/* * AMD 10Gb Ethernet driver * * This file is available to you under your choice of the following two * licenses: * * License 1: GPLv2 * * Copyright (c) 2014 Advanced Micro Devices, Inc. * * This file is free software; you may copy, redistribute and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or (at * your option) any later version. * * This file is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * * License 2: Modified BSD * * Copyright (c) 2014 Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This file incorporates work covered by the following copyright and * permission notice: * The Synopsys DWC ETHER XGMAC Software Driver and documentation * (hereinafter "Software") is an unsupported proprietary work of Synopsys, * Inc. unless otherwise expressly agreed to in writing between Synopsys * and you. * * The Software IS NOT an item of Licensed Software or Licensed Product * under any End User Software License Agreement or Agreement for Licensed * Product with Synopsys or any supplement thereto. Permission is hereby * granted, free of charge, to any person obtaining a copy of this software * annotated with this license and the Software, to deal in the Software * without restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is furnished * to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" * BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include "xgbe.h" #include "xgbe-common.h" static int xgbe_one_poll(struct napi_struct *, int); static int xgbe_all_poll(struct napi_struct *, int); static void xgbe_set_rx_mode(struct net_device *); static int xgbe_alloc_channels(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel_mem, *channel; struct xgbe_ring *tx_ring, *rx_ring; unsigned int count, i; int ret = -ENOMEM; count = max_t(unsigned int, pdata->tx_ring_count, pdata->rx_ring_count); channel_mem = kcalloc(count, sizeof(struct xgbe_channel), GFP_KERNEL); if (!channel_mem) goto err_channel; tx_ring = kcalloc(pdata->tx_ring_count, sizeof(struct xgbe_ring), GFP_KERNEL); if (!tx_ring) goto err_tx_ring; rx_ring = kcalloc(pdata->rx_ring_count, sizeof(struct xgbe_ring), GFP_KERNEL); if (!rx_ring) goto err_rx_ring; for (i = 0, channel = channel_mem; i < count; i++, channel++) { snprintf(channel->name, sizeof(channel->name), "channel-%d", i); channel->pdata = pdata; channel->queue_index = i; channel->dma_regs = pdata->xgmac_regs + DMA_CH_BASE + (DMA_CH_INC * i); if (pdata->per_channel_irq) { /* Get the DMA interrupt (offset 1) */ ret = platform_get_irq(pdata->pdev, i + 1); if (ret < 0) { netdev_err(pdata->netdev, "platform_get_irq %u failed\n", i + 1); goto err_irq; } channel->dma_irq = ret; } if (i < pdata->tx_ring_count) { spin_lock_init(&tx_ring->lock); channel->tx_ring = tx_ring++; } if (i < pdata->rx_ring_count) { spin_lock_init(&rx_ring->lock); channel->rx_ring = rx_ring++; } DBGPR(" %s: queue=%u, dma_regs=%p, dma_irq=%d, tx=%p, rx=%p\n", channel->name, channel->queue_index, channel->dma_regs, channel->dma_irq, channel->tx_ring, channel->rx_ring); } pdata->channel = channel_mem; pdata->channel_count = count; return 0; err_irq: kfree(rx_ring); err_rx_ring: kfree(tx_ring); err_tx_ring: kfree(channel_mem); err_channel: return ret; } static void xgbe_free_channels(struct xgbe_prv_data *pdata) { if (!pdata->channel) return; kfree(pdata->channel->rx_ring); kfree(pdata->channel->tx_ring); kfree(pdata->channel); pdata->channel = NULL; pdata->channel_count = 0; } static inline unsigned int xgbe_tx_avail_desc(struct xgbe_ring *ring) { return (ring->rdesc_count - (ring->cur - ring->dirty)); } static int xgbe_calc_rx_buf_size(struct net_device *netdev, unsigned int mtu) { unsigned int rx_buf_size; if (mtu > XGMAC_JUMBO_PACKET_MTU) { netdev_alert(netdev, "MTU exceeds maximum supported value\n"); return -EINVAL; } rx_buf_size = mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; rx_buf_size = clamp_val(rx_buf_size, XGBE_RX_MIN_BUF_SIZE, PAGE_SIZE); rx_buf_size = (rx_buf_size + XGBE_RX_BUF_ALIGN - 1) & ~(XGBE_RX_BUF_ALIGN - 1); return rx_buf_size; } static void xgbe_enable_rx_tx_ints(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_channel *channel; enum xgbe_int int_id; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (channel->tx_ring && channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI_RI; else if (channel->tx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI; else if (channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_RI; else continue; hw_if->enable_int(channel, int_id); } } static void xgbe_disable_rx_tx_ints(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_channel *channel; enum xgbe_int int_id; unsigned int i; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (channel->tx_ring && channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI_RI; else if (channel->tx_ring) int_id = XGMAC_INT_DMA_CH_SR_TI; else if (channel->rx_ring) int_id = XGMAC_INT_DMA_CH_SR_RI; else continue; hw_if->disable_int(channel, int_id); } } static irqreturn_t xgbe_isr(int irq, void *data) { struct xgbe_prv_data *pdata = data; struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_channel *channel; unsigned int dma_isr, dma_ch_isr; unsigned int mac_isr, mac_tssr; unsigned int i; /* The DMA interrupt status register also reports MAC and MTL * interrupts. So for polling mode, we just need to check for * this register to be non-zero */ dma_isr = XGMAC_IOREAD(pdata, DMA_ISR); if (!dma_isr) goto isr_done; DBGPR(" DMA_ISR = %08x\n", dma_isr); for (i = 0; i < pdata->channel_count; i++) { if (!(dma_isr & (1 << i))) continue; channel = pdata->channel + i; dma_ch_isr = XGMAC_DMA_IOREAD(channel, DMA_CH_SR); DBGPR(" DMA_CH%u_ISR = %08x\n", i, dma_ch_isr); /* If we get a TI or RI interrupt that means per channel DMA * interrupts are not enabled, so we use the private data napi * structure, not the per channel napi structure */ if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, TI) || XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, RI)) { if (napi_schedule_prep(&pdata->napi)) { /* Disable Tx and Rx interrupts */ xgbe_disable_rx_tx_ints(pdata); /* Turn on polling */ __napi_schedule(&pdata->napi); } } /* Restart the device on a Fatal Bus Error */ if (XGMAC_GET_BITS(dma_ch_isr, DMA_CH_SR, FBE)) schedule_work(&pdata->restart_work); /* Clear all interrupt signals */ XGMAC_DMA_IOWRITE(channel, DMA_CH_SR, dma_ch_isr); } if (XGMAC_GET_BITS(dma_isr, DMA_ISR, MACIS)) { mac_isr = XGMAC_IOREAD(pdata, MAC_ISR); if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCTXIS)) hw_if->tx_mmc_int(pdata); if (XGMAC_GET_BITS(mac_isr, MAC_ISR, MMCRXIS)) hw_if->rx_mmc_int(pdata); if (XGMAC_GET_BITS(mac_isr, MAC_ISR, TSIS)) { mac_tssr = XGMAC_IOREAD(pdata, MAC_TSSR); if (XGMAC_GET_BITS(mac_tssr, MAC_TSSR, TXTSC)) { /* Read Tx Timestamp to clear interrupt */ pdata->tx_tstamp = hw_if->get_tx_tstamp(pdata); schedule_work(&pdata->tx_tstamp_work); } } } DBGPR(" DMA_ISR = %08x\n", XGMAC_IOREAD(pdata, DMA_ISR)); isr_done: return IRQ_HANDLED; } static irqreturn_t xgbe_dma_isr(int irq, void *data) { struct xgbe_channel *channel = data; /* Per channel DMA interrupts are enabled, so we use the per * channel napi structure and not the private data napi structure */ if (napi_schedule_prep(&channel->napi)) { /* Disable Tx and Rx interrupts */ disable_irq(channel->dma_irq); /* Turn on polling */ __napi_schedule(&channel->napi); } return IRQ_HANDLED; } static enum hrtimer_restart xgbe_tx_timer(struct hrtimer *timer) { struct xgbe_channel *channel = container_of(timer, struct xgbe_channel, tx_timer); struct xgbe_ring *ring = channel->tx_ring; struct xgbe_prv_data *pdata = channel->pdata; struct napi_struct *napi; unsigned long flags; DBGPR("-->xgbe_tx_timer\n"); napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi; spin_lock_irqsave(&ring->lock, flags); if (napi_schedule_prep(napi)) { /* Disable Tx and Rx interrupts */ if (pdata->per_channel_irq) disable_irq(channel->dma_irq); else xgbe_disable_rx_tx_ints(pdata); /* Turn on polling */ __napi_schedule(napi); } channel->tx_timer_active = 0; spin_unlock_irqrestore(&ring->lock, flags); DBGPR("<--xgbe_tx_timer\n"); return HRTIMER_NORESTART; } static void xgbe_init_tx_timers(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; DBGPR("-->xgbe_init_tx_timers\n"); channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; DBGPR(" %s adding tx timer\n", channel->name); hrtimer_init(&channel->tx_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); channel->tx_timer.function = xgbe_tx_timer; } DBGPR("<--xgbe_init_tx_timers\n"); } static void xgbe_stop_tx_timers(struct xgbe_prv_data *pdata) { struct xgbe_channel *channel; unsigned int i; DBGPR("-->xgbe_stop_tx_timers\n"); channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (!channel->tx_ring) break; DBGPR(" %s deleting tx timer\n", channel->name); channel->tx_timer_active = 0; hrtimer_cancel(&channel->tx_timer); } DBGPR("<--xgbe_stop_tx_timers\n"); } void xgbe_get_all_hw_features(struct xgbe_prv_data *pdata) { unsigned int mac_hfr0, mac_hfr1, mac_hfr2; struct xgbe_hw_features *hw_feat = &pdata->hw_feat; DBGPR("-->xgbe_get_all_hw_features\n"); mac_hfr0 = XGMAC_IOREAD(pdata, MAC_HWF0R); mac_hfr1 = XGMAC_IOREAD(pdata, MAC_HWF1R); mac_hfr2 = XGMAC_IOREAD(pdata, MAC_HWF2R); memset(hw_feat, 0, sizeof(*hw_feat)); hw_feat->version = XGMAC_IOREAD(pdata, MAC_VR); /* Hardware feature register 0 */ hw_feat->gmii = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, GMIISEL); hw_feat->vlhash = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, VLHASH); hw_feat->sma = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SMASEL); hw_feat->rwk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RWKSEL); hw_feat->mgk = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MGKSEL); hw_feat->mmc = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, MMCSEL); hw_feat->aoe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, ARPOFFSEL); hw_feat->ts = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSEL); hw_feat->eee = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, EEESEL); hw_feat->tx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TXCOESEL); hw_feat->rx_coe = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, RXCOESEL); hw_feat->addn_mac = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, ADDMACADRSEL); hw_feat->ts_src = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, TSSTSSEL); hw_feat->sa_vlan_ins = XGMAC_GET_BITS(mac_hfr0, MAC_HWF0R, SAVLANINS); /* Hardware feature register 1 */ hw_feat->rx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, RXFIFOSIZE); hw_feat->tx_fifo_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, TXFIFOSIZE); hw_feat->dcb = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DCBEN); hw_feat->sph = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, SPHEN); hw_feat->tso = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, TSOEN); hw_feat->dma_debug = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, DBGMEMA); hw_feat->tc_cnt = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, NUMTC); hw_feat->hash_table_size = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, HASHTBLSZ); hw_feat->l3l4_filter_num = XGMAC_GET_BITS(mac_hfr1, MAC_HWF1R, L3L4FNUM); /* Hardware feature register 2 */ hw_feat->rx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXQCNT); hw_feat->tx_q_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXQCNT); hw_feat->rx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, RXCHCNT); hw_feat->tx_ch_cnt = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, TXCHCNT); hw_feat->pps_out_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, PPSOUTNUM); hw_feat->aux_snap_num = XGMAC_GET_BITS(mac_hfr2, MAC_HWF2R, AUXSNAPNUM); /* Translate the Hash Table size into actual number */ switch (hw_feat->hash_table_size) { case 0: break; case 1: hw_feat->hash_table_size = 64; break; case 2: hw_feat->hash_table_size = 128; break; case 3: hw_feat->hash_table_size = 256; break; } /* The Queue and Channel counts are zero based so increment them * to get the actual number */ hw_feat->rx_q_cnt++; hw_feat->tx_q_cnt++; hw_feat->rx_ch_cnt++; hw_feat->tx_ch_cnt++; DBGPR("<--xgbe_get_all_hw_features\n"); } static void xgbe_napi_enable(struct xgbe_prv_data *pdata, unsigned int add) { struct xgbe_channel *channel; unsigned int i; if (pdata->per_channel_irq) { channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { if (add) netif_napi_add(pdata->netdev, &channel->napi, xgbe_one_poll, NAPI_POLL_WEIGHT); napi_enable(&channel->napi); } } else { if (add) netif_napi_add(pdata->netdev, &pdata->napi, xgbe_all_poll, NAPI_POLL_WEIGHT); napi_enable(&pdata->napi); } } static void xgbe_napi_disable(struct xgbe_prv_data *pdata, unsigned int del) { struct xgbe_channel *channel; unsigned int i; if (pdata->per_channel_irq) { channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { napi_disable(&channel->napi); if (del) netif_napi_del(&channel->napi); } } else { napi_disable(&pdata->napi); if (del) netif_napi_del(&pdata->napi); } } void xgbe_init_tx_coalesce(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->xgbe_init_tx_coalesce\n"); pdata->tx_usecs = XGMAC_INIT_DMA_TX_USECS; pdata->tx_frames = XGMAC_INIT_DMA_TX_FRAMES; hw_if->config_tx_coalesce(pdata); DBGPR("<--xgbe_init_tx_coalesce\n"); } void xgbe_init_rx_coalesce(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->xgbe_init_rx_coalesce\n"); pdata->rx_riwt = hw_if->usec_to_riwt(pdata, XGMAC_INIT_DMA_RX_USECS); pdata->rx_frames = XGMAC_INIT_DMA_RX_FRAMES; hw_if->config_rx_coalesce(pdata); DBGPR("<--xgbe_init_rx_coalesce\n"); } static void xgbe_free_tx_data(struct xgbe_prv_data *pdata) { struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_channel *channel; struct xgbe_ring *ring; struct xgbe_ring_data *rdata; unsigned int i, j; DBGPR("-->xgbe_free_tx_data\n"); channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { ring = channel->tx_ring; if (!ring) break; for (j = 0; j < ring->rdesc_count; j++) { rdata = XGBE_GET_DESC_DATA(ring, j); desc_if->unmap_rdata(pdata, rdata); } } DBGPR("<--xgbe_free_tx_data\n"); } static void xgbe_free_rx_data(struct xgbe_prv_data *pdata) { struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_channel *channel; struct xgbe_ring *ring; struct xgbe_ring_data *rdata; unsigned int i, j; DBGPR("-->xgbe_free_rx_data\n"); channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { ring = channel->rx_ring; if (!ring) break; for (j = 0; j < ring->rdesc_count; j++) { rdata = XGBE_GET_DESC_DATA(ring, j); desc_if->unmap_rdata(pdata, rdata); } } DBGPR("<--xgbe_free_rx_data\n"); } static void xgbe_adjust_link(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct phy_device *phydev = pdata->phydev; int new_state = 0; if (phydev == NULL) return; if (phydev->link) { /* Flow control support */ if (pdata->pause_autoneg) { if (phydev->pause || phydev->asym_pause) { pdata->tx_pause = 1; pdata->rx_pause = 1; } else { pdata->tx_pause = 0; pdata->rx_pause = 0; } } if (pdata->tx_pause != pdata->phy_tx_pause) { hw_if->config_tx_flow_control(pdata); pdata->phy_tx_pause = pdata->tx_pause; } if (pdata->rx_pause != pdata->phy_rx_pause) { hw_if->config_rx_flow_control(pdata); pdata->phy_rx_pause = pdata->rx_pause; } /* Speed support */ if (phydev->speed != pdata->phy_speed) { new_state = 1; switch (phydev->speed) { case SPEED_10000: hw_if->set_xgmii_speed(pdata); break; case SPEED_2500: hw_if->set_gmii_2500_speed(pdata); break; case SPEED_1000: hw_if->set_gmii_speed(pdata); break; } pdata->phy_speed = phydev->speed; } if (phydev->link != pdata->phy_link) { new_state = 1; pdata->phy_link = 1; } } else if (pdata->phy_link) { new_state = 1; pdata->phy_link = 0; pdata->phy_speed = SPEED_UNKNOWN; } if (new_state) phy_print_status(phydev); } static int xgbe_phy_init(struct xgbe_prv_data *pdata) { struct net_device *netdev = pdata->netdev; struct phy_device *phydev = pdata->phydev; int ret; pdata->phy_link = -1; pdata->phy_speed = SPEED_UNKNOWN; pdata->phy_tx_pause = pdata->tx_pause; pdata->phy_rx_pause = pdata->rx_pause; ret = phy_connect_direct(netdev, phydev, &xgbe_adjust_link, pdata->phy_mode); if (ret) { netdev_err(netdev, "phy_connect_direct failed\n"); return ret; } if (!phydev->drv || (phydev->drv->phy_id == 0)) { netdev_err(netdev, "phy_id not valid\n"); ret = -ENODEV; goto err_phy_connect; } DBGPR(" phy_connect_direct succeeded for PHY %s, link=%d\n", dev_name(&phydev->dev), phydev->link); return 0; err_phy_connect: phy_disconnect(phydev); return ret; } static void xgbe_phy_exit(struct xgbe_prv_data *pdata) { if (!pdata->phydev) return; phy_disconnect(pdata->phydev); } int xgbe_powerdown(struct net_device *netdev, unsigned int caller) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; unsigned long flags; DBGPR("-->xgbe_powerdown\n"); if (!netif_running(netdev) || (caller == XGMAC_IOCTL_CONTEXT && pdata->power_down)) { netdev_alert(netdev, "Device is already powered down\n"); DBGPR("<--xgbe_powerdown\n"); return -EINVAL; } phy_stop(pdata->phydev); spin_lock_irqsave(&pdata->lock, flags); if (caller == XGMAC_DRIVER_CONTEXT) netif_device_detach(netdev); netif_tx_stop_all_queues(netdev); xgbe_napi_disable(pdata, 0); /* Powerdown Tx/Rx */ hw_if->powerdown_tx(pdata); hw_if->powerdown_rx(pdata); pdata->power_down = 1; spin_unlock_irqrestore(&pdata->lock, flags); DBGPR("<--xgbe_powerdown\n"); return 0; } int xgbe_powerup(struct net_device *netdev, unsigned int caller) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; unsigned long flags; DBGPR("-->xgbe_powerup\n"); if (!netif_running(netdev) || (caller == XGMAC_IOCTL_CONTEXT && !pdata->power_down)) { netdev_alert(netdev, "Device is already powered up\n"); DBGPR("<--xgbe_powerup\n"); return -EINVAL; } spin_lock_irqsave(&pdata->lock, flags); pdata->power_down = 0; phy_start(pdata->phydev); /* Enable Tx/Rx */ hw_if->powerup_tx(pdata); hw_if->powerup_rx(pdata); if (caller == XGMAC_DRIVER_CONTEXT) netif_device_attach(netdev); xgbe_napi_enable(pdata, 0); netif_tx_start_all_queues(netdev); spin_unlock_irqrestore(&pdata->lock, flags); DBGPR("<--xgbe_powerup\n"); return 0; } static int xgbe_start(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; struct net_device *netdev = pdata->netdev; DBGPR("-->xgbe_start\n"); xgbe_set_rx_mode(netdev); hw_if->init(pdata); phy_start(pdata->phydev); hw_if->enable_tx(pdata); hw_if->enable_rx(pdata); xgbe_init_tx_timers(pdata); xgbe_napi_enable(pdata, 1); netif_tx_start_all_queues(netdev); DBGPR("<--xgbe_start\n"); return 0; } static void xgbe_stop(struct xgbe_prv_data *pdata) { struct xgbe_hw_if *hw_if = &pdata->hw_if; struct net_device *netdev = pdata->netdev; DBGPR("-->xgbe_stop\n"); phy_stop(pdata->phydev); netif_tx_stop_all_queues(netdev); xgbe_napi_disable(pdata, 1); xgbe_stop_tx_timers(pdata); hw_if->disable_tx(pdata); hw_if->disable_rx(pdata); DBGPR("<--xgbe_stop\n"); } static void xgbe_restart_dev(struct xgbe_prv_data *pdata, unsigned int reset) { struct xgbe_channel *channel; struct xgbe_hw_if *hw_if = &pdata->hw_if; unsigned int i; DBGPR("-->xgbe_restart_dev\n"); /* If not running, "restart" will happen on open */ if (!netif_running(pdata->netdev)) return; xgbe_stop(pdata); synchronize_irq(pdata->dev_irq); if (pdata->per_channel_irq) { channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) synchronize_irq(channel->dma_irq); } xgbe_free_tx_data(pdata); xgbe_free_rx_data(pdata); /* Issue software reset to device if requested */ if (reset) hw_if->exit(pdata); xgbe_start(pdata); DBGPR("<--xgbe_restart_dev\n"); } static void xgbe_restart(struct work_struct *work) { struct xgbe_prv_data *pdata = container_of(work, struct xgbe_prv_data, restart_work); rtnl_lock(); xgbe_restart_dev(pdata, 1); rtnl_unlock(); } static void xgbe_tx_tstamp(struct work_struct *work) { struct xgbe_prv_data *pdata = container_of(work, struct xgbe_prv_data, tx_tstamp_work); struct skb_shared_hwtstamps hwtstamps; u64 nsec; unsigned long flags; if (pdata->tx_tstamp) { nsec = timecounter_cyc2time(&pdata->tstamp_tc, pdata->tx_tstamp); memset(&hwtstamps, 0, sizeof(hwtstamps)); hwtstamps.hwtstamp = ns_to_ktime(nsec); skb_tstamp_tx(pdata->tx_tstamp_skb, &hwtstamps); } dev_kfree_skb_any(pdata->tx_tstamp_skb); spin_lock_irqsave(&pdata->tstamp_lock, flags); pdata->tx_tstamp_skb = NULL; spin_unlock_irqrestore(&pdata->tstamp_lock, flags); } static int xgbe_get_hwtstamp_settings(struct xgbe_prv_data *pdata, struct ifreq *ifreq) { if (copy_to_user(ifreq->ifr_data, &pdata->tstamp_config, sizeof(pdata->tstamp_config))) return -EFAULT; return 0; } static int xgbe_set_hwtstamp_settings(struct xgbe_prv_data *pdata, struct ifreq *ifreq) { struct hwtstamp_config config; unsigned int mac_tscr; if (copy_from_user(&config, ifreq->ifr_data, sizeof(config))) return -EFAULT; if (config.flags) return -EINVAL; mac_tscr = 0; switch (config.tx_type) { case HWTSTAMP_TX_OFF: break; case HWTSTAMP_TX_ON: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: break; case HWTSTAMP_FILTER_ALL: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENALL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2, UDP, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); /* PTP v1, UDP, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2, UDP, Sync packet */ case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); /* PTP v1, UDP, Sync packet */ case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2, UDP, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); /* PTP v1, UDP, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* 802.AS1, Ethernet, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* 802.AS1, Ethernet, Sync packet */ case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* 802.AS1, Ethernet, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, AV8021ASMEN, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2/802.AS1, any layer, any kind of event packet */ case HWTSTAMP_FILTER_PTP_V2_EVENT: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, SNAPTYPSEL, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2/802.AS1, any layer, Sync packet */ case HWTSTAMP_FILTER_PTP_V2_SYNC: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; /* PTP v2/802.AS1, any layer, Delay_req packet */ case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSVER2ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV4ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSIPV6ENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSMSTRENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSEVNTENA, 1); XGMAC_SET_BITS(mac_tscr, MAC_TSCR, TSENA, 1); break; default: return -ERANGE; } pdata->hw_if.config_tstamp(pdata, mac_tscr); memcpy(&pdata->tstamp_config, &config, sizeof(config)); return 0; } static void xgbe_prep_tx_tstamp(struct xgbe_prv_data *pdata, struct sk_buff *skb, struct xgbe_packet_data *packet) { unsigned long flags; if (XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) { spin_lock_irqsave(&pdata->tstamp_lock, flags); if (pdata->tx_tstamp_skb) { /* Another timestamp in progress, ignore this one */ XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP, 0); } else { pdata->tx_tstamp_skb = skb_get(skb); skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; } spin_unlock_irqrestore(&pdata->tstamp_lock, flags); } if (!XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP)) skb_tx_timestamp(skb); } static void xgbe_prep_vlan(struct sk_buff *skb, struct xgbe_packet_data *packet) { if (vlan_tx_tag_present(skb)) packet->vlan_ctag = vlan_tx_tag_get(skb); } static int xgbe_prep_tso(struct sk_buff *skb, struct xgbe_packet_data *packet) { int ret; if (!XGMAC_GET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, TSO_ENABLE)) return 0; ret = skb_cow_head(skb, 0); if (ret) return ret; packet->header_len = skb_transport_offset(skb) + tcp_hdrlen(skb); packet->tcp_header_len = tcp_hdrlen(skb); packet->tcp_payload_len = skb->len - packet->header_len; packet->mss = skb_shinfo(skb)->gso_size; DBGPR(" packet->header_len=%u\n", packet->header_len); DBGPR(" packet->tcp_header_len=%u, packet->tcp_payload_len=%u\n", packet->tcp_header_len, packet->tcp_payload_len); DBGPR(" packet->mss=%u\n", packet->mss); return 0; } static int xgbe_is_tso(struct sk_buff *skb) { if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; if (!skb_is_gso(skb)) return 0; DBGPR(" TSO packet to be processed\n"); return 1; } static void xgbe_packet_info(struct xgbe_prv_data *pdata, struct xgbe_ring *ring, struct sk_buff *skb, struct xgbe_packet_data *packet) { struct skb_frag_struct *frag; unsigned int context_desc; unsigned int len; unsigned int i; context_desc = 0; packet->rdesc_count = 0; if (xgbe_is_tso(skb)) { /* TSO requires an extra descriptor if mss is different */ if (skb_shinfo(skb)->gso_size != ring->tx.cur_mss) { context_desc = 1; packet->rdesc_count++; } /* TSO requires an extra descriptor for TSO header */ packet->rdesc_count++; XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, TSO_ENABLE, 1); XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, CSUM_ENABLE, 1); } else if (skb->ip_summed == CHECKSUM_PARTIAL) XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, CSUM_ENABLE, 1); if (vlan_tx_tag_present(skb)) { /* VLAN requires an extra descriptor if tag is different */ if (vlan_tx_tag_get(skb) != ring->tx.cur_vlan_ctag) /* We can share with the TSO context descriptor */ if (!context_desc) { context_desc = 1; packet->rdesc_count++; } XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, VLAN_CTAG, 1); } if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && (pdata->tstamp_config.tx_type == HWTSTAMP_TX_ON)) XGMAC_SET_BITS(packet->attributes, TX_PACKET_ATTRIBUTES, PTP, 1); for (len = skb_headlen(skb); len;) { packet->rdesc_count++; len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE); } for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { frag = &skb_shinfo(skb)->frags[i]; for (len = skb_frag_size(frag); len; ) { packet->rdesc_count++; len -= min_t(unsigned int, len, XGBE_TX_MAX_BUF_SIZE); } } } static int xgbe_open(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_channel *channel = NULL; char dma_irq_name[IFNAMSIZ + 32]; unsigned int i = 0; int ret; DBGPR("-->xgbe_open\n"); /* Initialize the phy */ ret = xgbe_phy_init(pdata); if (ret) return ret; /* Enable the clocks */ ret = clk_prepare_enable(pdata->sysclk); if (ret) { netdev_alert(netdev, "dma clk_prepare_enable failed\n"); goto err_phy_init; } ret = clk_prepare_enable(pdata->ptpclk); if (ret) { netdev_alert(netdev, "ptp clk_prepare_enable failed\n"); goto err_sysclk; } /* Calculate the Rx buffer size before allocating rings */ ret = xgbe_calc_rx_buf_size(netdev, netdev->mtu); if (ret < 0) goto err_ptpclk; pdata->rx_buf_size = ret; /* Allocate the channel and ring structures */ ret = xgbe_alloc_channels(pdata); if (ret) goto err_ptpclk; /* Allocate the ring descriptors and buffers */ ret = desc_if->alloc_ring_resources(pdata); if (ret) goto err_channels; /* Initialize the device restart and Tx timestamp work struct */ INIT_WORK(&pdata->restart_work, xgbe_restart); INIT_WORK(&pdata->tx_tstamp_work, xgbe_tx_tstamp); /* Request interrupts */ ret = devm_request_irq(pdata->dev, pdata->dev_irq, xgbe_isr, 0, netdev->name, pdata); if (ret) { netdev_alert(netdev, "error requesting irq %d\n", pdata->dev_irq); goto err_rings; } if (pdata->per_channel_irq) { channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { snprintf(dma_irq_name, sizeof(dma_irq_name) - 1, "%s-TxRx-%u", netdev_name(netdev), channel->queue_index); ret = devm_request_irq(pdata->dev, channel->dma_irq, xgbe_dma_isr, 0, dma_irq_name, channel); if (ret) { netdev_alert(netdev, "error requesting irq %d\n", channel->dma_irq); goto err_irq; } } } ret = xgbe_start(pdata); if (ret) goto err_start; DBGPR("<--xgbe_open\n"); return 0; err_start: hw_if->exit(pdata); err_irq: if (pdata->per_channel_irq) { /* Using an unsigned int, 'i' will go to UINT_MAX and exit */ for (i--, channel--; i < pdata->channel_count; i--, channel--) devm_free_irq(pdata->dev, channel->dma_irq, channel); } devm_free_irq(pdata->dev, pdata->dev_irq, pdata); err_rings: desc_if->free_ring_resources(pdata); err_channels: xgbe_free_channels(pdata); err_ptpclk: clk_disable_unprepare(pdata->ptpclk); err_sysclk: clk_disable_unprepare(pdata->sysclk); err_phy_init: xgbe_phy_exit(pdata); return ret; } static int xgbe_close(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_channel *channel; unsigned int i; DBGPR("-->xgbe_close\n"); /* Stop the device */ xgbe_stop(pdata); /* Issue software reset to device */ hw_if->exit(pdata); /* Free the ring descriptors and buffers */ desc_if->free_ring_resources(pdata); /* Release the interrupts */ devm_free_irq(pdata->dev, pdata->dev_irq, pdata); if (pdata->per_channel_irq) { channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) devm_free_irq(pdata->dev, channel->dma_irq, channel); } /* Free the channel and ring structures */ xgbe_free_channels(pdata); /* Disable the clocks */ clk_disable_unprepare(pdata->ptpclk); clk_disable_unprepare(pdata->sysclk); /* Release the phy */ xgbe_phy_exit(pdata); DBGPR("<--xgbe_close\n"); return 0; } static int xgbe_xmit(struct sk_buff *skb, struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_channel *channel; struct xgbe_ring *ring; struct xgbe_packet_data *packet; unsigned long flags; int ret; DBGPR("-->xgbe_xmit: skb->len = %d\n", skb->len); channel = pdata->channel + skb->queue_mapping; ring = channel->tx_ring; packet = &ring->packet_data; ret = NETDEV_TX_OK; spin_lock_irqsave(&ring->lock, flags); if (skb->len == 0) { netdev_err(netdev, "empty skb received from stack\n"); dev_kfree_skb_any(skb); goto tx_netdev_return; } /* Calculate preliminary packet info */ memset(packet, 0, sizeof(*packet)); xgbe_packet_info(pdata, ring, skb, packet); /* Check that there are enough descriptors available */ if (packet->rdesc_count > xgbe_tx_avail_desc(ring)) { DBGPR(" Tx queue stopped, not enough descriptors available\n"); netif_stop_subqueue(netdev, channel->queue_index); ring->tx.queue_stopped = 1; ret = NETDEV_TX_BUSY; goto tx_netdev_return; } ret = xgbe_prep_tso(skb, packet); if (ret) { netdev_err(netdev, "error processing TSO packet\n"); dev_kfree_skb_any(skb); goto tx_netdev_return; } xgbe_prep_vlan(skb, packet); if (!desc_if->map_tx_skb(channel, skb)) { dev_kfree_skb_any(skb); goto tx_netdev_return; } xgbe_prep_tx_tstamp(pdata, skb, packet); /* Configure required descriptor fields for transmission */ hw_if->dev_xmit(channel); #ifdef XGMAC_ENABLE_TX_PKT_DUMP xgbe_print_pkt(netdev, skb, true); #endif tx_netdev_return: spin_unlock_irqrestore(&ring->lock, flags); DBGPR("<--xgbe_xmit\n"); return ret; } static void xgbe_set_rx_mode(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; unsigned int pr_mode, am_mode; DBGPR("-->xgbe_set_rx_mode\n"); pr_mode = ((netdev->flags & IFF_PROMISC) != 0); am_mode = ((netdev->flags & IFF_ALLMULTI) != 0); hw_if->set_promiscuous_mode(pdata, pr_mode); hw_if->set_all_multicast_mode(pdata, am_mode); hw_if->add_mac_addresses(pdata); DBGPR("<--xgbe_set_rx_mode\n"); } static int xgbe_set_mac_address(struct net_device *netdev, void *addr) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; struct sockaddr *saddr = addr; DBGPR("-->xgbe_set_mac_address\n"); if (!is_valid_ether_addr(saddr->sa_data)) return -EADDRNOTAVAIL; memcpy(netdev->dev_addr, saddr->sa_data, netdev->addr_len); hw_if->set_mac_address(pdata, netdev->dev_addr); DBGPR("<--xgbe_set_mac_address\n"); return 0; } static int xgbe_ioctl(struct net_device *netdev, struct ifreq *ifreq, int cmd) { struct xgbe_prv_data *pdata = netdev_priv(netdev); int ret; switch (cmd) { case SIOCGHWTSTAMP: ret = xgbe_get_hwtstamp_settings(pdata, ifreq); break; case SIOCSHWTSTAMP: ret = xgbe_set_hwtstamp_settings(pdata, ifreq); break; default: ret = -EOPNOTSUPP; } return ret; } static int xgbe_change_mtu(struct net_device *netdev, int mtu) { struct xgbe_prv_data *pdata = netdev_priv(netdev); int ret; DBGPR("-->xgbe_change_mtu\n"); ret = xgbe_calc_rx_buf_size(netdev, mtu); if (ret < 0) return ret; pdata->rx_buf_size = ret; netdev->mtu = mtu; xgbe_restart_dev(pdata, 0); DBGPR("<--xgbe_change_mtu\n"); return 0; } static struct rtnl_link_stats64 *xgbe_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *s) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_mmc_stats *pstats = &pdata->mmc_stats; DBGPR("-->%s\n", __func__); pdata->hw_if.read_mmc_stats(pdata); s->rx_packets = pstats->rxframecount_gb; s->rx_bytes = pstats->rxoctetcount_gb; s->rx_errors = pstats->rxframecount_gb - pstats->rxbroadcastframes_g - pstats->rxmulticastframes_g - pstats->rxunicastframes_g; s->multicast = pstats->rxmulticastframes_g; s->rx_length_errors = pstats->rxlengtherror; s->rx_crc_errors = pstats->rxcrcerror; s->rx_fifo_errors = pstats->rxfifooverflow; s->tx_packets = pstats->txframecount_gb; s->tx_bytes = pstats->txoctetcount_gb; s->tx_errors = pstats->txframecount_gb - pstats->txframecount_g; s->tx_dropped = netdev->stats.tx_dropped; DBGPR("<--%s\n", __func__); return s; } static int xgbe_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->%s\n", __func__); set_bit(vid, pdata->active_vlans); hw_if->update_vlan_hash_table(pdata); DBGPR("<--%s\n", __func__); return 0; } static int xgbe_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; DBGPR("-->%s\n", __func__); clear_bit(vid, pdata->active_vlans); hw_if->update_vlan_hash_table(pdata); DBGPR("<--%s\n", __func__); return 0; } #ifdef CONFIG_NET_POLL_CONTROLLER static void xgbe_poll_controller(struct net_device *netdev) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_channel *channel; unsigned int i; DBGPR("-->xgbe_poll_controller\n"); if (pdata->per_channel_irq) { channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) xgbe_dma_isr(channel->dma_irq, channel); } else { disable_irq(pdata->dev_irq); xgbe_isr(pdata->dev_irq, pdata); enable_irq(pdata->dev_irq); } DBGPR("<--xgbe_poll_controller\n"); } #endif /* End CONFIG_NET_POLL_CONTROLLER */ static int xgbe_setup_tc(struct net_device *netdev, u8 tc) { struct xgbe_prv_data *pdata = netdev_priv(netdev); unsigned int offset, queue; u8 i; if (tc && (tc != pdata->hw_feat.tc_cnt)) return -EINVAL; if (tc) { netdev_set_num_tc(netdev, tc); for (i = 0, queue = 0, offset = 0; i < tc; i++) { while ((queue < pdata->tx_q_count) && (pdata->q2tc_map[queue] == i)) queue++; DBGPR(" TC%u using TXq%u-%u\n", i, offset, queue - 1); netdev_set_tc_queue(netdev, i, queue - offset, offset); offset = queue; } } else { netdev_reset_tc(netdev); } return 0; } static int xgbe_set_features(struct net_device *netdev, netdev_features_t features) { struct xgbe_prv_data *pdata = netdev_priv(netdev); struct xgbe_hw_if *hw_if = &pdata->hw_if; netdev_features_t rxhash, rxcsum, rxvlan, rxvlan_filter; int ret = 0; rxhash = pdata->netdev_features & NETIF_F_RXHASH; rxcsum = pdata->netdev_features & NETIF_F_RXCSUM; rxvlan = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_RX; rxvlan_filter = pdata->netdev_features & NETIF_F_HW_VLAN_CTAG_FILTER; if ((features & NETIF_F_RXHASH) && !rxhash) ret = hw_if->enable_rss(pdata); else if (!(features & NETIF_F_RXHASH) && rxhash) ret = hw_if->disable_rss(pdata); if (ret) return ret; if ((features & NETIF_F_RXCSUM) && !rxcsum) hw_if->enable_rx_csum(pdata); else if (!(features & NETIF_F_RXCSUM) && rxcsum) hw_if->disable_rx_csum(pdata); if ((features & NETIF_F_HW_VLAN_CTAG_RX) && !rxvlan) hw_if->enable_rx_vlan_stripping(pdata); else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) && rxvlan) hw_if->disable_rx_vlan_stripping(pdata); if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) && !rxvlan_filter) hw_if->enable_rx_vlan_filtering(pdata); else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) && rxvlan_filter) hw_if->disable_rx_vlan_filtering(pdata); pdata->netdev_features = features; DBGPR("<--xgbe_set_features\n"); return 0; } static const struct net_device_ops xgbe_netdev_ops = { .ndo_open = xgbe_open, .ndo_stop = xgbe_close, .ndo_start_xmit = xgbe_xmit, .ndo_set_rx_mode = xgbe_set_rx_mode, .ndo_set_mac_address = xgbe_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = xgbe_ioctl, .ndo_change_mtu = xgbe_change_mtu, .ndo_get_stats64 = xgbe_get_stats64, .ndo_vlan_rx_add_vid = xgbe_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = xgbe_vlan_rx_kill_vid, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = xgbe_poll_controller, #endif .ndo_setup_tc = xgbe_setup_tc, .ndo_set_features = xgbe_set_features, }; struct net_device_ops *xgbe_get_netdev_ops(void) { return (struct net_device_ops *)&xgbe_netdev_ops; } static void xgbe_rx_refresh(struct xgbe_channel *channel) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_ring *ring = channel->rx_ring; struct xgbe_ring_data *rdata; desc_if->realloc_rx_buffer(channel); /* Update the Rx Tail Pointer Register with address of * the last cleaned entry */ rdata = XGBE_GET_DESC_DATA(ring, ring->rx.realloc_index - 1); XGMAC_DMA_IOWRITE(channel, DMA_CH_RDTR_LO, lower_32_bits(rdata->rdesc_dma)); } static struct sk_buff *xgbe_create_skb(struct xgbe_prv_data *pdata, struct xgbe_ring_data *rdata, unsigned int *len) { struct net_device *netdev = pdata->netdev; struct sk_buff *skb; u8 *packet; unsigned int copy_len; skb = netdev_alloc_skb_ip_align(netdev, rdata->rx.hdr.dma_len); if (!skb) return NULL; packet = page_address(rdata->rx.hdr.pa.pages) + rdata->rx.hdr.pa.pages_offset; copy_len = (rdata->rx.hdr_len) ? rdata->rx.hdr_len : *len; copy_len = min(rdata->rx.hdr.dma_len, copy_len); skb_copy_to_linear_data(skb, packet, copy_len); skb_put(skb, copy_len); *len -= copy_len; return skb; } static int xgbe_tx_poll(struct xgbe_channel *channel) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_desc_if *desc_if = &pdata->desc_if; struct xgbe_ring *ring = channel->tx_ring; struct xgbe_ring_data *rdata; struct xgbe_ring_desc *rdesc; struct net_device *netdev = pdata->netdev; unsigned long flags; int processed = 0; DBGPR("-->xgbe_tx_poll\n"); /* Nothing to do if there isn't a Tx ring for this channel */ if (!ring) return 0; spin_lock_irqsave(&ring->lock, flags); while ((processed < XGBE_TX_DESC_MAX_PROC) && (ring->dirty < ring->cur)) { rdata = XGBE_GET_DESC_DATA(ring, ring->dirty); rdesc = rdata->rdesc; if (!hw_if->tx_complete(rdesc)) break; /* Make sure descriptor fields are read after reading the OWN * bit */ rmb(); #ifdef XGMAC_ENABLE_TX_DESC_DUMP xgbe_dump_tx_desc(ring, ring->dirty, 1, 0); #endif /* Free the SKB and reset the descriptor for re-use */ desc_if->unmap_rdata(pdata, rdata); hw_if->tx_desc_reset(rdata); processed++; ring->dirty++; } if ((ring->tx.queue_stopped == 1) && (xgbe_tx_avail_desc(ring) > XGBE_TX_DESC_MIN_FREE)) { ring->tx.queue_stopped = 0; netif_wake_subqueue(netdev, channel->queue_index); } DBGPR("<--xgbe_tx_poll: processed=%d\n", processed); spin_unlock_irqrestore(&ring->lock, flags); return processed; } static int xgbe_rx_poll(struct xgbe_channel *channel, int budget) { struct xgbe_prv_data *pdata = channel->pdata; struct xgbe_hw_if *hw_if = &pdata->hw_if; struct xgbe_ring *ring = channel->rx_ring; struct xgbe_ring_data *rdata; struct xgbe_packet_data *packet; struct net_device *netdev = pdata->netdev; struct napi_struct *napi; struct sk_buff *skb; struct skb_shared_hwtstamps *hwtstamps; unsigned int incomplete, error, context_next, context; unsigned int len, put_len, max_len; unsigned int received = 0; int packet_count = 0; DBGPR("-->xgbe_rx_poll: budget=%d\n", budget); /* Nothing to do if there isn't a Rx ring for this channel */ if (!ring) return 0; napi = (pdata->per_channel_irq) ? &channel->napi : &pdata->napi; rdata = XGBE_GET_DESC_DATA(ring, ring->cur); packet = &ring->packet_data; while (packet_count < budget) { DBGPR(" cur = %d\n", ring->cur); /* First time in loop see if we need to restore state */ if (!received && rdata->state_saved) { incomplete = rdata->state.incomplete; context_next = rdata->state.context_next; skb = rdata->state.skb; error = rdata->state.error; len = rdata->state.len; } else { memset(packet, 0, sizeof(*packet)); incomplete = 0; context_next = 0; skb = NULL; error = 0; len = 0; } read_again: rdata = XGBE_GET_DESC_DATA(ring, ring->cur); if (ring->dirty > (XGBE_RX_DESC_CNT >> 3)) xgbe_rx_refresh(channel); if (hw_if->dev_read(channel)) break; received++; ring->cur++; ring->dirty++; incomplete = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, INCOMPLETE); context_next = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT_NEXT); context = XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT); /* Earlier error, just drain the remaining data */ if ((incomplete || context_next) && error) goto read_again; if (error || packet->errors) { if (packet->errors) DBGPR("Error in received packet\n"); dev_kfree_skb(skb); goto next_packet; } if (!context) { put_len = rdata->rx.len - len; len += put_len; if (!skb) { dma_sync_single_for_cpu(pdata->dev, rdata->rx.hdr.dma, rdata->rx.hdr.dma_len, DMA_FROM_DEVICE); skb = xgbe_create_skb(pdata, rdata, &put_len); if (!skb) { error = 1; goto skip_data; } } if (put_len) { dma_sync_single_for_cpu(pdata->dev, rdata->rx.buf.dma, rdata->rx.buf.dma_len, DMA_FROM_DEVICE); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rdata->rx.buf.pa.pages, rdata->rx.buf.pa.pages_offset, put_len, rdata->rx.buf.dma_len); rdata->rx.buf.pa.pages = NULL; } } skip_data: if (incomplete || context_next) goto read_again; if (!skb) goto next_packet; /* Be sure we don't exceed the configured MTU */ max_len = netdev->mtu + ETH_HLEN; if (!(netdev->features & NETIF_F_HW_VLAN_CTAG_RX) && (skb->protocol == htons(ETH_P_8021Q))) max_len += VLAN_HLEN; if (skb->len > max_len) { DBGPR("packet length exceeds configured MTU\n"); dev_kfree_skb(skb); goto next_packet; } #ifdef XGMAC_ENABLE_RX_PKT_DUMP xgbe_print_pkt(netdev, skb, false); #endif skb_checksum_none_assert(skb); if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CSUM_DONE)) skb->ip_summed = CHECKSUM_UNNECESSARY; if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, VLAN_CTAG)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), packet->vlan_ctag); if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, RX_TSTAMP)) { u64 nsec; nsec = timecounter_cyc2time(&pdata->tstamp_tc, packet->rx_tstamp); hwtstamps = skb_hwtstamps(skb); hwtstamps->hwtstamp = ns_to_ktime(nsec); } if (XGMAC_GET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, RSS_HASH)) skb_set_hash(skb, packet->rss_hash, packet->rss_hash_type); skb->dev = netdev; skb->protocol = eth_type_trans(skb, netdev); skb_record_rx_queue(skb, channel->queue_index); skb_mark_napi_id(skb, napi); netdev->last_rx = jiffies; napi_gro_receive(napi, skb); next_packet: packet_count++; } /* Check if we need to save state before leaving */ if (received && (incomplete || context_next)) { rdata = XGBE_GET_DESC_DATA(ring, ring->cur); rdata->state_saved = 1; rdata->state.incomplete = incomplete; rdata->state.context_next = context_next; rdata->state.skb = skb; rdata->state.len = len; rdata->state.error = error; } DBGPR("<--xgbe_rx_poll: packet_count = %d\n", packet_count); return packet_count; } static int xgbe_one_poll(struct napi_struct *napi, int budget) { struct xgbe_channel *channel = container_of(napi, struct xgbe_channel, napi); int processed = 0; DBGPR("-->xgbe_one_poll: budget=%d\n", budget); /* Cleanup Tx ring first */ xgbe_tx_poll(channel); /* Process Rx ring next */ processed = xgbe_rx_poll(channel, budget); /* If we processed everything, we are done */ if (processed < budget) { /* Turn off polling */ napi_complete(napi); /* Enable Tx and Rx interrupts */ enable_irq(channel->dma_irq); } DBGPR("<--xgbe_one_poll: received = %d\n", processed); return processed; } static int xgbe_all_poll(struct napi_struct *napi, int budget) { struct xgbe_prv_data *pdata = container_of(napi, struct xgbe_prv_data, napi); struct xgbe_channel *channel; int ring_budget; int processed, last_processed; unsigned int i; DBGPR("-->xgbe_all_poll: budget=%d\n", budget); processed = 0; ring_budget = budget / pdata->rx_ring_count; do { last_processed = processed; channel = pdata->channel; for (i = 0; i < pdata->channel_count; i++, channel++) { /* Cleanup Tx ring first */ xgbe_tx_poll(channel); /* Process Rx ring next */ if (ring_budget > (budget - processed)) ring_budget = budget - processed; processed += xgbe_rx_poll(channel, ring_budget); } } while ((processed < budget) && (processed != last_processed)); /* If we processed everything, we are done */ if (processed < budget) { /* Turn off polling */ napi_complete(napi); /* Enable Tx and Rx interrupts */ xgbe_enable_rx_tx_ints(pdata); } DBGPR("<--xgbe_all_poll: received = %d\n", processed); return processed; } void xgbe_dump_tx_desc(struct xgbe_ring *ring, unsigned int idx, unsigned int count, unsigned int flag) { struct xgbe_ring_data *rdata; struct xgbe_ring_desc *rdesc; while (count--) { rdata = XGBE_GET_DESC_DATA(ring, idx); rdesc = rdata->rdesc; pr_alert("TX_NORMAL_DESC[%d %s] = %08x:%08x:%08x:%08x\n", idx, (flag == 1) ? "QUEUED FOR TX" : "TX BY DEVICE", le32_to_cpu(rdesc->desc0), le32_to_cpu(rdesc->desc1), le32_to_cpu(rdesc->desc2), le32_to_cpu(rdesc->desc3)); idx++; } } void xgbe_dump_rx_desc(struct xgbe_ring *ring, struct xgbe_ring_desc *desc, unsigned int idx) { pr_alert("RX_NORMAL_DESC[%d RX BY DEVICE] = %08x:%08x:%08x:%08x\n", idx, le32_to_cpu(desc->desc0), le32_to_cpu(desc->desc1), le32_to_cpu(desc->desc2), le32_to_cpu(desc->desc3)); } void xgbe_print_pkt(struct net_device *netdev, struct sk_buff *skb, bool tx_rx) { struct ethhdr *eth = (struct ethhdr *)skb->data; unsigned char *buf = skb->data; unsigned char buffer[128]; unsigned int i, j; netdev_alert(netdev, "\n************** SKB dump ****************\n"); netdev_alert(netdev, "%s packet of %d bytes\n", (tx_rx ? "TX" : "RX"), skb->len); netdev_alert(netdev, "Dst MAC addr: %pM\n", eth->h_dest); netdev_alert(netdev, "Src MAC addr: %pM\n", eth->h_source); netdev_alert(netdev, "Protocol: 0x%04hx\n", ntohs(eth->h_proto)); for (i = 0, j = 0; i < skb->len;) { j += snprintf(buffer + j, sizeof(buffer) - j, "%02hhx", buf[i++]); if ((i % 32) == 0) { netdev_alert(netdev, " 0x%04x: %s\n", i - 32, buffer); j = 0; } else if ((i % 16) == 0) { buffer[j++] = ' '; buffer[j++] = ' '; } else if ((i % 4) == 0) { buffer[j++] = ' '; } } if (i % 32) netdev_alert(netdev, " 0x%04x: %s\n", i - (i % 32), buffer); netdev_alert(netdev, "\n************** SKB dump ****************\n"); }