/* * AMD Memory Encryption Support * * Copyright (C) 2016 Advanced Micro Devices, Inc. * * Author: Tom Lendacky * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define DISABLE_BRANCH_PROFILING #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm_internal.h" static char sme_cmdline_arg[] __initdata = "mem_encrypt"; static char sme_cmdline_on[] __initdata = "on"; static char sme_cmdline_off[] __initdata = "off"; /* * Since SME related variables are set early in the boot process they must * reside in the .data section so as not to be zeroed out when the .bss * section is later cleared. */ u64 sme_me_mask __section(.data) = 0; EXPORT_SYMBOL(sme_me_mask); DEFINE_STATIC_KEY_FALSE(sev_enable_key); EXPORT_SYMBOL_GPL(sev_enable_key); static bool sev_enabled __section(.data); /* Buffer used for early in-place encryption by BSP, no locking needed */ static char sme_early_buffer[PAGE_SIZE] __aligned(PAGE_SIZE); /* * This routine does not change the underlying encryption setting of the * page(s) that map this memory. It assumes that eventually the memory is * meant to be accessed as either encrypted or decrypted but the contents * are currently not in the desired state. * * This routine follows the steps outlined in the AMD64 Architecture * Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place. */ static void __init __sme_early_enc_dec(resource_size_t paddr, unsigned long size, bool enc) { void *src, *dst; size_t len; if (!sme_me_mask) return; wbinvd(); /* * There are limited number of early mapping slots, so map (at most) * one page at time. */ while (size) { len = min_t(size_t, sizeof(sme_early_buffer), size); /* * Create mappings for the current and desired format of * the memory. Use a write-protected mapping for the source. */ src = enc ? early_memremap_decrypted_wp(paddr, len) : early_memremap_encrypted_wp(paddr, len); dst = enc ? early_memremap_encrypted(paddr, len) : early_memremap_decrypted(paddr, len); /* * If a mapping can't be obtained to perform the operation, * then eventual access of that area in the desired mode * will cause a crash. */ BUG_ON(!src || !dst); /* * Use a temporary buffer, of cache-line multiple size, to * avoid data corruption as documented in the APM. */ memcpy(sme_early_buffer, src, len); memcpy(dst, sme_early_buffer, len); early_memunmap(dst, len); early_memunmap(src, len); paddr += len; size -= len; } } void __init sme_early_encrypt(resource_size_t paddr, unsigned long size) { __sme_early_enc_dec(paddr, size, true); } void __init sme_early_decrypt(resource_size_t paddr, unsigned long size) { __sme_early_enc_dec(paddr, size, false); } static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size, bool map) { unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET; pmdval_t pmd_flags, pmd; /* Use early_pmd_flags but remove the encryption mask */ pmd_flags = __sme_clr(early_pmd_flags); do { pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0; __early_make_pgtable((unsigned long)vaddr, pmd); vaddr += PMD_SIZE; paddr += PMD_SIZE; size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE; } while (size); __native_flush_tlb(); } void __init sme_unmap_bootdata(char *real_mode_data) { struct boot_params *boot_data; unsigned long cmdline_paddr; if (!sme_active()) return; /* Get the command line address before unmapping the real_mode_data */ boot_data = (struct boot_params *)real_mode_data; cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false); if (!cmdline_paddr) return; __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false); } void __init sme_map_bootdata(char *real_mode_data) { struct boot_params *boot_data; unsigned long cmdline_paddr; if (!sme_active()) return; __sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true); /* Get the command line address after mapping the real_mode_data */ boot_data = (struct boot_params *)real_mode_data; cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32); if (!cmdline_paddr) return; __sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true); } void __init sme_early_init(void) { unsigned int i; if (!sme_me_mask) return; early_pmd_flags = __sme_set(early_pmd_flags); __supported_pte_mask = __sme_set(__supported_pte_mask); /* Update the protection map with memory encryption mask */ for (i = 0; i < ARRAY_SIZE(protection_map); i++) protection_map[i] = pgprot_encrypted(protection_map[i]); if (sev_active()) swiotlb_force = SWIOTLB_FORCE; } static void *sev_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { unsigned long dma_mask; unsigned int order; struct page *page; void *vaddr = NULL; dma_mask = dma_alloc_coherent_mask(dev, gfp); order = get_order(size); /* * Memory will be memset to zero after marking decrypted, so don't * bother clearing it before. */ gfp &= ~__GFP_ZERO; page = alloc_pages_node(dev_to_node(dev), gfp, order); if (page) { dma_addr_t addr; /* * Since we will be clearing the encryption bit, check the * mask with it already cleared. */ addr = __sme_clr(phys_to_dma(dev, page_to_phys(page))); if ((addr + size) > dma_mask) { __free_pages(page, get_order(size)); } else { vaddr = page_address(page); *dma_handle = addr; } } if (!vaddr) vaddr = swiotlb_alloc_coherent(dev, size, dma_handle, gfp); if (!vaddr) return NULL; /* Clear the SME encryption bit for DMA use if not swiotlb area */ if (!is_swiotlb_buffer(dma_to_phys(dev, *dma_handle))) { set_memory_decrypted((unsigned long)vaddr, 1 << order); memset(vaddr, 0, PAGE_SIZE << order); *dma_handle = __sme_clr(*dma_handle); } return vaddr; } static void sev_free(struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle, unsigned long attrs) { /* Set the SME encryption bit for re-use if not swiotlb area */ if (!is_swiotlb_buffer(dma_to_phys(dev, dma_handle))) set_memory_encrypted((unsigned long)vaddr, 1 << get_order(size)); swiotlb_free_coherent(dev, size, vaddr, dma_handle); } static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc) { pgprot_t old_prot, new_prot; unsigned long pfn, pa, size; pte_t new_pte; switch (level) { case PG_LEVEL_4K: pfn = pte_pfn(*kpte); old_prot = pte_pgprot(*kpte); break; case PG_LEVEL_2M: pfn = pmd_pfn(*(pmd_t *)kpte); old_prot = pmd_pgprot(*(pmd_t *)kpte); break; case PG_LEVEL_1G: pfn = pud_pfn(*(pud_t *)kpte); old_prot = pud_pgprot(*(pud_t *)kpte); break; default: return; } new_prot = old_prot; if (enc) pgprot_val(new_prot) |= _PAGE_ENC; else pgprot_val(new_prot) &= ~_PAGE_ENC; /* If prot is same then do nothing. */ if (pgprot_val(old_prot) == pgprot_val(new_prot)) return; pa = pfn << page_level_shift(level); size = page_level_size(level); /* * We are going to perform in-place en-/decryption and change the * physical page attribute from C=1 to C=0 or vice versa. Flush the * caches to ensure that data gets accessed with the correct C-bit. */ clflush_cache_range(__va(pa), size); /* Encrypt/decrypt the contents in-place */ if (enc) sme_early_encrypt(pa, size); else sme_early_decrypt(pa, size); /* Change the page encryption mask. */ new_pte = pfn_pte(pfn, new_prot); set_pte_atomic(kpte, new_pte); } static int __init early_set_memory_enc_dec(unsigned long vaddr, unsigned long size, bool enc) { unsigned long vaddr_end, vaddr_next; unsigned long psize, pmask; int split_page_size_mask; int level, ret; pte_t *kpte; vaddr_next = vaddr; vaddr_end = vaddr + size; for (; vaddr < vaddr_end; vaddr = vaddr_next) { kpte = lookup_address(vaddr, &level); if (!kpte || pte_none(*kpte)) { ret = 1; goto out; } if (level == PG_LEVEL_4K) { __set_clr_pte_enc(kpte, level, enc); vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE; continue; } psize = page_level_size(level); pmask = page_level_mask(level); /* * Check whether we can change the large page in one go. * We request a split when the address is not aligned and * the number of pages to set/clear encryption bit is smaller * than the number of pages in the large page. */ if (vaddr == (vaddr & pmask) && ((vaddr_end - vaddr) >= psize)) { __set_clr_pte_enc(kpte, level, enc); vaddr_next = (vaddr & pmask) + psize; continue; } /* * The virtual address is part of a larger page, create the next * level page table mapping (4K or 2M). If it is part of a 2M * page then we request a split of the large page into 4K * chunks. A 1GB large page is split into 2M pages, resp. */ if (level == PG_LEVEL_2M) split_page_size_mask = 0; else split_page_size_mask = 1 << PG_LEVEL_2M; kernel_physical_mapping_init(__pa(vaddr & pmask), __pa((vaddr_end & pmask) + psize), split_page_size_mask); } ret = 0; out: __flush_tlb_all(); return ret; } int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size) { return early_set_memory_enc_dec(vaddr, size, false); } int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size) { return early_set_memory_enc_dec(vaddr, size, true); } /* * SME and SEV are very similar but they are not the same, so there are * times that the kernel will need to distinguish between SME and SEV. The * sme_active() and sev_active() functions are used for this. When a * distinction isn't needed, the mem_encrypt_active() function can be used. * * The trampoline code is a good example for this requirement. Before * paging is activated, SME will access all memory as decrypted, but SEV * will access all memory as encrypted. So, when APs are being brought * up under SME the trampoline area cannot be encrypted, whereas under SEV * the trampoline area must be encrypted. */ bool sme_active(void) { return sme_me_mask && !sev_enabled; } EXPORT_SYMBOL(sme_active); bool sev_active(void) { return sme_me_mask && sev_enabled; } EXPORT_SYMBOL(sev_active); static const struct dma_map_ops sev_dma_ops = { .alloc = sev_alloc, .free = sev_free, .map_page = swiotlb_map_page, .unmap_page = swiotlb_unmap_page, .map_sg = swiotlb_map_sg_attrs, .unmap_sg = swiotlb_unmap_sg_attrs, .sync_single_for_cpu = swiotlb_sync_single_for_cpu, .sync_single_for_device = swiotlb_sync_single_for_device, .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu, .sync_sg_for_device = swiotlb_sync_sg_for_device, .mapping_error = swiotlb_dma_mapping_error, }; /* Architecture __weak replacement functions */ void __init mem_encrypt_init(void) { if (!sme_me_mask) return; /* Call into SWIOTLB to update the SWIOTLB DMA buffers */ swiotlb_update_mem_attributes(); /* * With SEV, DMA operations cannot use encryption. New DMA ops * are required in order to mark the DMA areas as decrypted or * to use bounce buffers. */ if (sev_active()) dma_ops = &sev_dma_ops; /* * With SEV, we need to unroll the rep string I/O instructions. */ if (sev_active()) static_branch_enable(&sev_enable_key); pr_info("AMD %s active\n", sev_active() ? "Secure Encrypted Virtualization (SEV)" : "Secure Memory Encryption (SME)"); } void swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { WARN(PAGE_ALIGN(size) != size, "size is not page-aligned (%#lx)\n", size); /* Make the SWIOTLB buffer area decrypted */ set_memory_decrypted((unsigned long)vaddr, size >> PAGE_SHIFT); } struct sme_populate_pgd_data { void *pgtable_area; pgd_t *pgd; pmdval_t pmd_flags; pteval_t pte_flags; unsigned long paddr; unsigned long vaddr; unsigned long vaddr_end; }; static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) { unsigned long pgd_start, pgd_end, pgd_size; pgd_t *pgd_p; pgd_start = ppd->vaddr & PGDIR_MASK; pgd_end = ppd->vaddr_end & PGDIR_MASK; pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); pgd_p = ppd->pgd + pgd_index(ppd->vaddr); memset(pgd_p, 0, pgd_size); } #define PGD_FLAGS _KERNPG_TABLE_NOENC #define P4D_FLAGS _KERNPG_TABLE_NOENC #define PUD_FLAGS _KERNPG_TABLE_NOENC #define PMD_FLAGS _KERNPG_TABLE_NOENC #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) #define PMD_FLAGS_DEC PMD_FLAGS_LARGE #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ (_PAGE_PAT | _PAGE_PWT)) #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) #define PTE_FLAGS_DEC PTE_FLAGS #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ (_PAGE_PAT | _PAGE_PWT)) #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) static pmd_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) { pgd_t *pgd_p; p4d_t *p4d_p; pud_t *pud_p; pmd_t *pmd_p; pgd_p = ppd->pgd + pgd_index(ppd->vaddr); if (native_pgd_val(*pgd_p)) { if (IS_ENABLED(CONFIG_X86_5LEVEL)) p4d_p = (p4d_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK); else pud_p = (pud_t *)(native_pgd_val(*pgd_p) & ~PTE_FLAGS_MASK); } else { pgd_t pgd; if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_p = ppd->pgtable_area; memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D); ppd->pgtable_area += sizeof(*p4d_p) * PTRS_PER_P4D; pgd = native_make_pgd((pgdval_t)p4d_p + PGD_FLAGS); } else { pud_p = ppd->pgtable_area; memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD; pgd = native_make_pgd((pgdval_t)pud_p + PGD_FLAGS); } native_set_pgd(pgd_p, pgd); } if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_p += p4d_index(ppd->vaddr); if (native_p4d_val(*p4d_p)) { pud_p = (pud_t *)(native_p4d_val(*p4d_p) & ~PTE_FLAGS_MASK); } else { p4d_t p4d; pud_p = ppd->pgtable_area; memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD); ppd->pgtable_area += sizeof(*pud_p) * PTRS_PER_PUD; p4d = native_make_p4d((pudval_t)pud_p + P4D_FLAGS); native_set_p4d(p4d_p, p4d); } } pud_p += pud_index(ppd->vaddr); if (native_pud_val(*pud_p)) { if (native_pud_val(*pud_p) & _PAGE_PSE) return NULL; pmd_p = (pmd_t *)(native_pud_val(*pud_p) & ~PTE_FLAGS_MASK); } else { pud_t pud; pmd_p = ppd->pgtable_area; memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD); ppd->pgtable_area += sizeof(*pmd_p) * PTRS_PER_PMD; pud = native_make_pud((pmdval_t)pmd_p + PUD_FLAGS); native_set_pud(pud_p, pud); } return pmd_p; } static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) { pmd_t *pmd_p; pmd_p = sme_prepare_pgd(ppd); if (!pmd_p) return; pmd_p += pmd_index(ppd->vaddr); if (!native_pmd_val(*pmd_p) || !(native_pmd_val(*pmd_p) & _PAGE_PSE)) native_set_pmd(pmd_p, native_make_pmd(ppd->paddr | ppd->pmd_flags)); } static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) { pmd_t *pmd_p; pte_t *pte_p; pmd_p = sme_prepare_pgd(ppd); if (!pmd_p) return; pmd_p += pmd_index(ppd->vaddr); if (native_pmd_val(*pmd_p)) { if (native_pmd_val(*pmd_p) & _PAGE_PSE) return; pte_p = (pte_t *)(native_pmd_val(*pmd_p) & ~PTE_FLAGS_MASK); } else { pmd_t pmd; pte_p = ppd->pgtable_area; memset(pte_p, 0, sizeof(*pte_p) * PTRS_PER_PTE); ppd->pgtable_area += sizeof(*pte_p) * PTRS_PER_PTE; pmd = native_make_pmd((pteval_t)pte_p + PMD_FLAGS); native_set_pmd(pmd_p, pmd); } pte_p += pte_index(ppd->vaddr); if (!native_pte_val(*pte_p)) native_set_pte(pte_p, native_make_pte(ppd->paddr | ppd->pte_flags)); } static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) { while (ppd->vaddr < ppd->vaddr_end) { sme_populate_pgd_large(ppd); ppd->vaddr += PMD_PAGE_SIZE; ppd->paddr += PMD_PAGE_SIZE; } } static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) { while (ppd->vaddr < ppd->vaddr_end) { sme_populate_pgd(ppd); ppd->vaddr += PAGE_SIZE; ppd->paddr += PAGE_SIZE; } } static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, pmdval_t pmd_flags, pteval_t pte_flags) { unsigned long vaddr_end; ppd->pmd_flags = pmd_flags; ppd->pte_flags = pte_flags; /* Save original end value since we modify the struct value */ vaddr_end = ppd->vaddr_end; /* If start is not 2MB aligned, create PTE entries */ ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); __sme_map_range_pte(ppd); /* Create PMD entries */ ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; __sme_map_range_pmd(ppd); /* If end is not 2MB aligned, create PTE entries */ ppd->vaddr_end = vaddr_end; __sme_map_range_pte(ppd); } static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); } static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); } static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) { __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); } static unsigned long __init sme_pgtable_calc(unsigned long len) { unsigned long p4d_size, pud_size, pmd_size, pte_size; unsigned long total; /* * Perform a relatively simplistic calculation of the pagetable * entries that are needed. Those mappings will be covered mostly * by 2MB PMD entries so we can conservatively calculate the required * number of P4D, PUD and PMD structures needed to perform the * mappings. For mappings that are not 2MB aligned, PTE mappings * would be needed for the start and end portion of the address range * that fall outside of the 2MB alignment. This results in, at most, * two extra pages to hold PTE entries for each range that is mapped. * Incrementing the count for each covers the case where the addresses * cross entries. */ if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1; p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D; pud_size = (ALIGN(len, P4D_SIZE) / P4D_SIZE) + 1; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } else { p4d_size = 0; pud_size = (ALIGN(len, PGDIR_SIZE) / PGDIR_SIZE) + 1; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } pmd_size = (ALIGN(len, PUD_SIZE) / PUD_SIZE) + 1; pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD; pte_size = 2 * sizeof(pte_t) * PTRS_PER_PTE; total = p4d_size + pud_size + pmd_size + pte_size; /* * Now calculate the added pagetable structures needed to populate * the new pagetables. */ if (IS_ENABLED(CONFIG_X86_5LEVEL)) { p4d_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE; p4d_size *= sizeof(p4d_t) * PTRS_PER_P4D; pud_size = ALIGN(total, P4D_SIZE) / P4D_SIZE; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } else { p4d_size = 0; pud_size = ALIGN(total, PGDIR_SIZE) / PGDIR_SIZE; pud_size *= sizeof(pud_t) * PTRS_PER_PUD; } pmd_size = ALIGN(total, PUD_SIZE) / PUD_SIZE; pmd_size *= sizeof(pmd_t) * PTRS_PER_PMD; total += p4d_size + pud_size + pmd_size; return total; } void __init sme_encrypt_kernel(void) { unsigned long workarea_start, workarea_end, workarea_len; unsigned long execute_start, execute_end, execute_len; unsigned long kernel_start, kernel_end, kernel_len; struct sme_populate_pgd_data ppd; unsigned long pgtable_area_len; unsigned long decrypted_base; if (!sme_active()) return; /* * Prepare for encrypting the kernel by building new pagetables with * the necessary attributes needed to encrypt the kernel in place. * * One range of virtual addresses will map the memory occupied * by the kernel as encrypted. * * Another range of virtual addresses will map the memory occupied * by the kernel as decrypted and write-protected. * * The use of write-protect attribute will prevent any of the * memory from being cached. */ /* Physical addresses gives us the identity mapped virtual addresses */ kernel_start = __pa_symbol(_text); kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); kernel_len = kernel_end - kernel_start; /* Set the encryption workarea to be immediately after the kernel */ workarea_start = kernel_end; /* * Calculate required number of workarea bytes needed: * executable encryption area size: * stack page (PAGE_SIZE) * encryption routine page (PAGE_SIZE) * intermediate copy buffer (PMD_PAGE_SIZE) * pagetable structures for the encryption of the kernel * pagetable structures for workarea (in case not currently mapped) */ execute_start = workarea_start; execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; execute_len = execute_end - execute_start; /* * One PGD for both encrypted and decrypted mappings and a set of * PUDs and PMDs for each of the encrypted and decrypted mappings. */ pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; /* PUDs and PMDs needed in the current pagetables for the workarea */ pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); /* * The total workarea includes the executable encryption area and * the pagetable area. The start of the workarea is already 2MB * aligned, align the end of the workarea on a 2MB boundary so that * we don't try to create/allocate PTE entries from the workarea * before it is mapped. */ workarea_len = execute_len + pgtable_area_len; workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); /* * Set the address to the start of where newly created pagetable * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable * structures are created when the workarea is added to the current * pagetables and when the new encrypted and decrypted kernel * mappings are populated. */ ppd.pgtable_area = (void *)execute_end; /* * Make sure the current pagetable structure has entries for * addressing the workarea. */ ppd.pgd = (pgd_t *)native_read_cr3_pa(); ppd.paddr = workarea_start; ppd.vaddr = workarea_start; ppd.vaddr_end = workarea_end; sme_map_range_decrypted(&ppd); /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); /* * A new pagetable structure is being built to allow for the kernel * to be encrypted. It starts with an empty PGD that will then be * populated with new PUDs and PMDs as the encrypted and decrypted * kernel mappings are created. */ ppd.pgd = ppd.pgtable_area; memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; /* * A different PGD index/entry must be used to get different * pagetable entries for the decrypted mapping. Choose the next * PGD index and convert it to a virtual address to be used as * the base of the mapping. */ decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); decrypted_base <<= PGDIR_SHIFT; /* Add encrypted kernel (identity) mappings */ ppd.paddr = kernel_start; ppd.vaddr = kernel_start; ppd.vaddr_end = kernel_end; sme_map_range_encrypted(&ppd); /* Add decrypted, write-protected kernel (non-identity) mappings */ ppd.paddr = kernel_start; ppd.vaddr = kernel_start + decrypted_base; ppd.vaddr_end = kernel_end + decrypted_base; sme_map_range_decrypted_wp(&ppd); /* Add decrypted workarea mappings to both kernel mappings */ ppd.paddr = workarea_start; ppd.vaddr = workarea_start; ppd.vaddr_end = workarea_end; sme_map_range_decrypted(&ppd); ppd.paddr = workarea_start; ppd.vaddr = workarea_start + decrypted_base; ppd.vaddr_end = workarea_end + decrypted_base; sme_map_range_decrypted(&ppd); /* Perform the encryption */ sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, kernel_len, workarea_start, (unsigned long)ppd.pgd); /* * At this point we are running encrypted. Remove the mappings for * the decrypted areas - all that is needed for this is to remove * the PGD entry/entries. */ ppd.vaddr = kernel_start + decrypted_base; ppd.vaddr_end = kernel_end + decrypted_base; sme_clear_pgd(&ppd); ppd.vaddr = workarea_start + decrypted_base; ppd.vaddr_end = workarea_end + decrypted_base; sme_clear_pgd(&ppd); /* Flush the TLB - no globals so cr3 is enough */ native_write_cr3(__native_read_cr3()); } void __init __nostackprotector sme_enable(struct boot_params *bp) { const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; unsigned int eax, ebx, ecx, edx; unsigned long feature_mask; bool active_by_default; unsigned long me_mask; char buffer[16]; u64 msr; /* Check for the SME/SEV support leaf */ eax = 0x80000000; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); if (eax < 0x8000001f) return; #define AMD_SME_BIT BIT(0) #define AMD_SEV_BIT BIT(1) /* * Set the feature mask (SME or SEV) based on whether we are * running under a hypervisor. */ eax = 1; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT; /* * Check for the SME/SEV feature: * CPUID Fn8000_001F[EAX] * - Bit 0 - Secure Memory Encryption support * - Bit 1 - Secure Encrypted Virtualization support * CPUID Fn8000_001F[EBX] * - Bits 5:0 - Pagetable bit position used to indicate encryption */ eax = 0x8000001f; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); if (!(eax & feature_mask)) return; me_mask = 1UL << (ebx & 0x3f); /* Check if memory encryption is enabled */ if (feature_mask == AMD_SME_BIT) { /* For SME, check the SYSCFG MSR */ msr = __rdmsr(MSR_K8_SYSCFG); if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT)) return; } else { /* For SEV, check the SEV MSR */ msr = __rdmsr(MSR_AMD64_SEV); if (!(msr & MSR_AMD64_SEV_ENABLED)) return; /* SEV state cannot be controlled by a command line option */ sme_me_mask = me_mask; sev_enabled = true; return; } /* * Fixups have not been applied to phys_base yet and we're running * identity mapped, so we must obtain the address to the SME command * line argument data using rip-relative addressing. */ asm ("lea sme_cmdline_arg(%%rip), %0" : "=r" (cmdline_arg) : "p" (sme_cmdline_arg)); asm ("lea sme_cmdline_on(%%rip), %0" : "=r" (cmdline_on) : "p" (sme_cmdline_on)); asm ("lea sme_cmdline_off(%%rip), %0" : "=r" (cmdline_off) : "p" (sme_cmdline_off)); if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) active_by_default = true; else active_by_default = false; cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | ((u64)bp->ext_cmd_line_ptr << 32)); cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)); if (!strncmp(buffer, cmdline_on, sizeof(buffer))) sme_me_mask = me_mask; else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) sme_me_mask = 0; else sme_me_mask = active_by_default ? me_mask : 0; }