e_aq_set_phy_int_mask(&pf->hw, I40E_AQ_EVENT_LINK_UPDOWN | I40E_AQ_EVENT_MODULE_QUAL_FAIL, NULL); if (ret) dev_info(&pf->pdev->dev, "set phy mask fail, aq_err %d\n", ret); /* make sure our flow control settings are restored */ ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true); if (ret) dev_info(&pf->pdev->dev, "set fc fail, aq_err %d\n", ret); /* Rebuild the VSIs and VEBs that existed before reset. * They are still in our local switch element arrays, so only * need to rebuild the switch model in the HW. * * If there were VEBs but the reconstitution failed, we'll try * try to recover minimal use by getting the basic PF VSI working. */ if (pf->vsi[pf->lan_vsi]->uplink_seid != pf->mac_seid) { dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n"); /* find the one VEB connected to the MAC, and find orphans */ for (v = 0; v < I40E_MAX_VEB; v++) { if (!pf->veb[v]) continue; if (pf->veb[v]->uplink_seid == pf->mac_seid || pf->veb[v]->uplink_seid == 0) { ret = i40e_reconstitute_veb(pf->veb[v]); if (!ret) continue; /* If Main VEB failed, we're in deep doodoo, * so give up rebuilding the switch and set up * for minimal rebuild of PF VSI. * If orphan failed, we'll report the error * but try to keep going. */ if (pf->veb[v]->uplink_seid == pf->mac_seid) { dev_info(&pf->pdev->dev, "rebuild of switch failed: %d, will try to set up simple PF connection\n", ret); pf->vsi[pf->lan_vsi]->uplink_seid = pf->mac_seid; break; } else if (pf->veb[v]->uplink_seid == 0) { dev_info(&pf->pdev->dev, "rebuild of orphan VEB failed: %d\n", ret); } } } } if (pf->vsi[pf->lan_vsi]->uplink_seid == pf->mac_seid) { dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n"); /* no VEB, so rebuild only the Main VSI */ ret = i40e_add_vsi(pf->vsi[pf->lan_vsi]); if (ret) { dev_info(&pf->pdev->dev, "rebuild of Main VSI failed: %d\n", ret); goto end_core_reset; } } msleep(75); ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); if (ret) { dev_info(&pf->pdev->dev, "link restart failed, aq_err=%d\n", pf->hw.aq.asq_last_status); } /* reinit the misc interrupt */ if (pf->flags & I40E_FLAG_MSIX_ENABLED) ret = i40e_setup_misc_vector(pf); /* restart the VSIs that were rebuilt and running before the reset */ i40e_pf_unquiesce_all_vsi(pf); if (pf->num_alloc_vfs) { for (v = 0; v < pf->num_alloc_vfs; v++) i40e_reset_vf(&pf->vf[v], true); } /* tell the firmware that we're starting */ i40e_send_version(pf); end_core_reset: clear_bit(__I40E_RESET_FAILED, &pf->state); clear_recovery: clear_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state); } /** * i40e_handle_reset_warning - prep for the pf to reset, reset and rebuild * @pf: board private structure * * Close up the VFs and other things in prep for a Core Reset, * then get ready to rebuild the world. **/ static void i40e_handle_reset_warning(struct i40e_pf *pf) { i40e_prep_for_reset(pf); i40e_reset_and_rebuild(pf, false); } /** * i40e_handle_mdd_event * @pf: pointer to the pf structure * * Called from the MDD irq handler to identify possibly malicious vfs **/ static void i40e_handle_mdd_event(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; bool mdd_detected = false; bool pf_mdd_detected = false; struct i40e_vf *vf; u32 reg; int i; if (!test_bit(__I40E_MDD_EVENT_PENDING, &pf->state)) return; /* find what triggered the MDD event */ reg = rd32(hw, I40E_GL_MDET_TX); if (reg & I40E_GL_MDET_TX_VALID_MASK) { u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >> I40E_GL_MDET_TX_PF_NUM_SHIFT; u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >> I40E_GL_MDET_TX_VF_NUM_SHIFT; u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >> I40E_GL_MDET_TX_EVENT_SHIFT; u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >> I40E_GL_MDET_TX_QUEUE_SHIFT) - pf->hw.func_caps.base_queue; if (netif_msg_tx_err(pf)) dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d pf number 0x%02x vf number 0x%02x\n", event, queue, pf_num, vf_num); wr32(hw, I40E_GL_MDET_TX, 0xffffffff); mdd_detected = true; } reg = rd32(hw, I40E_GL_MDET_RX); if (reg & I40E_GL_MDET_RX_VALID_MASK) { u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >> I40E_GL_MDET_RX_FUNCTION_SHIFT; u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >> I40E_GL_MDET_RX_EVENT_SHIFT; u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >> I40E_GL_MDET_RX_QUEUE_SHIFT) - pf->hw.func_caps.base_queue; if (netif_msg_rx_err(pf)) dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n", event, queue, func); wr32(hw, I40E_GL_MDET_RX, 0xffffffff); mdd_detected = true; } if (mdd_detected) { reg = rd32(hw, I40E_PF_MDET_TX); if (reg & I40E_PF_MDET_TX_VALID_MASK) { wr32(hw, I40E_PF_MDET_TX, 0xFFFF); dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n"); pf_mdd_detected = true; } reg = rd32(hw, I40E_PF_MDET_RX); if (reg & I40E_PF_MDET_RX_VALID_MASK) { wr32(hw, I40E_PF_MDET_RX, 0xFFFF); dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n"); pf_mdd_detected = true; } /* Queue belongs to the PF, initiate a reset */ if (pf_mdd_detected) { set_bit(__I40E_PF_RESET_REQUESTED, &pf->state); i40e_service_event_schedule(pf); } } /* see if one of the VFs needs its hand slapped */ for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) { vf = &(pf->vf[i]); reg = rd32(hw, I40E_VP_MDET_TX(i)); if (reg & I40E_VP_MDET_TX_VALID_MASK) { wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF); vf->num_mdd_events++; dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n", i); } reg = rd32(hw, I40E_VP_MDET_RX(i)); if (reg & I40E_VP_MDET_RX_VALID_MASK) { wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF); vf->num_mdd_events++; dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n", i); } if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) { dev_info(&pf->pdev->dev, "Too many MDD events on VF %d, disabled\n", i); dev_info(&pf->pdev->dev, "Use PF Control I/F to re-enable the VF\n"); set_bit(I40E_VF_STAT_DISABLED, &vf->vf_states); } } /* re-enable mdd interrupt cause */ clear_bit(__I40E_MDD_EVENT_PENDING, &pf->state); reg = rd32(hw, I40E_PFINT_ICR0_ENA); reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK; wr32(hw, I40E_PFINT_ICR0_ENA, reg); i40e_flush(hw); } #ifdef CONFIG_I40E_VXLAN /** * i40e_sync_vxlan_filters_subtask - Sync the VSI filter list with HW * @pf: board private structure **/ static void i40e_sync_vxlan_filters_subtask(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; i40e_status ret; u8 filter_index; __be16 port; int i; if (!(pf->flags & I40E_FLAG_VXLAN_FILTER_SYNC)) return; pf->flags &= ~I40E_FLAG_VXLAN_FILTER_SYNC; for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { if (pf->pending_vxlan_bitmap & (1 << i)) { pf->pending_vxlan_bitmap &= ~(1 << i); port = pf->vxlan_ports[i]; ret = port ? i40e_aq_add_udp_tunnel(hw, ntohs(port), I40E_AQC_TUNNEL_TYPE_VXLAN, &filter_index, NULL) : i40e_aq_del_udp_tunnel(hw, i, NULL); if (ret) { dev_info(&pf->pdev->dev, "Failed to execute AQ command for %s port %d with index %d\n", port ? "adding" : "deleting", ntohs(port), port ? i : i); pf->vxlan_ports[i] = 0; } else { dev_info(&pf->pdev->dev, "%s port %d with AQ command with index %d\n", port ? "Added" : "Deleted", ntohs(port), port ? i : filter_index); } } } } #endif /** * i40e_service_task - Run the driver's async subtasks * @work: pointer to work_struct containing our data **/ static void i40e_service_task(struct work_struct *work) { struct i40e_pf *pf = container_of(work, struct i40e_pf, service_task); unsigned long start_time = jiffies; /* don't bother with service tasks if a reset is in progress */ if (test_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state)) { i40e_service_event_complete(pf); return; } i40e_reset_subtask(pf); i40e_handle_mdd_event(pf); i40e_vc_process_vflr_event(pf); i40e_watchdog_subtask(pf); i40e_fdir_reinit_subtask(pf); i40e_sync_filters_subtask(pf); #ifdef CONFIG_I40E_VXLAN i40e_sync_vxlan_filters_subtask(pf); #endif i40e_clean_adminq_subtask(pf); i40e_service_event_complete(pf); /* If the tasks have taken longer than one timer cycle or there * is more work to be done, reschedule the service task now * rather than wait for the timer to tick again. */ if (time_after(jiffies, (start_time + pf->service_timer_period)) || test_bit(__I40E_ADMINQ_EVENT_PENDING, &pf->state) || test_bit(__I40E_MDD_EVENT_PENDING, &pf->state) || test_bit(__I40E_VFLR_EVENT_PENDING, &pf->state)) i40e_service_event_schedule(pf); } /** * i40e_service_timer - timer callback * @data: pointer to PF struct **/ static void i40e_service_timer(unsigned long data) { struct i40e_pf *pf = (struct i40e_pf *)data; mod_timer(&pf->service_timer, round_jiffies(jiffies + pf->service_timer_period)); i40e_service_event_schedule(pf); } /** * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI * @vsi: the VSI being configured **/ static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; switch (vsi->type) { case I40E_VSI_MAIN: vsi->alloc_queue_pairs = pf->num_lan_qps; vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, I40E_REQ_DESCRIPTOR_MULTIPLE); if (pf->flags & I40E_FLAG_MSIX_ENABLED) vsi->num_q_vectors = pf->num_lan_msix; else vsi->num_q_vectors = 1; break; case I40E_VSI_FDIR: vsi->alloc_queue_pairs = 1; vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT, I40E_REQ_DESCRIPTOR_MULTIPLE); vsi->num_q_vectors = 1; break; case I40E_VSI_VMDQ2: vsi->alloc_queue_pairs = pf->num_vmdq_qps; vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, I40E_REQ_DESCRIPTOR_MULTIPLE); vsi->num_q_vectors = pf->num_vmdq_msix; break; case I40E_VSI_SRIOV: vsi->alloc_queue_pairs = pf->num_vf_qps; vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, I40E_REQ_DESCRIPTOR_MULTIPLE); break; #ifdef I40E_FCOE case I40E_VSI_FCOE: vsi->alloc_queue_pairs = pf->num_fcoe_qps; vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS, I40E_REQ_DESCRIPTOR_MULTIPLE); vsi->num_q_vectors = pf->num_fcoe_msix; break; #endif /* I40E_FCOE */ default: WARN_ON(1); return -ENODATA; } return 0; } /** * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi * @type: VSI pointer * @alloc_qvectors: a bool to specify if q_vectors need to be allocated. * * On error: returns error code (negative) * On success: returns 0 **/ static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors) { int size; int ret = 0; /* allocate memory for both Tx and Rx ring pointers */ size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs * 2; vsi->tx_rings = kzalloc(size, GFP_KERNEL); if (!vsi->tx_rings) return -ENOMEM; vsi->rx_rings = &vsi->tx_rings[vsi->alloc_queue_pairs]; if (alloc_qvectors) { /* allocate memory for q_vector pointers */ size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors; vsi->q_vectors = kzalloc(size, GFP_KERNEL); if (!vsi->q_vectors) { ret = -ENOMEM; goto err_vectors; } } return ret; err_vectors: kfree(vsi->tx_rings); return ret; } /** * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF * @pf: board private structure * @type: type of VSI * * On error: returns error code (negative) * On success: returns vsi index in PF (positive) **/ static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type) { int ret = -ENODEV; struct i40e_vsi *vsi; int vsi_idx; int i; /* Need to protect the allocation of the VSIs at the PF level */ mutex_lock(&pf->switch_mutex); /* VSI list may be fragmented if VSI creation/destruction has * been happening. We can afford to do a quick scan to look * for any free VSIs in the list. * * find next empty vsi slot, looping back around if necessary */ i = pf->next_vsi; while (i < pf->num_alloc_vsi && pf->vsi[i]) i++; if (i >= pf->num_alloc_vsi) { i = 0; while (i < pf->next_vsi && pf->vsi[i]) i++; } if (i < pf->num_alloc_vsi && !pf->vsi[i]) { vsi_idx = i; /* Found one! */ } else { ret = -ENODEV; goto unlock_pf; /* out of VSI slots! */ } pf->next_vsi = ++i; vsi = kzalloc(sizeof(*vsi), GFP_KERNEL); if (!vsi) { ret = -ENOMEM; goto unlock_pf; } vsi->type = type; vsi->back = pf; set_bit(__I40E_DOWN, &vsi->state); vsi->flags = 0; vsi->idx = vsi_idx; vsi->rx_itr_setting = pf->rx_itr_default; vsi->tx_itr_setting = pf->tx_itr_default; vsi->netdev_registered = false; vsi->work_limit = I40E_DEFAULT_IRQ_WORK; INIT_LIST_HEAD(&vsi->mac_filter_list); vsi->irqs_ready = false; ret = i40e_set_num_rings_in_vsi(vsi); if (ret) goto err_rings; ret = i40e_vsi_alloc_arrays(vsi, true); if (ret) goto err_rings; /* Setup default MSIX irq handler for VSI */ i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings); pf->vsi[vsi_idx] = vsi; ret = vsi_idx; goto unlock_pf; err_rings: pf->next_vsi = i - 1; kfree(vsi); unlock_pf: mutex_unlock(&pf->switch_mutex); return ret; } /** * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI * @type: VSI pointer * @free_qvectors: a bool to specify if q_vectors need to be freed. * * On error: returns error code (negative) * On success: returns 0 **/ static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors) { /* free the ring and vector containers */ if (free_qvectors) { kfree(vsi->q_vectors); vsi->q_vectors = NULL; } kfree(vsi->tx_rings); vsi->tx_rings = NULL; vsi->rx_rings = NULL; } /** * i40e_vsi_clear - Deallocate the VSI provided * @vsi: the VSI being un-configured **/ static int i40e_vsi_clear(struct i40e_vsi *vsi) { struct i40e_pf *pf; if (!vsi) return 0; if (!vsi->back) goto free_vsi; pf = vsi->back; mutex_lock(&pf->switch_mutex); if (!pf->vsi[vsi->idx]) { dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](%p,type %d)\n", vsi->idx, vsi->idx, vsi, vsi->type); goto unlock_vsi; } if (pf->vsi[vsi->idx] != vsi) { dev_err(&pf->pdev->dev, "pf->vsi[%d](%p, type %d) != vsi[%d](%p,type %d): no free!\n", pf->vsi[vsi->idx]->idx, pf->vsi[vsi->idx], pf->vsi[vsi->idx]->type, vsi->idx, vsi, vsi->type); goto unlock_vsi; } /* updates the pf for this cleared vsi */ i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx); i40e_vsi_free_arrays(vsi, true); pf->vsi[vsi->idx] = NULL; if (vsi->idx < pf->next_vsi) pf->next_vsi = vsi->idx; unlock_vsi: mutex_unlock(&pf->switch_mutex); free_vsi: kfree(vsi); return 0; } /** * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI * @vsi: the VSI being cleaned **/ static void i40e_vsi_clear_rings(struct i40e_vsi *vsi) { int i; if (vsi->tx_rings && vsi->tx_rings[0]) { for (i = 0; i < vsi->alloc_queue_pairs; i++) { kfree_rcu(vsi->tx_rings[i], rcu); vsi->tx_rings[i] = NULL; vsi->rx_rings[i] = NULL; } } } /** * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI * @vsi: the VSI being configured **/ static int i40e_alloc_rings(struct i40e_vsi *vsi) { struct i40e_ring *tx_ring, *rx_ring; struct i40e_pf *pf = vsi->back; int i; /* Set basic values in the rings to be used later during open() */ for (i = 0; i < vsi->alloc_queue_pairs; i++) { /* allocate space for both Tx and Rx in one shot */ tx_ring = kzalloc(sizeof(struct i40e_ring) * 2, GFP_KERNEL); if (!tx_ring) goto err_out; tx_ring->queue_index = i; tx_ring->reg_idx = vsi->base_queue + i; tx_ring->ring_active = false; tx_ring->vsi = vsi; tx_ring->netdev = vsi->netdev; tx_ring->dev = &pf->pdev->dev; tx_ring->count = vsi->num_desc; tx_ring->size = 0; tx_ring->dcb_tc = 0; vsi->tx_rings[i] = tx_ring; rx_ring = &tx_ring[1]; rx_ring->queue_index = i; rx_ring->reg_idx = vsi->base_queue + i; rx_ring->ring_active = false; rx_ring->vsi = vsi; rx_ring->netdev = vsi->netdev; rx_ring->dev = &pf->pdev->dev; rx_ring->count = vsi->num_desc; rx_ring->size = 0; rx_ring->dcb_tc = 0; if (pf->flags & I40E_FLAG_16BYTE_RX_DESC_ENABLED) set_ring_16byte_desc_enabled(rx_ring); else clear_ring_16byte_desc_enabled(rx_ring); vsi->rx_rings[i] = rx_ring; } return 0; err_out: i40e_vsi_clear_rings(vsi); return -ENOMEM; } /** * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel * @pf: board private structure * @vectors: the number of MSI-X vectors to request * * Returns the number of vectors reserved, or error **/ static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors) { vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries, I40E_MIN_MSIX, vectors); if (vectors < 0) { dev_info(&pf->pdev->dev, "MSI-X vector reservation failed: %d\n", vectors); vectors = 0; } return vectors; } /** * i40e_init_msix - Setup the MSIX capability * @pf: board private structure * * Work with the OS to set up the MSIX vectors needed. * * Returns 0 on success, negative on failure **/ static int i40e_init_msix(struct i40e_pf *pf) { i40e_status err = 0; struct i40e_hw *hw = &pf->hw; int other_vecs = 0; int v_budget, i; int vec; if (!(pf->flags & I40E_FLAG_MSIX_ENABLED)) return -ENODEV; /* The number of vectors we'll request will be comprised of: * - Add 1 for "other" cause for Admin Queue events, etc. * - The number of LAN queue pairs * - Queues being used for RSS. * We don't need as many as max_rss_size vectors. * use rss_size instead in the calculation since that * is governed by number of cpus in the system. * - assumes symmetric Tx/Rx pairing * - The number of VMDq pairs #ifdef I40E_FCOE * - The number of FCOE qps. #endif * Once we count this up, try the request. * * If we can't get what we want, we'll simplify to nearly nothing * and try again. If that still fails, we punt. */ pf->num_lan_msix = pf->num_lan_qps - (pf->rss_size_max - pf->rss_size); pf->num_vmdq_msix = pf->num_vmdq_qps; other_vecs = 1; other_vecs += (pf->num_vmdq_vsis * pf->num_vmdq_msix); if (pf->flags & I40E_FLAG_FD_SB_ENABLED) other_vecs++; /* Scale down if necessary, and the rings will share vectors */ pf->num_lan_msix = min_t(int, pf->num_lan_msix, (hw->func_caps.num_msix_vectors - other_vecs)); v_budget = pf->num_lan_msix + other_vecs; #ifdef I40E_FCOE if (pf->flags & I40E_FLAG_FCOE_ENABLED) { pf->num_fcoe_msix = pf->num_fcoe_qps; v_budget += pf->num_fcoe_msix; } #endif pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), GFP_KERNEL); if (!pf->msix_entries) return -ENOMEM; for (i = 0; i < v_budget; i++) pf->msix_entries[i].entry = i; vec = i40e_reserve_msix_vectors(pf, v_budget); if (vec != v_budget) { /* If we have limited resources, we will start with no vectors * for the special features and then allocate vectors to some * of these features based on the policy and at the end disable * the features that did not get any vectors. */ #ifdef I40E_FCOE pf->num_fcoe_qps = 0; pf->num_fcoe_msix = 0; #endif pf->num_vmdq_msix = 0; } if (vec < I40E_MIN_MSIX) { pf->flags &= ~I40E_FLAG_MSIX_ENABLED; kfree(pf->msix_entries); pf->msix_entries = NULL; return -ENODEV; } else if (vec == I40E_MIN_MSIX) { /* Adjust for minimal MSIX use */ pf->num_vmdq_vsis = 0; pf->num_vmdq_qps = 0; pf->num_lan_qps = 1; pf->num_lan_msix = 1; } else if (vec != v_budget) { /* reserve the misc vector */ vec--; /* Scale vector usage down */ pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */ pf->num_vmdq_vsis = 1; /* partition out the remaining vectors */ switch (vec) { case 2: pf->num_lan_msix = 1; break; case 3: #ifdef I40E_FCOE /* give one vector to FCoE */ if (pf->flags & I40E_FLAG_FCOE_ENABLED) { pf->num_lan_msix = 1; pf->num_fcoe_msix = 1; } #else pf->num_lan_msix = 2; #endif break; default: #ifdef I40E_FCOE /* give one vector to FCoE */ if (pf->flags & I40E_FLAG_FCOE_ENABLED) { pf->num_fcoe_msix = 1; vec--; } #endif pf->num_lan_msix = min_t(int, (vec / 2), pf->num_lan_qps); pf->num_vmdq_vsis = min_t(int, (vec - pf->num_lan_msix), I40E_DEFAULT_NUM_VMDQ_VSI); break; } } if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && (pf->num_vmdq_msix == 0)) { dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n"); pf->flags &= ~I40E_FLAG_VMDQ_ENABLED; } #ifdef I40E_FCOE if ((pf->flags & I40E_FLAG_FCOE_ENABLED) && (pf->num_fcoe_msix == 0)) { dev_info(&pf->pdev->dev, "FCOE disabled, not enough MSI-X vectors\n"); pf->flags &= ~I40E_FLAG_FCOE_ENABLED; } #endif return err; } /** * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector * @vsi: the VSI being configured * @v_idx: index of the vector in the vsi struct * * We allocate one q_vector. If allocation fails we return -ENOMEM. **/ static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx) { struct i40e_q_vector *q_vector; /* allocate q_vector */ q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL); if (!q_vector) return -ENOMEM; q_vector->vsi = vsi; q_vector->v_idx = v_idx; cpumask_set_cpu(v_idx, &q_vector->affinity_mask); if (vsi->netdev) netif_napi_add(vsi->netdev, &q_vector->napi, i40e_napi_poll, NAPI_POLL_WEIGHT); q_vector->rx.latency_range = I40E_LOW_LATENCY; q_vector->tx.latency_range = I40E_LOW_LATENCY; /* tie q_vector and vsi together */ vsi->q_vectors[v_idx] = q_vector; return 0; } /** * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors * @vsi: the VSI being configured * * We allocate one q_vector per queue interrupt. If allocation fails we * return -ENOMEM. **/ static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; int v_idx, num_q_vectors; int err; /* if not MSIX, give the one vector only to the LAN VSI */ if (pf->flags & I40E_FLAG_MSIX_ENABLED) num_q_vectors = vsi->num_q_vectors; else if (vsi == pf->vsi[pf->lan_vsi]) num_q_vectors = 1; else return -EINVAL; for (v_idx = 0; v_idx < num_q_vectors; v_idx++) { err = i40e_vsi_alloc_q_vector(vsi, v_idx); if (err) goto err_out; } return 0; err_out: while (v_idx--) i40e_free_q_vector(vsi, v_idx); return err; } /** * i40e_init_interrupt_scheme - Determine proper interrupt scheme * @pf: board private structure to initialize **/ static void i40e_init_interrupt_scheme(struct i40e_pf *pf) { int err = 0; if (pf->flags & I40E_FLAG_MSIX_ENABLED) { err = i40e_init_msix(pf); if (err) { pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | #ifdef I40E_FCOE I40E_FLAG_FCOE_ENABLED | #endif I40E_FLAG_RSS_ENABLED | I40E_FLAG_DCB_CAPABLE | I40E_FLAG_SRIOV_ENABLED | I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED | I40E_FLAG_VMDQ_ENABLED); /* rework the queue expectations without MSIX */ i40e_determine_queue_usage(pf); } } if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) && (pf->flags & I40E_FLAG_MSI_ENABLED)) { dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n"); err = pci_enable_msi(pf->pdev); if (err) { dev_info(&pf->pdev->dev, "MSI init failed - %d\n", err); pf->flags &= ~I40E_FLAG_MSI_ENABLED; } } if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED))) dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n"); /* track first vector for misc interrupts */ err = i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT-1); } /** * i40e_setup_misc_vector - Setup the misc vector to handle non queue events * @pf: board private structure * * This sets up the handler for MSIX 0, which is used to manage the * non-queue interrupts, e.g. AdminQ and errors. This is not used * when in MSI or Legacy interrupt mode. **/ static int i40e_setup_misc_vector(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; int err = 0; /* Only request the irq if this is the first time through, and * not when we're rebuilding after a Reset */ if (!test_bit(__I40E_RESET_RECOVERY_PENDING, &pf->state)) { err = request_irq(pf->msix_entries[0].vector, i40e_intr, 0, pf->int_name, pf); if (err) { dev_info(&pf->pdev->dev, "request_irq for %s failed: %d\n", pf->int_name, err); return -EFAULT; } } i40e_enable_misc_int_causes(pf); /* associate no queues to the misc vector */ wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST); wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K); i40e_flush(hw); i40e_irq_dynamic_enable_icr0(pf); return err; } /** * i40e_config_rss - Prepare for RSS if used * @pf: board private structure **/ static int i40e_config_rss(struct i40e_pf *pf) { u32 rss_key[I40E_PFQF_HKEY_MAX_INDEX + 1]; struct i40e_hw *hw = &pf->hw; u32 lut = 0; int i, j; u64 hena; u32 reg_val; netdev_rss_key_fill(rss_key, sizeof(rss_key)); for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++) wr32(hw, I40E_PFQF_HKEY(i), rss_key[i]); /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */ hena = (u64)rd32(hw, I40E_PFQF_HENA(0)) | ((u64)rd32(hw, I40E_PFQF_HENA(1)) << 32); hena |= I40E_DEFAULT_RSS_HENA; wr32(hw, I40E_PFQF_HENA(0), (u32)hena); wr32(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32)); /* Check capability and Set table size and register per hw expectation*/ reg_val = rd32(hw, I40E_PFQF_CTL_0); if (hw->func_caps.rss_table_size == 512) { reg_val |= I40E_PFQF_CTL_0_HASHLUTSIZE_512; pf->rss_table_size = 512; } else { pf->rss_table_size = 128; reg_val &= ~I40E_PFQF_CTL_0_HASHLUTSIZE_512; } wr32(hw, I40E_PFQF_CTL_0, reg_val); /* Populate the LUT with max no. of queues in round robin fashion */ for (i = 0, j = 0; i < pf->rss_table_size; i++, j++) { /* The assumption is that lan qp count will be the highest * qp count for any PF VSI that needs RSS. * If multiple VSIs need RSS support, all the qp counts * for those VSIs should be a power of 2 for RSS to work. * If LAN VSI is the only consumer for RSS then this requirement * is not necessary. */ if (j == pf->rss_size) j = 0; /* lut = 4-byte sliding window of 4 lut entries */ lut = (lut << 8) | (j & ((0x1 << pf->hw.func_caps.rss_table_entry_width) - 1)); /* On i = 3, we have 4 entries in lut; write to the register */ if ((i & 3) == 3) wr32(hw, I40E_PFQF_HLUT(i >> 2), lut); } i40e_flush(hw); return 0; } /** * i40e_reconfig_rss_queues - change number of queues for rss and rebuild * @pf: board private structure * @queue_count: the requested queue count for rss. * * returns 0 if rss is not enabled, if enabled returns the final rss queue * count which may be different from the requested queue count. **/ int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count) { if (!(pf->flags & I40E_FLAG_RSS_ENABLED)) return 0; queue_count = min_t(int, queue_count, pf->rss_size_max); if (queue_count != pf->rss_size) { i40e_prep_for_reset(pf); pf->rss_size = queue_count; i40e_reset_and_rebuild(pf, true); i40e_config_rss(pf); } dev_info(&pf->pdev->dev, "RSS count: %d\n", pf->rss_size); return pf->rss_size; } /** * i40e_sw_init - Initialize general software structures (struct i40e_pf) * @pf: board private structure to initialize * * i40e_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). **/ static int i40e_sw_init(struct i40e_pf *pf) { int err = 0; int size; pf->msg_enable = netif_msg_init(I40E_DEFAULT_MSG_ENABLE, (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)); pf->hw.debug_mask = pf->msg_enable | I40E_DEBUG_DIAG; if (debug != -1 && debug != I40E_DEFAULT_MSG_ENABLE) { if (I40E_DEBUG_USER & debug) pf->hw.debug_mask = debug; pf->msg_enable = netif_msg_init((debug & ~I40E_DEBUG_USER), I40E_DEFAULT_MSG_ENABLE); } /* Set default capability flags */ pf->flags = I40E_FLAG_RX_CSUM_ENABLED | I40E_FLAG_MSI_ENABLED | I40E_FLAG_MSIX_ENABLED | I40E_FLAG_RX_1BUF_ENABLED; /* Set default ITR */ pf->rx_itr_default = I40E_ITR_DYNAMIC | I40E_ITR_RX_DEF; pf->tx_itr_default = I40E_ITR_DYNAMIC | I40E_ITR_TX_DEF; /* Depending on PF configurations, it is possible that the RSS * maximum might end up larger than the available queues */ pf->rss_size_max = 0x1 << pf->hw.func_caps.rss_table_entry_width; pf->rss_size = 1; pf->rss_size_max = min_t(int, pf->rss_size_max, pf->hw.func_caps.num_tx_qp); if (pf->hw.func_caps.rss) { pf->flags |= I40E_FLAG_RSS_ENABLED; pf->rss_size = min_t(int, pf->rss_size_max, num_online_cpus()); } /* MFP mode enabled */ if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.mfp_mode_1) { pf->flags |= I40E_FLAG_MFP_ENABLED; dev_info(&pf->pdev->dev, "MFP mode Enabled\n"); } /* FW/NVM is not yet fixed in this regard */ if ((pf->hw.func_caps.fd_filters_guaranteed > 0) || (pf->hw.func_caps.fd_filters_best_effort > 0)) { pf->flags |= I40E_FLAG_FD_ATR_ENABLED; pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE; /* Setup a counter for fd_atr per pf */ pf->fd_atr_cnt_idx = I40E_FD_ATR_STAT_IDX(pf->hw.pf_id); if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) { pf->flags |= I40E_FLAG_FD_SB_ENABLED; /* Setup a counter for fd_sb per pf */ pf->fd_sb_cnt_idx = I40E_FD_SB_STAT_IDX(pf->hw.pf_id); } else { dev_info(&pf->pdev->dev, "Flow Director Sideband mode Disabled in MFP mode\n"); } pf->fdir_pf_filter_count = pf->hw.func_caps.fd_filters_guaranteed; pf->hw.fdir_shared_filter_count = pf->hw.func_caps.fd_filters_best_effort; } if (pf->hw.func_caps.vmdq) { pf->flags |= I40E_FLAG_VMDQ_ENABLED; pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI; pf->num_vmdq_qps = I40E_DEFAULT_QUEUES_PER_VMDQ; } #ifdef I40E_FCOE err = i40e_init_pf_fcoe(pf); if (err) dev_info(&pf->pdev->dev, "init_pf_fcoe failed: %d\n", err); #endif /* I40E_FCOE */ #ifdef CONFIG_PCI_IOV if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) { pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF; pf->flags |= I40E_FLAG_SRIOV_ENABLED; pf->num_req_vfs = min_t(int, pf->hw.func_caps.num_vfs, I40E_MAX_VF_COUNT); } #endif /* CONFIG_PCI_IOV */ pf->eeprom_version = 0xDEAD; pf->lan_veb = I40E_NO_VEB; pf->lan_vsi = I40E_NO_VSI; /* set up queue assignment tracking */ size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * pf->hw.func_caps.num_tx_qp); pf->qp_pile = kzalloc(size, GFP_KERNEL); if (!pf->qp_pile) { err = -ENOMEM; goto sw_init_done; } pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp; pf->qp_pile->search_hint = 0; /* set up vector assignment tracking */ size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * pf->hw.func_caps.num_msix_vectors); pf->irq_pile = kzalloc(size, GFP_KERNEL); if (!pf->irq_pile) { kfree(pf->qp_pile); err = -ENOMEM; goto sw_init_done; } pf->irq_pile->num_entries = pf->hw.func_caps.num_msix_vectors; pf->irq_pile->search_hint = 0; pf->tx_timeout_recovery_level = 1; mutex_init(&pf->switch_mutex); sw_init_done: return err; } /** * i40e_set_ntuple - set the ntuple feature flag and take action * @pf: board private structure to initialize * @features: the feature set that the stack is suggesting * * returns a bool to indicate if reset needs to happen **/ bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features) { bool need_reset = false; /* Check if Flow Director n-tuple support was enabled or disabled. If * the state changed, we need to reset. */ if (features & NETIF_F_NTUPLE) { /* Enable filters and mark for reset */ if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED)) need_reset = true; pf->flags |= I40E_FLAG_FD_SB_ENABLED; } else { /* turn off filters, mark for reset and clear SW filter list */ if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { need_reset = true; i40e_fdir_filter_exit(pf); } pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; pf->auto_disable_flags &= ~I40E_FLAG_FD_SB_ENABLED; /* reset fd counters */ pf->fd_add_err = pf->fd_atr_cnt = pf->fd_tcp_rule = 0; pf->fdir_pf_active_filters = 0; pf->flags |= I40E_FLAG_FD_ATR_ENABLED; dev_info(&pf->pdev->dev, "ATR re-enabled.\n"); /* if ATR was auto disabled it can be re-enabled. */ if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED)) pf->auto_disable_flags &= ~I40E_FLAG_FD_ATR_ENABLED; } return need_reset; } /** * i40e_set_features - set the netdev feature flags * @netdev: ptr to the netdev being adjusted * @features: the feature set that the stack is suggesting **/ static int i40e_set_features(struct net_device *netdev, netdev_features_t features) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; bool need_reset; if (features & NETIF_F_HW_VLAN_CTAG_RX) i40e_vlan_stripping_enable(vsi); else i40e_vlan_stripping_disable(vsi); need_reset = i40e_set_ntuple(pf, features); if (need_reset) i40e_do_reset(pf, (1 << __I40E_PF_RESET_REQUESTED)); return 0; } #ifdef CONFIG_I40E_VXLAN /** * i40e_get_vxlan_port_idx - Lookup a possibly offloaded for Rx UDP port * @pf: board private structure * @port: The UDP port to look up * * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found **/ static u8 i40e_get_vxlan_port_idx(struct i40e_pf *pf, __be16 port) { u8 i; for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) { if (pf->vxlan_ports[i] == port) return i; } return i; } /** * i40e_add_vxlan_port - Get notifications about VXLAN ports that come up * @netdev: This physical port's netdev * @sa_family: Socket Family that VXLAN is notifying us about * @port: New UDP port number that VXLAN started listening to **/ static void i40e_add_vxlan_port(struct net_device *netdev, sa_family_t sa_family, __be16 port) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; u8 next_idx; u8 idx; if (sa_family == AF_INET6) return; idx = i40e_get_vxlan_port_idx(pf, port); /* Check if port already exists */ if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { netdev_info(netdev, "Port %d already offloaded\n", ntohs(port)); return; } /* Now check if there is space to add the new port */ next_idx = i40e_get_vxlan_port_idx(pf, 0); if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) { netdev_info(netdev, "Maximum number of UDP ports reached, not adding port %d\n", ntohs(port)); return; } /* New port: add it and mark its index in the bitmap */ pf->vxlan_ports[next_idx] = port; pf->pending_vxlan_bitmap |= (1 << next_idx); pf->flags |= I40E_FLAG_VXLAN_FILTER_SYNC; } /** * i40e_del_vxlan_port - Get notifications about VXLAN ports that go away * @netdev: This physical port's netdev * @sa_family: Socket Family that VXLAN is notifying us about * @port: UDP port number that VXLAN stopped listening to **/ static void i40e_del_vxlan_port(struct net_device *netdev, sa_family_t sa_family, __be16 port) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_vsi *vsi = np->vsi; struct i40e_pf *pf = vsi->back; u8 idx; if (sa_family == AF_INET6) return; idx = i40e_get_vxlan_port_idx(pf, port); /* Check if port already exists */ if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) { /* if port exists, set it to 0 (mark for deletion) * and make it pending */ pf->vxlan_ports[idx] = 0; pf->pending_vxlan_bitmap |= (1 << idx); pf->flags |= I40E_FLAG_VXLAN_FILTER_SYNC; } else { netdev_warn(netdev, "Port %d was not found, not deleting\n", ntohs(port)); } } #endif static int i40e_get_phys_port_id(struct net_device *netdev, struct netdev_phys_item_id *ppid) { struct i40e_netdev_priv *np = netdev_priv(netdev); struct i40e_pf *pf = np->vsi->back; struct i40e_hw *hw = &pf->hw; if (!(pf->flags & I40E_FLAG_PORT_ID_VALID)) return -EOPNOTSUPP; ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id)); memcpy(ppid->id, hw->mac.port_addr, ppid->id_len); return 0; } /** * i40e_ndo_fdb_add - add an entry to the hardware database * @ndm: the input from the stack * @tb: pointer to array of nladdr (unused) * @dev: the net device pointer * @addr: the MAC address entry being added * @flags: instructions from stack about fdb operation */ static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[], struct net_device *dev, const unsigned char *addr, u16 vid, u16 flags) { struct i40e_netdev_priv *np = netdev_priv(dev); struct i40e_pf *pf = np->vsi->back; int err = 0; if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED)) return -EOPNOTSUPP; if (vid) { pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name); return -EINVAL; } /* Hardware does not support aging addresses so if a * ndm_state is given only allow permanent addresses */ if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) { netdev_info(dev, "FDB only supports static addresses\n"); return -EINVAL; } if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) err = dev_uc_add_excl(dev, addr); else if (is_multicast_ether_addr(addr)) err = dev_mc_add_excl(dev, addr); else err = -EINVAL; /* Only return duplicate errors if NLM_F_EXCL is set */ if (err == -EEXIST && !(flags & NLM_F_EXCL)) err = 0; return err; } static const struct net_device_ops i40e_netdev_ops = { .ndo_open = i40e_open, .ndo_stop = i40e_close, .ndo_start_xmit = i40e_lan_xmit_frame, .ndo_get_stats64 = i40e_get_netdev_stats_struct, .ndo_set_rx_mode = i40e_set_rx_mode, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = i40e_set_mac, .ndo_change_mtu = i40e_change_mtu, .ndo_do_ioctl = i40e_ioctl, .ndo_tx_timeout = i40e_tx_timeout, .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = i40e_netpoll, #endif .ndo_setup_tc = i40e_setup_tc, #ifdef I40E_FCOE .ndo_fcoe_enable = i40e_fcoe_enable, .ndo_fcoe_disable = i40e_fcoe_disable, #endif .ndo_set_features = i40e_set_features, .ndo_set_vf_mac = i40e_ndo_set_vf_mac, .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan, .ndo_set_vf_rate = i40e_ndo_set_vf_bw, .ndo_get_vf_config = i40e_ndo_get_vf_config, .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state, .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk, #ifdef CONFIG_I40E_VXLAN .ndo_add_vxlan_port = i40e_add_vxlan_port, .ndo_del_vxlan_port = i40e_del_vxlan_port, #endif .ndo_get_phys_port_id = i40e_get_phys_port_id, .ndo_fdb_add = i40e_ndo_fdb_add, }; /** * i40e_config_netdev - Setup the netdev flags * @vsi: the VSI being configured * * Returns 0 on success, negative value on failure **/ static int i40e_config_netdev(struct i40e_vsi *vsi) { u8 brdcast[ETH_ALEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; struct i40e_netdev_priv *np; struct net_device *netdev; u8 mac_addr[ETH_ALEN]; int etherdev_size; etherdev_size = sizeof(struct i40e_netdev_priv); netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs); if (!netdev) return -ENOMEM; vsi->netdev = netdev; np = netdev_priv(netdev); np->vsi = vsi; netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_TSO; netdev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_SCTP_CSUM | NETIF_F_HIGHDMA | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_RXCSUM | NETIF_F_RXHASH | 0; if (!(pf->flags & I40E_FLAG_MFP_ENABLED)) netdev->features |= NETIF_F_NTUPLE; /* copy netdev features into list of user selectable features */ netdev->hw_features |= netdev->features; if (vsi->type == I40E_VSI_MAIN) { SET_NETDEV_DEV(netdev, &pf->pdev->dev); ether_addr_copy(mac_addr, hw->mac.perm_addr); /* The following steps are necessary to prevent reception * of tagged packets - some older NVM configurations load a * default a MAC-VLAN filter that accepts any tagged packet * which must be replaced by a normal filter. */ if (!i40e_rm_default_mac_filter(vsi, mac_addr)) i40e_add_filter(vsi, mac_addr, I40E_VLAN_ANY, false, true); } else { /* relate the VSI_VMDQ name to the VSI_MAIN name */ snprintf(netdev->name, IFNAMSIZ, "%sv%%d", pf->vsi[pf->lan_vsi]->netdev->name); random_ether_addr(mac_addr); i40e_add_filter(vsi, mac_addr, I40E_VLAN_ANY, false, false); } i40e_add_filter(vsi, brdcast, I40E_VLAN_ANY, false, false); ether_addr_copy(netdev->dev_addr, mac_addr); ether_addr_copy(netdev->perm_addr, mac_addr); /* vlan gets same features (except vlan offload) * after any tweaks for specific VSI types */ netdev->vlan_features = netdev->features & ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER); netdev->priv_flags |= IFF_UNICAST_FLT; netdev->priv_flags |= IFF_SUPP_NOFCS; /* Setup netdev TC information */ i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc); netdev->netdev_ops = &i40e_netdev_ops; netdev->watchdog_timeo = 5 * HZ; i40e_set_ethtool_ops(netdev); #ifdef I40E_FCOE i40e_fcoe_config_netdev(netdev, vsi); #endif return 0; } /** * i40e_vsi_delete - Delete a VSI from the switch * @vsi: the VSI being removed * * Returns 0 on success, negative value on failure **/ static void i40e_vsi_delete(struct i40e_vsi *vsi) { /* remove default VSI is not allowed */ if (vsi == vsi->back->vsi[vsi->back->lan_vsi]) return; i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL); } /** * i40e_add_vsi - Add a VSI to the switch * @vsi: the VSI being configured * * This initializes a VSI context depending on the VSI type to be added and * passes it down to the add_vsi aq command. **/ static int i40e_add_vsi(struct i40e_vsi *vsi) { int ret = -ENODEV; struct i40e_mac_filter *f, *ftmp; struct i40e_pf *pf = vsi->back; struct i40e_hw *hw = &pf->hw; struct i40e_vsi_context ctxt; u8 enabled_tc = 0x1; /* TC0 enabled */ int f_count = 0; memset(&ctxt, 0, sizeof(ctxt)); switch (vsi->type) { case I40E_VSI_MAIN: /* The PF's main VSI is already setup as part of the * device initialization, so we'll not bother with * the add_vsi call, but we will retrieve the current * VSI context. */ ctxt.seid = pf->main_vsi_seid; ctxt.pf_num = pf->hw.pf_id; ctxt.vf_num = 0; ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL); ctxt.flags = I40E_AQ_VSI_TYPE_PF; if (ret) { dev_info(&pf->pdev->dev, "couldn't get pf vsi config, err %d, aq_err %d\n", ret, pf->hw.aq.asq_last_status); return -ENOENT; } memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info)); vsi->info.valid_sections = 0; vsi->seid = ctxt.seid; vsi->id = ctxt.vsi_number; enabled_tc = i40e_pf_get_tc_map(pf); /* MFP mode setup queue map and update VSI */ if ((pf->flags & I40E_FLAG_MFP_ENABLED) && !(pf->hw.func_caps.iscsi)) { /* NIC type PF */ memset(&ctxt, 0, sizeof(ctxt)); ctxt.seid = pf->main_vsi_seid; ctxt.pf_num = pf->hw.pf_id; ctxt.vf_num = 0; i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false); ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL); if (ret) { dev_info(&pf->pdev->dev, "update vsi failed, aq_err=%d\n", pf->hw.aq.asq_last_status); ret = -ENOENT; goto err; } /* update the local VSI info queue map */ i40e_vsi_update_queue_map(vsi, &ctxt); vsi->info.valid_sections = 0; } else { /* Default/Main VSI is only enabled for TC0 * reconfigure it to enable all TCs that are * available on the port in SFP mode. * For MFP case the iSCSI PF would use this * flow to enable LAN+iSCSI TC. */ ret = i40e_vsi_config_tc(vsi, enabled_tc); if (ret) { dev_info(&pf->pdev->dev, "failed to configure TCs for main VSI tc_map 0x%08x, err %d, aq_err %d\n", enabled_tc, ret, pf->hw.aq.asq_last_status); ret = -ENOENT; } } break; case I40E_VSI_FDIR: ctxt.pf_num = hw->pf_id; ctxt.vf_num = 0; ctxt.uplink_seid = vsi->uplink_seid; ctxt.connection_type = 0x1; /* regular data port */ ctxt.flags = I40E_AQ_VSI_TYPE_PF; ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); ctxt.info.switch_id = cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); break; case I40E_VSI_VMDQ2: ctxt.pf_num = hw->pf_id; ctxt.vf_num = 0; ctxt.uplink_seid = vsi->uplink_seid; ctxt.connection_type = 0x1; /* regular data port */ ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2; ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); /* This VSI is connected to VEB so the switch_id * should be set to zero by default. */ ctxt.info.switch_id = 0; ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); /* Setup the VSI tx/rx queue map for TC0 only for now */ i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); break; case I40E_VSI_SRIOV: ctxt.pf_num = hw->pf_id; ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id; ctxt.uplink_seid = vsi->uplink_seid; ctxt.connection_type = 0x1; /* regular data port */ ctxt.flags = I40E_AQ_VSI_TYPE_VF; ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID); /* This VSI is connected to VEB so the switch_id * should be set to zero by default. */ ctxt.info.switch_id = cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB); ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID); ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL; if (pf->vf[vsi->vf_id].spoofchk) { ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID); ctxt.info.sec_flags |= (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK | I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK); } /* Setup the VSI tx/rx queue map for TC0 only for now */ i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true); break; #ifdef I40E_FCOE case I40E_VSI_FCOE: ret = i40e_fcoe_vsi_init(vsi, &ctxt); if (ret) { dev_info(&pf->pdev->dev, "failed to initialize FCoE VSI\n"); return ret; } break; #endif /* I40E_FCOE */ default: return -ENODEV; } if (vsi->type != I40E_VSI_MAIN) { ret = i40e_aq_add_vsi(hw, &ctxt, NULL); if (ret) { dev_info(&vsi->back->pdev->dev, "add vsi failed, aq_err=%d\n", vsi->back->hw.aq.asq_last_status); ret = -ENOENT; goto err; } memcpy(&vsi->info, &ctxt.info, sizeof(ctxt.info)); vsi->info.valid_sections = 0; vsi->seid = ctxt.seid; vsi->id = ctxt.vsi_number; } /* If macvlan filters already exist, force them to get loaded */ list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) { f->changed = true; f_count++; if (f->is_laa && vsi->type == I40E_VSI_MAIN) { struct i40e_aqc_remove_macvlan_element_data element; memset(&element, 0, sizeof(element)); ether_addr_copy(element.mac_addr, f->macaddr); element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH; ret = i40e_aq_remove_macvlan(hw, vsi->seid, &element, 1, NULL); if (ret) { /* some older FW has a different default */ element.flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN; i40e_aq_remove_macvlan(hw, vsi->seid, &element, 1, NULL); } i40e_aq_mac_address_write(hw, I40E_AQC_WRITE_TYPE_LAA_WOL, f->macaddr, NULL); } } if (f_count) { vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED; pf->flags |= I40E_FLAG_FILTER_SYNC; } /* Update VSI BW information */ ret = i40e_vsi_get_bw_info(vsi); if (ret) { dev_info(&pf->pdev->dev, "couldn't get vsi bw info, err %d, aq_err %d\n", ret, pf->hw.aq.asq_last_status); /* VSI is already added so not tearing that up */ ret = 0; } err: return ret; } /** * i40e_vsi_release - Delete a VSI and free its resources * @vsi: the VSI being removed * * Returns 0 on success or < 0 on error **/ int i40e_vsi_release(struct i40e_vsi *vsi) { struct i40e_mac_filter *f, *ftmp; struct i40e_veb *veb = NULL; struct i40e_pf *pf; u16 uplink_seid; int i, n; pf = vsi->back; /* release of a VEB-owner or last VSI is not allowed */ if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) { dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n", vsi->seid, vsi->uplink_seid); return -ENODEV; } if (vsi == pf->vsi[pf->lan_vsi] && !test_bit(__I40E_DOWN, &pf->state)) { dev_info(&pf->pdev->dev, "Can't remove PF VSI\n"); return -ENODEV; } uplink_seid = vsi->uplink_seid; if (vsi->type != I40E_VSI_SRIOV) { if (vsi->netdev_registered) { vsi->netdev_registered = false; if (vsi->netdev) { /* results in a call to i40e_close() */ unregister_netdev(vsi->netdev); } } else { i40e_vsi_close(vsi); } i40e_vsi_disable_irq(vsi); } list_for_each_entry_safe(f, ftmp, &vsi->mac_filter_list, list) i40e_del_filter(vsi, f->macaddr, f->vlan, f->is_vf, f->is_netdev); i40e_sync_vsi_filters(vsi); i40e_vsi_delete(vsi); i40e_vsi_free_q_vectors(vsi); if (vsi->netdev) { free_netdev(vsi->netdev); vsi->netdev = NULL; } i40e_vsi_clear_rings(vsi); i40e_vsi_clear(vsi); /* If this was the last thing on the VEB, except for the * controlling VSI, remove the VEB, which puts the controlling * VSI onto the next level down in the switch. * * Well, okay, there's one more exception here: don't remove * the orphan VEBs yet. We'll wait for an explicit remove request * from up the network stack. */ for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) { if (pf->vsi[i] && pf->vsi[i]->uplink_seid == uplink_seid && (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { n++; /* count the VSIs */ } } for (i = 0; i < I40E_MAX_VEB; i++) { if (!pf->veb[i]) continue; if (pf->veb[i]->uplink_seid == uplink_seid) n++; /* count the VEBs */ if (pf->veb[i]->seid == uplink_seid) veb = pf->veb[i]; } if (n == 0 && veb && veb->uplink_seid != 0) i40e_veb_release(veb); return 0; } /** * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI * @vsi: ptr to the VSI * * This should only be called after i40e_vsi_mem_alloc() which allocates the * corresponding SW VSI structure and initializes num_queue_pairs for the * newly allocated VSI. * * Returns 0 on success or negative on failure **/ static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi) { int ret = -ENOENT; struct i40e_pf *pf = vsi->back; if (vsi->q_vectors[0]) { dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n", vsi->seid); return -EEXIST; } if (vsi->base_vector) { dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n", vsi->seid, vsi->base_vector); return -EEXIST; } ret = i40e_vsi_alloc_q_vectors(vsi); if (ret) { dev_info(&pf->pdev->dev, "failed to allocate %d q_vector for VSI %d, ret=%d\n", vsi->num_q_vectors, vsi->seid, ret); vsi->num_q_vectors = 0; goto vector_setup_out; } if (vsi->num_q_vectors) vsi->base_vector = i40e_get_lump(pf, pf->irq_pile, vsi->num_q_vectors, vsi->idx); if (vsi->base_vector < 0) { dev_info(&pf->pdev->dev, "failed to get tracking for %d vectors for VSI %d, err=%d\n", vsi->num_q_vectors, vsi->seid, vsi->base_vector); i40e_vsi_free_q_vectors(vsi); ret = -ENOENT; goto vector_setup_out; } vector_setup_out: return ret; } /** * i40e_vsi_reinit_setup - return and reallocate resources for a VSI * @vsi: pointer to the vsi. * * This re-allocates a vsi's queue resources. * * Returns pointer to the successfully allocated and configured VSI sw struct * on success, otherwise returns NULL on failure. **/ static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi) { struct i40e_pf *pf = vsi->back; u8 enabled_tc; int ret; i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx); i40e_vsi_clear_rings(vsi); i40e_vsi_free_arrays(vsi, false); i40e_set_num_rings_in_vsi(vsi); ret = i40e_vsi_alloc_arrays(vsi, false); if (ret) goto err_vsi; ret = i40e_get_lump(pf, pf->qp_pile, vsi->alloc_queue_pairs, vsi->idx); if (ret < 0) { dev_info(&pf->pdev->dev, "failed to get tracking for %d queues for VSI %d err=%d\n", vsi->alloc_queue_pairs, vsi->seid, ret); goto err_vsi; } vsi->base_queue = ret; /* Update the FW view of the VSI. Force a reset of TC and queue * layout configurations. */ enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); /* assign it some queues */ ret = i40e_alloc_rings(vsi); if (ret) goto err_rings; /* map all of the rings to the q_vectors */ i40e_vsi_map_rings_to_vectors(vsi); return vsi; err_rings: i40e_vsi_free_q_vectors(vsi); if (vsi->netdev_registered) { vsi->netdev_registered = false; unregister_netdev(vsi->netdev); free_netdev(vsi->netdev); vsi->netdev = NULL; } i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); err_vsi: i40e_vsi_clear(vsi); return NULL; } /** * i40e_vsi_setup - Set up a VSI by a given type * @pf: board private structure * @type: VSI type * @uplink_seid: the switch element to link to * @param1: usage depends upon VSI type. For VF types, indicates VF id * * This allocates the sw VSI structure and its queue resources, then add a VSI * to the identified VEB. * * Returns pointer to the successfully allocated and configure VSI sw struct on * success, otherwise returns NULL on failure. **/ struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type, u16 uplink_seid, u32 param1) { struct i40e_vsi *vsi = NULL; struct i40e_veb *veb = NULL; int ret, i; int v_idx; /* The requested uplink_seid must be either * - the PF's port seid * no VEB is needed because this is the PF * or this is a Flow Director special case VSI * - seid of an existing VEB * - seid of a VSI that owns an existing VEB * - seid of a VSI that doesn't own a VEB * a new VEB is created and the VSI becomes the owner * - seid of the PF VSI, which is what creates the first VEB * this is a special case of the previous * * Find which uplink_seid we were given and create a new VEB if needed */ for (i = 0; i < I40E_MAX_VEB; i++) { if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) { veb = pf->veb[i]; break; } } if (!veb && uplink_seid != pf->mac_seid) { for (i = 0; i < pf->num_alloc_vsi; i++) { if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) { vsi = pf->vsi[i]; break; } } if (!vsi) { dev_info(&pf->pdev->dev, "no such uplink_seid %d\n", uplink_seid); return NULL; } if (vsi->uplink_seid == pf->mac_seid) veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid, vsi->tc_config.enabled_tc); else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid, vsi->tc_config.enabled_tc); if (veb) { if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) { dev_info(&vsi->back->pdev->dev, "%s: New VSI creation error, uplink seid of LAN VSI expected.\n", __func__); return NULL; } i40e_enable_pf_switch_lb(pf); } for (i = 0; i < I40E_MAX_VEB && !veb; i++) { if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid) veb = pf->veb[i]; } if (!veb) { dev_info(&pf->pdev->dev, "couldn't add VEB\n"); return NULL; } vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; uplink_seid = veb->seid; } /* get vsi sw struct */ v_idx = i40e_vsi_mem_alloc(pf, type); if (v_idx < 0) goto err_alloc; vsi = pf->vsi[v_idx]; if (!vsi) goto err_alloc; vsi->type = type; vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB); if (type == I40E_VSI_MAIN) pf->lan_vsi = v_idx; else if (type == I40E_VSI_SRIOV) vsi->vf_id = param1; /* assign it some queues */ ret = i40e_get_lump(pf, pf->qp_pile, vsi->alloc_queue_pairs, vsi->idx); if (ret < 0) { dev_info(&pf->pdev->dev, "failed to get tracking for %d queues for VSI %d err=%d\n", vsi->alloc_queue_pairs, vsi->seid, ret); goto err_vsi; } vsi->base_queue = ret; /* get a VSI from the hardware */ vsi->uplink_seid = uplink_seid; ret = i40e_add_vsi(vsi); if (ret) goto err_vsi; switch (vsi->type) { /* setup the netdev if needed */ case I40E_VSI_MAIN: case I40E_VSI_VMDQ2: case I40E_VSI_FCOE: ret = i40e_config_netdev(vsi); if (ret) goto err_netdev; ret = register_netdev(vsi->netdev); if (ret) goto err_netdev; vsi->netdev_registered = true; netif_carrier_off(vsi->netdev); #ifdef CONFIG_I40E_DCB /* Setup DCB netlink interface */ i40e_dcbnl_setup(vsi); #endif /* CONFIG_I40E_DCB */ /* fall through */ case I40E_VSI_FDIR: /* set up vectors and rings if needed */ ret = i40e_vsi_setup_vectors(vsi); if (ret) goto err_msix; ret = i40e_alloc_rings(vsi); if (ret) goto err_rings; /* map all of the rings to the q_vectors */ i40e_vsi_map_rings_to_vectors(vsi); i40e_vsi_reset_stats(vsi); break; default: /* no netdev or rings for the other VSI types */ break; } return vsi; err_rings: i40e_vsi_free_q_vectors(vsi); err_msix: if (vsi->netdev_registered) { vsi->netdev_registered = false; unregister_netdev(vsi->netdev); free_netdev(vsi->netdev); vsi->netdev = NULL; } err_netdev: i40e_aq_delete_element(&pf->hw, vsi->seid, NULL); err_vsi: i40e_vsi_clear(vsi); err_alloc: return NULL; } /** * i40e_veb_get_bw_info - Query VEB BW information * @veb: the veb to query * * Query the Tx scheduler BW configuration data for given VEB **/ static int i40e_veb_get_bw_info(struct i40e_veb *veb) { struct i40e_aqc_query_switching_comp_ets_config_resp ets_data; struct i40e_aqc_query_switching_comp_bw_config_resp bw_data; struct i40e_pf *pf = veb->pf; struct i40e_hw *hw = &pf->hw; u32 tc_bw_max; int ret = 0; int i; ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid, &bw_data, NULL); if (ret) { dev_info(&pf->pdev->dev, "query veb bw config failed, aq_err=%d\n", hw->aq.asq_last_status); goto out; } ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid, &ets_data, NULL); if (ret) { dev_info(&pf->pdev->dev, "query veb bw ets config failed, aq_err=%d\n", hw->aq.asq_last_status); goto out; } veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit); veb->bw_max_quanta = ets_data.tc_bw_max; veb->is_abs_credits = bw_data.absolute_credits_enable; veb->enabled_tc = ets_data.tc_valid_bits; tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) | (le16_to_cpu(bw_data.tc_bw_max[1]) << 16); for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) { veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i]; veb->bw_tc_limit_credits[i] = le16_to_cpu(bw_data.tc_bw_limits[i]); veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7); } out: return ret; } /** * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF * @pf: board private structure * * On error: returns error code (negative) * On success: returns vsi index in PF (positive) **/ static int i40e_veb_mem_alloc(struct i40e_pf *pf) { int ret = -ENOENT; struct i40e_veb *veb; int i; /* Need to protect the allocation of switch elements at the PF level */ mutex_lock(&pf->switch_mutex); /* VEB list may be fragmented if VEB creation/destruction has * been happening. We can afford to do a quick scan to look * for any free slots in the list. * * find next empty veb slot, looping back around if necessary */ i = 0; while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL)) i++; if (i >= I40E_MAX_VEB) { ret = -ENOMEM; goto err_alloc_veb; /* out of VEB slots! */ } veb = kzalloc(sizeof(*veb), GFP_KERNEL); if (!veb) { ret = -ENOMEM; goto err_alloc_veb; } veb->pf = pf; veb->idx = i; veb->enabled_tc = 1; pf->veb[i] = veb; ret = i; err_alloc_veb: mutex_unlock(&pf->switch_mutex); return ret; } /** * i40e_switch_branch_release - Delete a branch of the switch tree * @branch: where to start deleting * * This uses recursion to find the tips of the branch to be * removed, deleting until we get back to and can delete this VEB. **/ static void i40e_switch_branch_release(struct i40e_veb *branch) { struct i40e_pf *pf = branch->pf; u16 branch_seid = branch->seid; u16 veb_idx = branch->idx; int i; /* release any VEBs on this VEB - RECURSION */ for (i = 0; i < I40E_MAX_VEB; i++) { if (!pf->veb[i]) continue; if (pf->veb[i]->uplink_seid == branch->seid) i40e_switch_branch_release(pf->veb[i]); } /* Release the VSIs on this VEB, but not the owner VSI. * * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing * the VEB itself, so don't use (*branch) after this loop. */ for (i = 0; i < pf->num_alloc_vsi; i++) { if (!pf->vsi[i]) continue; if (pf->vsi[i]->uplink_seid == branch_seid && (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) { i40e_vsi_release(pf->vsi[i]); } } /* There's one corner case where the VEB might not have been * removed, so double check it here and remove it if needed. * This case happens if the veb was created from the debugfs * commands and no VSIs were added to it. */ if (pf->veb[veb_idx]) i40e_veb_release(pf->veb[veb_idx]); } /** * i40e_veb_clear - remove veb struct * @veb: the veb to remove **/ static void i40e_veb_clear(struct i40e_veb *veb) { if (!veb) return; if (veb->pf) { struct i40e_pf *pf = veb->pf; mutex_lock(&pf->switch_mutex); if (pf->veb[veb->idx] == veb) pf->veb[veb->idx] = NULL; mutex_unlock(&pf->switch_mutex); } kfree(veb); } /** * i40e_veb_release - Delete a VEB and free its resources * @veb: the VEB being removed **/ void i40e_veb_release(struct i40e_veb *veb) { struct i40e_vsi *vsi = NULL; struct i40e_pf *pf; int i, n = 0; pf = veb->pf; /* find the remaining VSI and check for extras */ for (i = 0; i < pf->num_alloc_vsi; i++) { if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) { n++; vsi = pf->vsi[i]; } } if (n != 1) { dev_info(&pf->pdev->dev, "can't remove VEB %d with %d VSIs left\n", veb->seid, n); return; } /* move the remaining VSI to uplink veb */ vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER; if (veb->uplink_seid) { vsi->uplink_seid = veb->uplink_seid; if (veb->uplink_seid == pf->mac_seid) vsi->veb_idx = I40E_NO_VEB; else vsi->veb_idx = veb->veb_idx; } else { /* floating VEB */ vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid; vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx; } i40e_aq_delete_element(&pf->hw, veb->seid, NULL); i40e_veb_clear(veb); } /** * i40e_add_veb - create the VEB in the switch * @veb: the VEB to be instantiated * @vsi: the controlling VSI **/ static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi) { bool is_default = false; bool is_cloud = false; int ret; /* get a VEB from the hardware */ ret = i40e_aq_add_veb(&veb->pf->hw, veb->uplink_seid, vsi->seid, veb->enabled_tc, is_default, is_cloud, &veb->seid, NULL); if (ret) { dev_info(&veb->pf->pdev->dev, "couldn't add VEB, err %d, aq_err %d\n", ret, veb->pf->hw.aq.asq_last_status); return -EPERM; } /* get statistics counter */ ret = i40e_aq_get_veb_parameters(&veb->pf->hw, veb->seid, NULL, NULL, &veb->stats_idx, NULL, NULL, NULL); if (ret) { dev_info(&veb->pf->pdev->dev, "couldn't get VEB statistics idx, err %d, aq_err %d\n", ret, veb->pf->hw.aq.asq_last_status); return -EPERM; } ret = i40e_veb_get_bw_info(veb); if (ret) { dev_info(&veb->pf->pdev->dev, "couldn't get VEB bw info, err %d, aq_err %d\n", ret, veb->pf->hw.aq.asq_last_status); i40e_aq_delete_element(&veb->pf->hw, veb->seid, NULL); return -ENOENT; } vsi->uplink_seid = veb->seid; vsi->veb_idx = veb->idx; vsi->flags |= I40E_VSI_FLAG_VEB_OWNER; return 0; } /** * i40e_veb_setup - Set up a VEB * @pf: board private structure * @flags: VEB setup flags * @uplink_seid: the switch element to link to * @vsi_seid: the initial VSI seid * @enabled_tc: Enabled TC bit-map * * This allocates the sw VEB structure and links it into the switch * It is possible and legal for this to be a duplicate of an already * existing VEB. It is also possible for both uplink and vsi seids * to be zero, in order to create a floating VEB. * * Returns pointer to the successfully allocated VEB sw struct on * success, otherwise returns NULL on failure. **/ struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags, u16 uplink_seid, u16 vsi_seid, u8 enabled_tc) { struct i40e_veb *veb, *uplink_veb = NULL; int vsi_idx, veb_idx; int ret; /* if one seid is 0, the other must be 0 to create a floating relay */ if ((uplink_seid == 0 || vsi_seid == 0) && (uplink_seid + vsi_seid != 0)) { dev_info(&pf->pdev->dev, "one, not both seid's are 0: uplink=%d vsi=%d\n", uplink_seid, vsi_seid); return NULL; } /* make sure there is such a vsi and uplink */ for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++) if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid) break; if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) { dev_info(&pf->pdev->dev, "vsi seid %d not found\n", vsi_seid); return NULL; } if (uplink_seid && uplink_seid != pf->mac_seid) { for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) { if (pf->veb[veb_idx] && pf->veb[veb_idx]->seid == uplink_seid) { uplink_veb = pf->veb[veb_idx]; break; } } if (!uplink_veb) { dev_info(&pf->pdev->dev, "uplink seid %d not found\n", uplink_seid); return NULL; } } /* get veb sw struct */ veb_idx = i40e_veb_mem_alloc(pf); if (veb_idx < 0) goto err_alloc; veb = pf->veb[veb_idx]; veb->flags = flags; veb->uplink_seid = uplink_seid; veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB); veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1); /* create the VEB in the switch */ ret = i40e_add_veb(veb, pf->vsi[vsi_idx]); if (ret) goto err_veb; if (vsi_idx == pf->lan_vsi) pf->lan_veb = veb->idx; return veb; err_veb: i40e_veb_clear(veb); err_alloc: return NULL; } /** * i40e_setup_pf_switch_element - set pf vars based on switch type * @pf: board private structure * @ele: element we are building info from * @num_reported: total number of elements * @printconfig: should we print the contents * * helper function to assist in extracting a few useful SEID values. **/ static void i40e_setup_pf_switch_element(struct i40e_pf *pf, struct i40e_aqc_switch_config_element_resp *ele, u16 num_reported, bool printconfig) { u16 downlink_seid = le16_to_cpu(ele->downlink_seid); u16 uplink_seid = le16_to_cpu(ele->uplink_seid); u8 element_type = ele->element_type; u16 seid = le16_to_cpu(ele->seid); if (printconfig) dev_info(&pf->pdev->dev, "type=%d seid=%d uplink=%d downlink=%d\n", element_type, seid, uplink_seid, downlink_seid); switch (element_type) { case I40E_SWITCH_ELEMENT_TYPE_MAC: pf->mac_seid = seid; break; case I40E_SWITCH_ELEMENT_TYPE_VEB: /* Main VEB? */ if (uplink_seid != pf->mac_seid) break; if (pf->lan_veb == I40E_NO_VEB) { int v; /* find existing or else empty VEB */ for (v = 0; v < I40E_MAX_VEB; v++) { if (pf->veb[v] && (pf->veb[v]->seid == seid)) { pf->lan_veb = v; break; } } if (pf->lan_veb == I40E_NO_VEB) { v = i40e_veb_mem_alloc(pf); if (v < 0) break; pf->lan_veb = v; } } pf->veb[pf->lan_veb]->seid = seid; pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid; pf->veb[pf->lan_veb]->pf = pf; pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB; break; case I40E_SWITCH_ELEMENT_TYPE_VSI: if (num_reported != 1) break; /* This is immediately after a reset so we can assume this is * the PF's VSI */ pf->mac_seid = uplink_seid; pf->pf_seid = downlink_seid; pf->main_vsi_seid = seid; if (printconfig) dev_info(&pf->pdev->dev, "pf_seid=%d main_vsi_seid=%d\n", pf->pf_seid, pf->main_vsi_seid); break; case I40E_SWITCH_ELEMENT_TYPE_PF: case I40E_SWITCH_ELEMENT_TYPE_VF: case I40E_SWITCH_ELEMENT_TYPE_EMP: case I40E_SWITCH_ELEMENT_TYPE_BMC: case I40E_SWITCH_ELEMENT_TYPE_PE: case I40E_SWITCH_ELEMENT_TYPE_PA: /* ignore these for now */ break; default: dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n", element_type, seid); break; } } /** * i40e_fetch_switch_configuration - Get switch config from firmware * @pf: board private structure * @printconfig: should we print the contents * * Get the current switch configuration from the device and * extract a few useful SEID values. **/ int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig) { struct i40e_aqc_get_switch_config_resp *sw_config; u16 next_seid = 0; int ret = 0; u8 *aq_buf; int i; aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL); if (!aq_buf) return -ENOMEM; sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf; do { u16 num_reported, num_total; ret = i40e_aq_get_switch_config(&pf->hw, sw_config, I40E_AQ_LARGE_BUF, &next_seid, NULL); if (ret) { dev_info(&pf->pdev->dev, "get switch config failed %d aq_err=%x\n", ret, pf->hw.aq.asq_last_status); kfree(aq_buf); return -ENOENT; } num_reported = le16_to_cpu(sw_config->header.num_reported); num_total = le16_to_cpu(sw_config->header.num_total); if (printconfig) dev_info(&pf->pdev->dev, "header: %d reported %d total\n", num_reported, num_total); for (i = 0; i < num_reported; i++) { struct i40e_aqc_switch_config_element_resp *ele = &sw_config->element[i]; i40e_setup_pf_switch_element(pf, ele, num_reported, printconfig); } } while (next_seid != 0); kfree(aq_buf); return ret; } /** * i40e_setup_pf_switch - Setup the HW switch on startup or after reset * @pf: board private structure * @reinit: if the Main VSI needs to re-initialized. * * Returns 0 on success, negative value on failure **/ static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit) { int ret; /* find out what's out there already */ ret = i40e_fetch_switch_configuration(pf, false); if (ret) { dev_info(&pf->pdev->dev, "couldn't fetch switch config, err %d, aq_err %d\n", ret, pf->hw.aq.asq_last_status); return ret; } i40e_pf_reset_stats(pf); /* first time setup */ if (pf->lan_vsi == I40E_NO_VSI || reinit) { struct i40e_vsi *vsi = NULL; u16 uplink_seid; /* Set up the PF VSI associated with the PF's main VSI * that is already in the HW switch */ if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb]) uplink_seid = pf->veb[pf->lan_veb]->seid; else uplink_seid = pf->mac_seid; if (pf->lan_vsi == I40E_NO_VSI) vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0); else if (reinit) vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]); if (!vsi) { dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n"); i40e_fdir_teardown(pf); return -EAGAIN; } } else { /* force a reset of TC and queue layout configurations */ u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc; pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0; pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid; i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc); } i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]); i40e_fdir_sb_setup(pf); /* Setup static PF queue filter control settings */ ret = i40e_setup_pf_filter_control(pf); if (ret) { dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n", ret); /* Failure here should not stop continuing other steps */ } /* enable RSS in the HW, even for only one queue, as the stack can use * the hash */ if ((pf->flags & I40E_FLAG_RSS_ENABLED)) i40e_config_rss(pf); /* fill in link information and enable LSE reporting */ i40e_update_link_info(&pf->hw, true); i40e_link_event(pf); /* Initialize user-specific link properties */ pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) ? true : false); /* fill in link information and enable LSE reporting */ i40e_update_link_info(&pf->hw, true); i40e_link_event(pf); /* Initialize user-specific link properties */ pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED) ? true : false); i40e_ptp_init(pf); return ret; } /** * i40e_determine_queue_usage - Work out queue distribution * @pf: board private structure **/ static void i40e_determine_queue_usage(struct i40e_pf *pf) { int queues_left; pf->num_lan_qps = 0; #ifdef I40E_FCOE pf->num_fcoe_qps = 0; #endif /* Find the max queues to be put into basic use. We'll always be * using TC0, whether or not DCB is running, and TC0 will get the * big RSS set. */ queues_left = pf->hw.func_caps.num_tx_qp; if ((queues_left == 1) || !(pf->flags & I40E_FLAG_MSIX_ENABLED)) { /* one qp for PF, no queues for anything else */ queues_left = 0; pf->rss_size = pf->num_lan_qps = 1; /* make sure all the fancies are disabled */ pf->flags &= ~(I40E_FLAG_RSS_ENABLED | #ifdef I40E_FCOE I40E_FLAG_FCOE_ENABLED | #endif I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED | I40E_FLAG_DCB_CAPABLE | I40E_FLAG_SRIOV_ENABLED | I40E_FLAG_VMDQ_ENABLED); } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED | I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED | I40E_FLAG_DCB_CAPABLE))) { /* one qp for PF */ pf->rss_size = pf->num_lan_qps = 1; queues_left -= pf->num_lan_qps; pf->flags &= ~(I40E_FLAG_RSS_ENABLED | #ifdef I40E_FCOE I40E_FLAG_FCOE_ENABLED | #endif I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED | I40E_FLAG_DCB_ENABLED | I40E_FLAG_VMDQ_ENABLED); } else { /* Not enough queues for all TCs */ if ((pf->flags & I40E_FLAG_DCB_CAPABLE) && (queues_left < I40E_MAX_TRAFFIC_CLASS)) { pf->flags &= ~I40E_FLAG_DCB_CAPABLE; dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n"); } pf->num_lan_qps = pf->rss_size_max; queues_left -= pf->num_lan_qps; } #ifdef I40E_FCOE if (pf->flags & I40E_FLAG_FCOE_ENABLED) { if (I40E_DEFAULT_FCOE <= queues_left) { pf->num_fcoe_qps = I40E_DEFAULT_FCOE; } else if (I40E_MINIMUM_FCOE <= queues_left) { pf->num_fcoe_qps = I40E_MINIMUM_FCOE; } else { pf->num_fcoe_qps = 0; pf->flags &= ~I40E_FLAG_FCOE_ENABLED; dev_info(&pf->pdev->dev, "not enough queues for FCoE. FCoE feature will be disabled\n"); } queues_left -= pf->num_fcoe_qps; } #endif if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { if (queues_left > 1) { queues_left -= 1; /* save 1 queue for FD */ } else { pf->flags &= ~I40E_FLAG_FD_SB_ENABLED; dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n"); } } if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && pf->num_vf_qps && pf->num_req_vfs && queues_left) { pf->num_req_vfs = min_t(int, pf->num_req_vfs, (queues_left / pf->num_vf_qps)); queues_left -= (pf->num_req_vfs * pf->num_vf_qps); } if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) && pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) { pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis, (queues_left / pf->num_vmdq_qps)); queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps); } pf->queues_left = queues_left; #ifdef I40E_FCOE dev_info(&pf->pdev->dev, "fcoe queues = %d\n", pf->num_fcoe_qps); #endif } /** * i40e_setup_pf_filter_control - Setup PF static filter control * @pf: PF to be setup * * i40e_setup_pf_filter_control sets up a pf's initial filter control * settings. If PE/FCoE are enabled then it will also set the per PF * based filter sizes required for them. It also enables Flow director, * ethertype and macvlan type filter settings for the pf. * * Returns 0 on success, negative on failure **/ static int i40e_setup_pf_filter_control(struct i40e_pf *pf) { struct i40e_filter_control_settings *settings = &pf->filter_settings; settings->hash_lut_size = I40E_HASH_LUT_SIZE_128; /* Flow Director is enabled */ if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED)) settings->enable_fdir = true; /* Ethtype and MACVLAN filters enabled for PF */ settings->enable_ethtype = true; settings->enable_macvlan = true; if (i40e_set_filter_control(&pf->hw, settings)) return -ENOENT; return 0; } #define INFO_STRING_LEN 255 static void i40e_print_features(struct i40e_pf *pf) { struct i40e_hw *hw = &pf->hw; char *buf, *string; string = kzalloc(INFO_STRING_LEN, GFP_KERNEL); if (!string) { dev_err(&pf->pdev->dev, "Features string allocation failed\n"); return; } buf = string; buf += sprintf(string, "Features: PF-id[%d] ", hw->pf_id); #ifdef CONFIG_PCI_IOV buf += sprintf(buf, "VFs: %d ", pf->num_req_vfs); #endif buf += sprintf(buf, "VSIs: %d QP: %d ", pf->hw.func_caps.num_vsis, pf->vsi[pf->lan_vsi]->num_queue_pairs); if (pf->flags & I40E_FLAG_RSS_ENABLED) buf += sprintf(buf, "RSS "); if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) buf += sprintf(buf, "FD_ATR "); if (pf->flags & I40E_FLAG_FD_SB_ENABLED) { buf += sprintf(buf, "FD_SB "); buf += sprintf(buf, "NTUPLE "); } if (pf->flags & I40E_FLAG_DCB_CAPABLE) buf += sprintf(buf, "DCB "); if (pf->flags & I40E_FLAG_PTP) buf += sprintf(buf, "PTP "); #ifdef I40E_FCOE if (pf->flags & I40E_FLAG_FCOE_ENABLED) buf += sprintf(buf, "FCOE "); #endif BUG_ON(buf > (string + INFO_STRING_LEN)); dev_info(&pf->pdev->dev, "%s\n", string); kfree(string); } /** * i40e_probe - Device initialization routine * @pdev: PCI device information struct * @ent: entry in i40e_pci_tbl * * i40e_probe initializes a pf identified by a pci_dev structure. * The OS initialization, configuring of the pf private structure, * and a hardware reset occur. * * Returns 0 on success, negative on failure **/ static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct i40e_pf *pf; struct i40e_hw *hw; static u16 pfs_found; u16 link_status; int err = 0; u32 len; u32 i; err = pci_enable_device_mem(pdev); if (err) return err; /* set up for high or low dma */ err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); goto err_dma; } } /* set up pci connections */ err = pci_request_selected_regions(pdev, pci_select_bars(pdev, IORESOURCE_MEM), i40e_driver_name); if (err) { dev_info(&pdev->dev, "pci_request_selected_regions failed %d\n", err); goto err_pci_reg; } pci_enable_pcie_error_reporting(pdev); pci_set_master(pdev); /* Now that we have a PCI connection, we need to do the * low level device setup. This is primarily setting up * the Admin Queue structures and then querying for the * device's current profile information. */ pf = kzalloc(sizeof(*pf), GFP_KERNEL); if (!pf) { err = -ENOMEM; goto err_pf_alloc; } pf->next_vsi = 0; pf->pdev = pdev; set_bit(__I40E_DOWN, &pf->state); hw = &pf->hw; hw->back = pf; hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0)); if (!hw->hw_addr) { err = -EIO; dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n", (unsigned int)pci_resource_start(pdev, 0), (unsigned int)pci_resource_len(pdev, 0), err); goto err_ioremap; } hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id); hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; hw->bus.device = PCI_SLOT(pdev->devfn); hw->bus.func = PCI_FUNC(pdev->devfn); pf->instance = pfs_found; if (debug != -1) { pf->msg_enable = pf->hw.debug_mask; pf->msg_enable = debug; } /* do a special CORER for clearing PXE mode once at init */ if (hw->revision_id == 0 && (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) { wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK); i40e_flush(hw); msleep(200); pf->corer_count++; i40e_clear_pxe_mode(hw); } /* Reset here to make sure all is clean and to define PF 'n' */ i40e_clear_hw(hw); err = i40e_pf_reset(hw); if (err) { dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err); goto err_pf_reset; } pf->pfr_count++; hw->aq.num_arq_entries = I40E_AQ_LEN; hw->aq.num_asq_entries = I40E_AQ_LEN; hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE; hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE; pf->adminq_work_limit = I40E_AQ_WORK_LIMIT; snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc", dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev)); err = i40e_init_shared_code(hw); if (err) { dev_info(&pdev->dev, "init_shared_code failed: %d\n", err); goto err_pf_reset; } /* set up a default setting for link flow control */ pf->hw.fc.requested_mode = I40E_FC_NONE; err = i40e_init_adminq(hw); dev_info(&pdev->dev, "%s\n", i40e_fw_version_str(hw)); if (err) { dev_info(&pdev->dev, "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n"); goto err_pf_reset; } if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR && hw->aq.api_min_ver > I40E_FW_API_VERSION_MINOR) dev_info(&pdev->dev, "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n"); else if (hw->aq.api_maj_ver < I40E_FW_API_VERSION_MAJOR || hw->aq.api_min_ver < (I40E_FW_API_VERSION_MINOR - 1)) dev_info(&pdev->dev, "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n"); i40e_verify_eeprom(pf); /* Rev 0 hardware was never productized */ if (hw->revision_id < 1) dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n"); i40e_clear_pxe_mode(hw); err = i40e_get_capabilities(pf); if (err) goto err_adminq_setup; err = i40e_sw_init(pf); if (err) { dev_info(&pdev->dev, "sw_init failed: %d\n", err); goto err_sw_init; } err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp, hw->func_caps.num_rx_qp, pf->fcoe_hmc_cntx_num, pf->fcoe_hmc_filt_num); if (err) { dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err); goto err_init_lan_hmc; } err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY); if (err) { dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err); err = -ENOENT; goto err_configure_lan_hmc; } /* Disable LLDP for NICs that have firmware versions lower than v4.3. * Ignore error return codes because if it was already disabled via * hardware settings this will fail */ if (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) || (pf->hw.aq.fw_maj_ver < 4)) { dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n"); i40e_aq_stop_lldp(hw, true, NULL); } i40e_get_mac_addr(hw, hw->mac.addr); if (!is_valid_ether_addr(hw->mac.addr)) { dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr); err = -EIO; goto err_mac_addr; } dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr); ether_addr_copy(hw->mac.perm_addr, hw->mac.addr); i40e_get_port_mac_addr(hw, hw->mac.port_addr); if (is_valid_ether_addr(hw->mac.port_addr)) pf->flags |= I40E_FLAG_PORT_ID_VALID; #ifdef I40E_FCOE err = i40e_get_san_mac_addr(hw, hw->mac.san_addr); if (err) dev_info(&pdev->dev, "(non-fatal) SAN MAC retrieval failed: %d\n", err); if (!is_valid_ether_addr(hw->mac.san_addr)) { dev_warn(&pdev->dev, "invalid SAN MAC address %pM, falling back to LAN MAC\n", hw->mac.san_addr); ether_addr_copy(hw->mac.san_addr, hw->mac.addr); } dev_info(&pf->pdev->dev, "SAN MAC: %pM\n", hw->mac.san_addr); #endif /* I40E_FCOE */ pci_set_drvdata(pdev, pf); pci_save_state(pdev); #ifdef CONFIG_I40E_DCB err = i40e_init_pf_dcb(pf); if (err) { dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err); pf->flags &= ~I40E_FLAG_DCB_CAPABLE; /* Continue without DCB enabled */ } #endif /* CONFIG_I40E_DCB */ /* set up periodic task facility */ setup_timer(&pf->service_timer, i40e_service_timer, (unsigned long)pf); pf->service_timer_period = HZ; INIT_WORK(&pf->service_task, i40e_service_task); clear_bit(__I40E_SERVICE_SCHED, &pf->state); pf->flags |= I40E_FLAG_NEED_LINK_UPDATE; pf->link_check_timeout = jiffies; /* WoL defaults to disabled */ pf->wol_en = false; device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en); /* set up the main switch operations */ i40e_determine_queue_usage(pf); i40e_init_interrupt_scheme(pf); /* The number of VSIs reported by the FW is the minimum guaranteed * to us; HW supports far more and we share the remaining pool with * the other PFs. We allocate space for more than the guarantee with * the understanding that we might not get them all later. */ if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC) pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC; else pf->num_alloc_vsi = pf->hw.func_caps.num_vsis; /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */ len = sizeof(struct i40e_vsi *) * pf->num_alloc_vsi; pf->vsi = kzalloc(len, GFP_KERNEL); if (!pf->vsi) { err = -ENOMEM; goto err_switch_setup; } err = i40e_setup_pf_switch(pf, false); if (err) { dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err); goto err_vsis; } /* if FDIR VSI was set up, start it now */ for (i = 0; i < pf->num_alloc_vsi; i++) { if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) { i40e_vsi_open(pf->vsi[i]); break; } } /* driver is only interested in link up/down and module qualification * reports from firmware */ err = i40e_aq_set_phy_int_mask(&pf->hw, I40E_AQ_EVENT_LINK_UPDOWN | I40E_AQ_EVENT_MODULE_QUAL_FAIL, NULL); if (err) dev_info(&pf->pdev->dev, "set phy mask fail, aq_err %d\n", err); msleep(75); err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL); if (err) { dev_info(&pf->pdev->dev, "link restart failed, aq_err=%d\n", pf->hw.aq.asq_last_status); } /* The main driver is (mostly) up and happy. We need to set this state * before setting up the misc vector or we get a race and the vector * ends up disabled forever. */ clear_bit(__I40E_DOWN, &pf->state); /* In case of MSIX we are going to setup the misc vector right here * to handle admin queue events etc. In case of legacy and MSI * the misc functionality and queue processing is combined in * the same vector and that gets setup at open. */ if (pf->flags & I40E_FLAG_MSIX_ENABLED) { err = i40e_setup_misc_vector(pf); if (err) { dev_info(&pdev->dev, "setup of misc vector failed: %d\n", err); goto err_vsis; } } #ifdef CONFIG_PCI_IOV /* prep for VF support */ if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) && (pf->flags & I40E_FLAG_MSIX_ENABLED) && !test_bit(__I40E_BAD_EEPROM, &pf->state)) { u32 val; /* disable link interrupts for VFs */ val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM); val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK; wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val); i40e_flush(hw); if (pci_num_vf(pdev)) { dev_info(&pdev->dev, "Active VFs found, allocating resources.\n"); err = i40e_alloc_vfs(pf, pci_num_vf(pdev)); if (err) dev_info(&pdev->dev, "Error %d allocating resources for existing VFs\n", err); } } #endif /* CONFIG_PCI_IOV */ pfs_found++; i40e_dbg_pf_init(pf); /* tell the firmware that we're starting */ i40e_send_version(pf); /* since everything's happy, start the service_task timer */ mod_timer(&pf->service_timer, round_jiffies(jiffies + pf->service_timer_period)); #ifdef I40E_FCOE /* create FCoE interface */ i40e_fcoe_vsi_setup(pf); #endif /* Get the negotiated link width and speed from PCI config space */ pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA, &link_status); i40e_set_pci_config_data(hw, link_status); dev_info(&pdev->dev, "PCI-Express: %s %s\n", (hw->bus.speed == i40e_bus_speed_8000 ? "Speed 8.0GT/s" : hw->bus.speed == i40e_bus_speed_5000 ? "Speed 5.0GT/s" : hw->bus.speed == i40e_bus_speed_2500 ? "Speed 2.5GT/s" : "Unknown"), (hw->bus.width == i40e_bus_width_pcie_x8 ? "Width x8" : hw->bus.width == i40e_bus_width_pcie_x4 ? "Width x4" : hw->bus.width == i40e_bus_width_pcie_x2 ? "Width x2" : hw->bus.width == i40e_bus_width_pcie_x1 ? "Width x1" : "Unknown")); if (hw->bus.width < i40e_bus_width_pcie_x8 || hw->bus.speed < i40e_bus_speed_8000) { dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n"); dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n"); } /* print a string summarizing features */ i40e_print_features(pf); return 0; /* Unwind what we've done if something failed in the setup */ err_vsis: set_bit(__I40E_DOWN, &pf->state); i40e_clear_interrupt_scheme(pf); kfree(pf->vsi); err_switch_setup: i40e_reset_interrupt_capability(pf); del_timer_sync(&pf->service_timer); err_mac_addr: err_configure_lan_hmc: (void)i40e_shutdown_lan_hmc(hw); err_init_lan_hmc: kfree(pf->qp_pile); kfree(pf->irq_pile); err_sw_init: err_adminq_setup: (void)i40e_shutdown_adminq(hw); err_pf_reset: iounmap(hw->hw_addr); err_ioremap: kfree(pf); err_pf_alloc: pci_disable_pcie_error_reporting(pdev); pci_release_selected_regions(pdev, pci_select_bars(pdev, IORESOURCE_MEM)); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /** * i40e_remove - Device removal routine * @pdev: PCI device information struct * * i40e_remove is called by the PCI subsystem to alert the driver * that is should release a PCI device. This could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. **/ static void i40e_remove(struct pci_dev *pdev) { struct i40e_pf *pf = pci_get_drvdata(pdev); i40e_status ret_code; int i; i40e_dbg_pf_exit(pf); i40e_ptp_stop(pf); /* no more scheduling of any task */ set_bit(__I40E_DOWN, &pf->state); del_timer_sync(&pf->service_timer); cancel_work_sync(&pf->service_task); if (pf->flags & I40E_FLAG_SRIOV_ENABLED) { i40e_free_vfs(pf); pf->flags &= ~I40E_FLAG_SRIOV_ENABLED; } i40e_fdir_teardown(pf); /* If there is a switch structure or any orphans, remove them. * This will leave only the PF's VSI remaining. */ for (i = 0; i < I40E_MAX_VEB; i++) { if (!pf->veb[i]) continue; if (pf->veb[i]->uplink_seid == pf->mac_seid || pf->veb[i]->uplink_seid == 0) i40e_switch_branch_release(pf->veb[i]); } /* Now we can shutdown the PF's VSI, just before we kill * adminq and hmc. */ if (pf->vsi[pf->lan_vsi]) i40e_vsi_release(pf->vsi[pf->lan_vsi]); i40e_stop_misc_vector(pf); if (pf->flags & I40E_FLAG_MSIX_ENABLED) { synchronize_irq(pf->msix_entries[0].vector); free_irq(pf->msix_entries[0].vector, pf); } /* shutdown and destroy the HMC */ if (pf->hw.hmc.hmc_obj) { ret_code = i40e_shutdown_lan_hmc(&pf->hw); if (ret_code) dev_warn(&pdev->dev, "Failed to destroy the HMC resources: %d\n", ret_code); } /* shutdown the adminq */ ret_code = i40e_shutdown_adminq(&pf->hw); if (ret_code) dev_warn(&pdev->dev, "Failed to destroy the Admin Queue resources: %d\n", ret_code); /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */ i40e_clear_interrupt_scheme(pf); for (i = 0; i < pf->num_alloc_vsi; i++) { if (pf->vsi[i]) { i40e_vsi_clear_rings(pf->vsi[i]); i40e_vsi_clear(pf->vsi[i]); pf->vsi[i] = NULL; } } for (i = 0; i < I40E_MAX_VEB; i++) { kfree(pf->veb[i]); pf->veb[i] = NULL; } kfree(pf->qp_pile); kfree(pf->irq_pile); kfree(pf->vsi); iounmap(pf->hw.hw_addr); kfree(pf); pci_release_selected_regions(pdev, pci_select_bars(pdev, IORESOURCE_MEM)); pci_disable_pcie_error_reporting(pdev); pci_disable_device(pdev); } /** * i40e_pci_error_detected - warning that something funky happened in PCI land * @pdev: PCI device information struct * * Called to warn that something happened and the error handling steps * are in progress. Allows the driver to quiesce things, be ready for * remediation. **/ static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev, enum pci_channel_state error) { struct i40e_pf *pf = pci_get_drvdata(pdev); dev_info(&pdev->dev, "%s: error %d\n", __func__, error); /* shutdown all operations */ if (!test_bit(__I40E_SUSPENDED, &pf->state)) { rtnl_lock(); i40e_prep_for_reset(pf); rtnl_unlock(); } /* Request a slot reset */ return PCI_ERS_RESULT_NEED_RESET; } /** * i40e_pci_error_slot_reset - a PCI slot reset just happened * @pdev: PCI device information struct * * Called to find if the driver can work with the device now that * the pci slot has been reset. If a basic connection seems good * (registers are readable and have sane content) then return a * happy little PCI_ERS_RESULT_xxx. **/ static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev) { struct i40e_pf *pf = pci_get_drvdata(pdev); pci_ers_result_t result; int err; u32 reg; dev_info(&pdev->dev, "%s\n", __func__); if (pci_enable_device_mem(pdev)) { dev_info(&pdev->dev, "Cannot re-enable PCI device after reset.\n"); result = PCI_ERS_RESULT_DISCONNECT; } else { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); pci_wake_from_d3(pdev, false); reg = rd32(&pf->hw, I40E_GLGEN_RTRIG); if (reg == 0) result = PCI_ERS_RESULT_RECOVERED; else result = PCI_ERS_RESULT_DISCONNECT; } err = pci_cleanup_aer_uncorrect_error_status(pdev); if (err) { dev_info(&pdev->dev, "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", err); /* non-fatal, continue */ } return result; } /** * i40e_pci_error_resume - restart operations after PCI error recovery * @pdev: PCI device information struct * * Called to allow the driver to bring things back up after PCI error * and/or reset recovery has finished. **/ static void i40e_pci_error_resume(struct pci_dev *pdev) { struct i40e_pf *pf = pci_get_drvdata(pdev); dev_info(&pdev->dev, "%s\n", __func__); if (test_bit(__I40E_SUSPENDED, &pf->state)) return; rtnl_lock(); i40e_handle_reset_warning(pf); rtnl_lock(); } /** * i40e_shutdown - PCI callback for shutting down * @pdev: PCI device information struct **/ static void i40e_shutdown(struct pci_dev *pdev) { struct i40e_pf *pf = pci_get_drvdata(pdev); struct i40e_hw *hw = &pf->hw; set_bit(__I40E_SUSPENDED, &pf->state); set_bit(__I40E_DOWN, &pf->state); rtnl_lock(); i40e_prep_for_reset(pf); rtnl_unlock(); wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); if (system_state == SYSTEM_POWER_OFF) { pci_wake_from_d3(pdev, pf->wol_en); pci_set_power_state(pdev, PCI_D3hot); } } #ifdef CONFIG_PM /** * i40e_suspend - PCI callback for moving to D3 * @pdev: PCI device information struct **/ static int i40e_suspend(struct pci_dev *pdev, pm_message_t state) { struct i40e_pf *pf = pci_get_drvdata(pdev); struct i40e_hw *hw = &pf->hw; set_bit(__I40E_SUSPENDED, &pf->state); set_bit(__I40E_DOWN, &pf->state); del_timer_sync(&pf->service_timer); cancel_work_sync(&pf->service_task); rtnl_lock(); i40e_prep_for_reset(pf); rtnl_unlock(); wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0)); wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0)); pci_wake_from_d3(pdev, pf->wol_en); pci_set_power_state(pdev, PCI_D3hot); return 0; } /** * i40e_resume - PCI callback for waking up from D3 * @pdev: PCI device information struct **/ static int i40e_resume(struct pci_dev *pdev) { struct i40e_pf *pf = pci_get_drvdata(pdev); u32 err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); /* pci_restore_state() clears dev->state_saves, so * call pci_save_state() again to restore it. */ pci_save_state(pdev); err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "%s: Cannot enable PCI device from suspend\n", __func__); return err; } pci_set_master(pdev); /* no wakeup events while running */ pci_wake_from_d3(pdev, false); /* handling the reset will rebuild the device state */ if (test_and_clear_bit(__I40E_SUSPENDED, &pf->state)) { clear_bit(__I40E_DOWN, &pf->state); rtnl_lock(); i40e_reset_and_rebuild(pf, false); rtnl_unlock(); } return 0; } #endif static const struct pci_error_handlers i40e_err_handler = { .error_detected = i40e_pci_error_detected, .slot_reset = i40e_pci_error_slot_reset, .resume = i40e_pci_error_resume, }; static struct pci_driver i40e_driver = { .name = i40e_driver_name, .id_table = i40e_pci_tbl, .probe = i40e_probe, .remove = i40e_remove, #ifdef CONFIG_PM .suspend = i40e_suspend, .resume = i40e_resume, #endif .shutdown = i40e_shutdown, .err_handler = &i40e_err_handler, .sriov_configure = i40e_pci_sriov_configure, }; /** * i40e_init_module - Driver registration routine * * i40e_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. **/ static int __init i40e_init_module(void) { pr_info("%s: %s - version %s\n", i40e_driver_name, i40e_driver_string, i40e_driver_version_str); pr_info("%s: %s\n", i40e_driver_name, i40e_copyright); i40e_dbg_init(); return pci_register_driver(&i40e_driver); } module_init(i40e_init_module); /** * i40e_exit_module - Driver exit cleanup routine * * i40e_exit_module is called just before the driver is removed * from memory. **/ static void __exit i40e_exit_module(void) { pci_unregister_driver(&i40e_driver); i40e_dbg_exit(); } module_exit(i40e_exit_module);