/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * SGI UV APIC functions (note: not an Intel compatible APIC) * * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU(int, x2apic_extra_bits); #define PR_DEVEL(fmt, args...) pr_devel("%s: " fmt, __func__, args) static enum uv_system_type uv_system_type; static u64 gru_start_paddr, gru_end_paddr; static u64 gru_dist_base, gru_first_node_paddr = -1LL, gru_last_node_paddr; static u64 gru_dist_lmask, gru_dist_umask; static union uvh_apicid uvh_apicid; /* info derived from CPUID */ static struct { unsigned int apicid_shift; unsigned int apicid_mask; unsigned int socketid_shift; /* aka pnode_shift for UV1/2/3 */ unsigned int pnode_mask; unsigned int gpa_shift; } uv_cpuid; int uv_min_hub_revision_id; EXPORT_SYMBOL_GPL(uv_min_hub_revision_id); unsigned int uv_apicid_hibits; EXPORT_SYMBOL_GPL(uv_apicid_hibits); static struct apic apic_x2apic_uv_x; static struct uv_hub_info_s uv_hub_info_node0; /* Set this to use hardware error handler instead of kernel panic */ static int disable_uv_undefined_panic = 1; unsigned long uv_undefined(char *str) { if (likely(!disable_uv_undefined_panic)) panic("UV: error: undefined MMR: %s\n", str); else pr_crit("UV: error: undefined MMR: %s\n", str); return ~0ul; /* cause a machine fault */ } EXPORT_SYMBOL(uv_undefined); static unsigned long __init uv_early_read_mmr(unsigned long addr) { unsigned long val, *mmr; mmr = early_ioremap(UV_LOCAL_MMR_BASE | addr, sizeof(*mmr)); val = *mmr; early_iounmap(mmr, sizeof(*mmr)); return val; } static inline bool is_GRU_range(u64 start, u64 end) { if (gru_dist_base) { u64 su = start & gru_dist_umask; /* upper (incl pnode) bits */ u64 sl = start & gru_dist_lmask; /* base offset bits */ u64 eu = end & gru_dist_umask; u64 el = end & gru_dist_lmask; /* Must reside completely within a single GRU range */ return (sl == gru_dist_base && el == gru_dist_base && su >= gru_first_node_paddr && su <= gru_last_node_paddr && eu == su); } else { return start >= gru_start_paddr && end <= gru_end_paddr; } } static bool uv_is_untracked_pat_range(u64 start, u64 end) { return is_ISA_range(start, end) || is_GRU_range(start, end); } static int __init early_get_pnodeid(void) { union uvh_node_id_u node_id; union uvh_rh_gam_config_mmr_u m_n_config; int pnode; /* Currently, all blades have same revision number */ node_id.v = uv_early_read_mmr(UVH_NODE_ID); m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_CONFIG_MMR); uv_min_hub_revision_id = node_id.s.revision; switch (node_id.s.part_number) { case UV2_HUB_PART_NUMBER: case UV2_HUB_PART_NUMBER_X: uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1; break; case UV3_HUB_PART_NUMBER: case UV3_HUB_PART_NUMBER_X: uv_min_hub_revision_id += UV3_HUB_REVISION_BASE; break; case UV4_HUB_PART_NUMBER: uv_min_hub_revision_id += UV4_HUB_REVISION_BASE - 1; break; } uv_hub_info->hub_revision = uv_min_hub_revision_id; uv_cpuid.pnode_mask = (1 << m_n_config.s.n_skt) - 1; pnode = (node_id.s.node_id >> 1) & uv_cpuid.pnode_mask; uv_cpuid.gpa_shift = 46; /* default unless changed */ pr_info("UV: rev:%d part#:%x nodeid:%04x n_skt:%d pnmsk:%x pn:%x\n", node_id.s.revision, node_id.s.part_number, node_id.s.node_id, m_n_config.s.n_skt, uv_cpuid.pnode_mask, pnode); return pnode; } /* [copied from arch/x86/kernel/cpu/topology.c:detect_extended_topology()] */ #define SMT_LEVEL 0 /* leaf 0xb SMT level */ #define INVALID_TYPE 0 /* leaf 0xb sub-leaf types */ #define SMT_TYPE 1 #define CORE_TYPE 2 #define LEAFB_SUBTYPE(ecx) (((ecx) >> 8) & 0xff) #define BITS_SHIFT_NEXT_LEVEL(eax) ((eax) & 0x1f) static void set_x2apic_bits(void) { unsigned int eax, ebx, ecx, edx, sub_index; unsigned int sid_shift; cpuid(0, &eax, &ebx, &ecx, &edx); if (eax < 0xb) { pr_info("UV: CPU does not have CPUID.11\n"); return; } cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx); if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE)) { pr_info("UV: CPUID.11 not implemented\n"); return; } sid_shift = BITS_SHIFT_NEXT_LEVEL(eax); sub_index = 1; do { cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx); if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) { sid_shift = BITS_SHIFT_NEXT_LEVEL(eax); break; } sub_index++; } while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE); uv_cpuid.apicid_shift = 0; uv_cpuid.apicid_mask = (~(-1 << sid_shift)); uv_cpuid.socketid_shift = sid_shift; } static void __init early_get_apic_socketid_shift(void) { if (is_uv2_hub() || is_uv3_hub()) uvh_apicid.v = uv_early_read_mmr(UVH_APICID); set_x2apic_bits(); pr_info("UV: apicid_shift:%d apicid_mask:0x%x\n", uv_cpuid.apicid_shift, uv_cpuid.apicid_mask); pr_info("UV: socketid_shift:%d pnode_mask:0x%x\n", uv_cpuid.socketid_shift, uv_cpuid.pnode_mask); } /* * Add an extra bit as dictated by bios to the destination apicid of * interrupts potentially passing through the UV HUB. This prevents * a deadlock between interrupts and IO port operations. */ static void __init uv_set_apicid_hibit(void) { union uv1h_lb_target_physical_apic_id_mask_u apicid_mask; if (is_uv1_hub()) { apicid_mask.v = uv_early_read_mmr(UV1H_LB_TARGET_PHYSICAL_APIC_ID_MASK); uv_apicid_hibits = apicid_mask.s1.bit_enables & UV_APICID_HIBIT_MASK; } } static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id) { int pnodeid; int uv_apic; if (strncmp(oem_id, "SGI", 3) != 0) return 0; /* Setup early hub type field in uv_hub_info for Node 0 */ uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0; /* * Determine UV arch type. * SGI: UV100/1000 * SGI2: UV2000/3000 * SGI3: UV300 (truncated to 4 chars because of different varieties) * SGI4: UV400 (truncated to 4 chars because of different varieties) */ uv_hub_info->hub_revision = !strncmp(oem_id, "SGI4", 4) ? UV4_HUB_REVISION_BASE : !strncmp(oem_id, "SGI3", 4) ? UV3_HUB_REVISION_BASE : !strcmp(oem_id, "SGI2") ? UV2_HUB_REVISION_BASE : !strcmp(oem_id, "SGI") ? UV1_HUB_REVISION_BASE : 0; if (uv_hub_info->hub_revision == 0) goto badbios; pnodeid = early_get_pnodeid(); early_get_apic_socketid_shift(); x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; x86_platform.nmi_init = uv_nmi_init; if (!strcmp(oem_table_id, "UVX")) { /* most common */ uv_system_type = UV_X2APIC; uv_apic = 0; } else if (!strcmp(oem_table_id, "UVH")) { /* only UV1 systems */ uv_system_type = UV_NON_UNIQUE_APIC; __this_cpu_write(x2apic_extra_bits, pnodeid << uvh_apicid.s.pnode_shift); uv_set_apicid_hibit(); uv_apic = 1; } else if (!strcmp(oem_table_id, "UVL")) { /* only used for */ uv_system_type = UV_LEGACY_APIC; /* very small systems */ uv_apic = 0; } else { goto badbios; } pr_info("UV: OEM IDs %s/%s, System/HUB Types %d/%d, uv_apic %d\n", oem_id, oem_table_id, uv_system_type, uv_min_hub_revision_id, uv_apic); return uv_apic; badbios: pr_err("UV: OEM_ID:%s OEM_TABLE_ID:%s\n", oem_id, oem_table_id); pr_err("Current BIOS not supported, update kernel and/or BIOS\n"); BUG(); } enum uv_system_type get_uv_system_type(void) { return uv_system_type; } int is_uv_system(void) { return uv_system_type != UV_NONE; } EXPORT_SYMBOL_GPL(is_uv_system); void **__uv_hub_info_list; EXPORT_SYMBOL_GPL(__uv_hub_info_list); DEFINE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info); EXPORT_PER_CPU_SYMBOL_GPL(__uv_cpu_info); short uv_possible_blades; EXPORT_SYMBOL_GPL(uv_possible_blades); unsigned long sn_rtc_cycles_per_second; EXPORT_SYMBOL(sn_rtc_cycles_per_second); /* the following values are used for the per node hub info struct */ static __initdata unsigned short *_node_to_pnode; static __initdata unsigned short _min_socket, _max_socket; static __initdata unsigned short _min_pnode, _max_pnode, _gr_table_len; static __initdata struct uv_gam_range_entry *uv_gre_table; static __initdata struct uv_gam_parameters *uv_gp_table; static __initdata unsigned short *_socket_to_node; static __initdata unsigned short *_socket_to_pnode; static __initdata unsigned short *_pnode_to_socket; static __initdata struct uv_gam_range_s *_gr_table; #define SOCK_EMPTY ((unsigned short)~0) extern int uv_hub_info_version(void) { return UV_HUB_INFO_VERSION; } EXPORT_SYMBOL(uv_hub_info_version); /* Build GAM range lookup table */ static __init void build_uv_gr_table(void) { struct uv_gam_range_entry *gre = uv_gre_table; struct uv_gam_range_s *grt; unsigned long last_limit = 0, ram_limit = 0; int bytes, i, sid, lsid = -1; if (!gre) return; bytes = _gr_table_len * sizeof(struct uv_gam_range_s); grt = kzalloc(bytes, GFP_KERNEL); BUG_ON(!grt); _gr_table = grt; for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { if (gre->type == UV_GAM_RANGE_TYPE_HOLE) { if (!ram_limit) { /* mark hole between ram/non-ram */ ram_limit = last_limit; last_limit = gre->limit; lsid++; continue; } last_limit = gre->limit; pr_info("UV: extra hole in GAM RE table @%d\n", (int)(gre - uv_gre_table)); continue; } if (_max_socket < gre->sockid) { pr_err("UV: GAM table sockid(%d) too large(>%d) @%d\n", gre->sockid, _max_socket, (int)(gre - uv_gre_table)); continue; } sid = gre->sockid - _min_socket; if (lsid < sid) { /* new range */ grt = &_gr_table[sid]; grt->base = lsid; grt->nasid = gre->nasid; grt->limit = last_limit = gre->limit; lsid = sid; continue; } if (lsid == sid && !ram_limit) { /* update range */ if (grt->limit == last_limit) { /* .. if contiguous */ grt->limit = last_limit = gre->limit; continue; } } if (!ram_limit) { /* non-contiguous ram range */ grt++; grt->base = sid - 1; grt->nasid = gre->nasid; grt->limit = last_limit = gre->limit; continue; } grt++; /* non-contiguous/non-ram */ grt->base = grt - _gr_table; /* base is this entry */ grt->nasid = gre->nasid; grt->limit = last_limit = gre->limit; lsid++; } /* shorten table if possible */ grt++; i = grt - _gr_table; if (i < _gr_table_len) { void *ret; bytes = i * sizeof(struct uv_gam_range_s); ret = krealloc(_gr_table, bytes, GFP_KERNEL); if (ret) { _gr_table = ret; _gr_table_len = i; } } /* display resultant gam range table */ for (i = 0, grt = _gr_table; i < _gr_table_len; i++, grt++) { int gb = grt->base; unsigned long start = gb < 0 ? 0 : (unsigned long)_gr_table[gb].limit << UV_GAM_RANGE_SHFT; unsigned long end = (unsigned long)grt->limit << UV_GAM_RANGE_SHFT; pr_info("UV: GAM Range %2d %04x 0x%013lx-0x%013lx (%d)\n", i, grt->nasid, start, end, gb); } } static int uv_wakeup_secondary(int phys_apicid, unsigned long start_rip) { unsigned long val; int pnode; pnode = uv_apicid_to_pnode(phys_apicid); phys_apicid |= uv_apicid_hibits; val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_INIT; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); val = (1UL << UVH_IPI_INT_SEND_SHFT) | (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) | ((start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) | APIC_DM_STARTUP; uv_write_global_mmr64(pnode, UVH_IPI_INT, val); return 0; } static void uv_send_IPI_one(int cpu, int vector) { unsigned long apicid; int pnode; apicid = per_cpu(x86_cpu_to_apicid, cpu); pnode = uv_apicid_to_pnode(apicid); uv_hub_send_ipi(pnode, apicid, vector); } static void uv_send_IPI_mask(const struct cpumask *mask, int vector) { unsigned int cpu; for_each_cpu(cpu, mask) uv_send_IPI_one(cpu, vector); } static void uv_send_IPI_mask_allbutself(const struct cpumask *mask, int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_cpu(cpu, mask) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_allbutself(int vector) { unsigned int this_cpu = smp_processor_id(); unsigned int cpu; for_each_online_cpu(cpu) { if (cpu != this_cpu) uv_send_IPI_one(cpu, vector); } } static void uv_send_IPI_all(int vector) { uv_send_IPI_mask(cpu_online_mask, vector); } static int uv_apic_id_valid(int apicid) { return 1; } static int uv_apic_id_registered(void) { return 1; } static void uv_init_apic_ldr(void) { } static int uv_cpu_mask_to_apicid_and(const struct cpumask *cpumask, const struct cpumask *andmask, unsigned int *apicid) { int unsigned cpu; /* * We're using fixed IRQ delivery, can only return one phys APIC ID. * May as well be the first. */ for_each_cpu_and(cpu, cpumask, andmask) { if (cpumask_test_cpu(cpu, cpu_online_mask)) break; } if (likely(cpu < nr_cpu_ids)) { *apicid = per_cpu(x86_cpu_to_apicid, cpu) | uv_apicid_hibits; return 0; } return -EINVAL; } static unsigned int x2apic_get_apic_id(unsigned long x) { unsigned int id; WARN_ON(preemptible() && num_online_cpus() > 1); id = x | __this_cpu_read(x2apic_extra_bits); return id; } static unsigned long set_apic_id(unsigned int id) { unsigned long x; /* maskout x2apic_extra_bits ? */ x = id; return x; } static unsigned int uv_read_apic_id(void) { return x2apic_get_apic_id(apic_read(APIC_ID)); } static int uv_phys_pkg_id(int initial_apicid, int index_msb) { return uv_read_apic_id() >> index_msb; } static void uv_send_IPI_self(int vector) { apic_write(APIC_SELF_IPI, vector); } static int uv_probe(void) { return apic == &apic_x2apic_uv_x; } static struct apic __refdata apic_x2apic_uv_x = { .name = "UV large system", .probe = uv_probe, .acpi_madt_oem_check = uv_acpi_madt_oem_check, .apic_id_valid = uv_apic_id_valid, .apic_id_registered = uv_apic_id_registered, .irq_delivery_mode = dest_Fixed, .irq_dest_mode = 0, /* physical */ .target_cpus = online_target_cpus, .disable_esr = 0, .dest_logical = APIC_DEST_LOGICAL, .check_apicid_used = NULL, .vector_allocation_domain = default_vector_allocation_domain, .init_apic_ldr = uv_init_apic_ldr, .ioapic_phys_id_map = NULL, .setup_apic_routing = NULL, .cpu_present_to_apicid = default_cpu_present_to_apicid, .apicid_to_cpu_present = NULL, .check_phys_apicid_present = default_check_phys_apicid_present, .phys_pkg_id = uv_phys_pkg_id, .get_apic_id = x2apic_get_apic_id, .set_apic_id = set_apic_id, .apic_id_mask = 0xFFFFFFFFu, .cpu_mask_to_apicid_and = uv_cpu_mask_to_apicid_and, .send_IPI = uv_send_IPI_one, .send_IPI_mask = uv_send_IPI_mask, .send_IPI_mask_allbutself = uv_send_IPI_mask_allbutself, .send_IPI_allbutself = uv_send_IPI_allbutself, .send_IPI_all = uv_send_IPI_all, .send_IPI_self = uv_send_IPI_self, .wakeup_secondary_cpu = uv_wakeup_secondary, .inquire_remote_apic = NULL, .read = native_apic_msr_read, .write = native_apic_msr_write, .eoi_write = native_apic_msr_eoi_write, .icr_read = native_x2apic_icr_read, .icr_write = native_x2apic_icr_write, .wait_icr_idle = native_x2apic_wait_icr_idle, .safe_wait_icr_idle = native_safe_x2apic_wait_icr_idle, }; static void set_x2apic_extra_bits(int pnode) { __this_cpu_write(x2apic_extra_bits, pnode << uvh_apicid.s.pnode_shift); } #define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3 #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) { union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias; union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect; unsigned long m_redirect; unsigned long m_overlay; int i; for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) { switch (i) { case 0: m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR; m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR; break; case 1: m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR; m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR; break; case 2: m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR; m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR; break; } alias.v = uv_read_local_mmr(m_overlay); if (alias.s.enable && alias.s.base == 0) { *size = (1UL << alias.s.m_alias); redirect.v = uv_read_local_mmr(m_redirect); *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT; return; } } *base = *size = 0; } enum map_type {map_wb, map_uc}; static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type) { unsigned long bytes, paddr; paddr = base << pshift; bytes = (1UL << bshift) * (max_pnode + 1); if (!paddr) { pr_info("UV: Map %s_HI base address NULL\n", id); return; } pr_debug("UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr, paddr + bytes); if (map_type == map_uc) init_extra_mapping_uc(paddr, bytes); else init_extra_mapping_wb(paddr, bytes); } static __init void map_gru_distributed(unsigned long c) { union uvh_rh_gam_gru_overlay_config_mmr_u gru; u64 paddr; unsigned long bytes; int nid; gru.v = c; /* only base bits 42:28 relevant in dist mode */ gru_dist_base = gru.v & 0x000007fff0000000UL; if (!gru_dist_base) { pr_info("UV: Map GRU_DIST base address NULL\n"); return; } bytes = 1UL << UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; gru_dist_lmask = ((1UL << uv_hub_info->m_val) - 1) & ~(bytes - 1); gru_dist_umask = ~((1UL << uv_hub_info->m_val) - 1); gru_dist_base &= gru_dist_lmask; /* Clear bits above M */ for_each_online_node(nid) { paddr = ((u64)uv_node_to_pnode(nid) << uv_hub_info->m_val) | gru_dist_base; init_extra_mapping_wb(paddr, bytes); gru_first_node_paddr = min(paddr, gru_first_node_paddr); gru_last_node_paddr = max(paddr, gru_last_node_paddr); } /* Save upper (63:M) bits of address only for is_GRU_range */ gru_first_node_paddr &= gru_dist_umask; gru_last_node_paddr &= gru_dist_umask; pr_debug("UV: Map GRU_DIST base 0x%016llx 0x%016llx - 0x%016llx\n", gru_dist_base, gru_first_node_paddr, gru_last_node_paddr); } static __init void map_gru_high(int max_pnode) { union uvh_rh_gam_gru_overlay_config_mmr_u gru; int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; unsigned long mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_MASK; unsigned long base; gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR); if (!gru.s.enable) { pr_info("UV: GRU disabled\n"); return; } if (is_uv3_hub() && gru.s3.mode) { map_gru_distributed(gru.v); return; } base = (gru.v & mask) >> shift; map_high("GRU", base, shift, shift, max_pnode, map_wb); gru_start_paddr = ((u64)base << shift); gru_end_paddr = gru_start_paddr + (1UL << shift) * (max_pnode + 1); } static __init void map_mmr_high(int max_pnode) { union uvh_rh_gam_mmr_overlay_config_mmr_u mmr; int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT; mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR); if (mmr.s.enable) map_high("MMR", mmr.s.base, shift, shift, max_pnode, map_uc); else pr_info("UV: MMR disabled\n"); } /* * This commonality works because both 0 & 1 versions of the MMIOH OVERLAY * and REDIRECT MMR regs are exactly the same on UV3. */ struct mmioh_config { unsigned long overlay; unsigned long redirect; char *id; }; static __initdata struct mmioh_config mmiohs[] = { { UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR, UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR, "MMIOH0" }, { UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR, UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG1_MMR, "MMIOH1" }, }; /* UV3 & UV4 have identical MMIOH overlay configs */ static __init void map_mmioh_high_uv3(int index, int min_pnode, int max_pnode) { union uv3h_rh_gam_mmioh_overlay_config0_mmr_u overlay; unsigned long mmr; unsigned long base; int i, n, shift, m_io, max_io; int nasid, lnasid, fi, li; char *id; id = mmiohs[index].id; overlay.v = uv_read_local_mmr(mmiohs[index].overlay); pr_info("UV: %s overlay 0x%lx base:0x%x m_io:%d\n", id, overlay.v, overlay.s3.base, overlay.s3.m_io); if (!overlay.s3.enable) { pr_info("UV: %s disabled\n", id); return; } shift = UV3H_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_BASE_SHFT; base = (unsigned long)overlay.s3.base; m_io = overlay.s3.m_io; mmr = mmiohs[index].redirect; n = UV3H_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR_DEPTH; min_pnode *= 2; /* convert to NASID */ max_pnode *= 2; max_io = lnasid = fi = li = -1; for (i = 0; i < n; i++) { union uv3h_rh_gam_mmioh_redirect_config0_mmr_u redirect; redirect.v = uv_read_local_mmr(mmr + i * 8); nasid = redirect.s3.nasid; if (nasid < min_pnode || max_pnode < nasid) nasid = -1; /* invalid NASID */ if (nasid == lnasid) { li = i; if (i != n-1) /* last entry check */ continue; } /* check if we have a cached (or last) redirect to print */ if (lnasid != -1 || (i == n-1 && nasid != -1)) { unsigned long addr1, addr2; int f, l; if (lnasid == -1) { f = l = i; lnasid = nasid; } else { f = fi; l = li; } addr1 = (base << shift) + f * (unsigned long)(1 << m_io); addr2 = (base << shift) + (l + 1) * (unsigned long)(1 << m_io); pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n", id, fi, li, lnasid, addr1, addr2); if (max_io < l) max_io = l; } fi = li = i; lnasid = nasid; } pr_info("UV: %s base:0x%lx shift:%d M_IO:%d MAX_IO:%d\n", id, base, shift, m_io, max_io); if (max_io >= 0) map_high(id, base, shift, m_io, max_io, map_uc); } static __init void map_mmioh_high(int min_pnode, int max_pnode) { union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh; unsigned long mmr, base; int shift, enable, m_io, n_io; if (is_uv3_hub() || is_uv4_hub()) { /* Map both MMIOH Regions */ map_mmioh_high_uv3(0, min_pnode, max_pnode); map_mmioh_high_uv3(1, min_pnode, max_pnode); return; } if (is_uv1_hub()) { mmr = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR; shift = UV1H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; mmioh.v = uv_read_local_mmr(mmr); enable = !!mmioh.s1.enable; base = mmioh.s1.base; m_io = mmioh.s1.m_io; n_io = mmioh.s1.n_io; } else if (is_uv2_hub()) { mmr = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR; shift = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; mmioh.v = uv_read_local_mmr(mmr); enable = !!mmioh.s2.enable; base = mmioh.s2.base; m_io = mmioh.s2.m_io; n_io = mmioh.s2.n_io; } else return; if (enable) { max_pnode &= (1 << n_io) - 1; pr_info( "UV: base:0x%lx shift:%d N_IO:%d M_IO:%d max_pnode:0x%x\n", base, shift, m_io, n_io, max_pnode); map_high("MMIOH", base, shift, m_io, max_pnode, map_uc); } else { pr_info("UV: MMIOH disabled\n"); } } static __init void map_low_mmrs(void) { init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE); init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE); } static __init void uv_rtc_init(void) { long status; u64 ticks_per_sec; status = uv_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec); if (status != BIOS_STATUS_SUCCESS || ticks_per_sec < 100000) { printk(KERN_WARNING "unable to determine platform RTC clock frequency, " "guessing.\n"); /* BIOS gives wrong value for clock freq. so guess */ sn_rtc_cycles_per_second = 1000000000000UL / 30000UL; } else sn_rtc_cycles_per_second = ticks_per_sec; } /* * percpu heartbeat timer */ static void uv_heartbeat(unsigned long ignored) { struct timer_list *timer = &uv_scir_info->timer; unsigned char bits = uv_scir_info->state; /* flip heartbeat bit */ bits ^= SCIR_CPU_HEARTBEAT; /* is this cpu idle? */ if (idle_cpu(raw_smp_processor_id())) bits &= ~SCIR_CPU_ACTIVITY; else bits |= SCIR_CPU_ACTIVITY; /* update system controller interface reg */ uv_set_scir_bits(bits); /* enable next timer period */ mod_timer_pinned(timer, jiffies + SCIR_CPU_HB_INTERVAL); } static void uv_heartbeat_enable(int cpu) { while (!uv_cpu_scir_info(cpu)->enabled) { struct timer_list *timer = &uv_cpu_scir_info(cpu)->timer; uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY); setup_timer(timer, uv_heartbeat, cpu); timer->expires = jiffies + SCIR_CPU_HB_INTERVAL; add_timer_on(timer, cpu); uv_cpu_scir_info(cpu)->enabled = 1; /* also ensure that boot cpu is enabled */ cpu = 0; } } #ifdef CONFIG_HOTPLUG_CPU static void uv_heartbeat_disable(int cpu) { if (uv_cpu_scir_info(cpu)->enabled) { uv_cpu_scir_info(cpu)->enabled = 0; del_timer(&uv_cpu_scir_info(cpu)->timer); } uv_set_cpu_scir_bits(cpu, 0xff); } /* * cpu hotplug notifier */ static int uv_scir_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_FAILED: case CPU_ONLINE: uv_heartbeat_enable(cpu); break; case CPU_DOWN_PREPARE: uv_heartbeat_disable(cpu); break; default: break; } return NOTIFY_OK; } static __init void uv_scir_register_cpu_notifier(void) { hotcpu_notifier(uv_scir_cpu_notify, 0); } #else /* !CONFIG_HOTPLUG_CPU */ static __init void uv_scir_register_cpu_notifier(void) { } static __init int uv_init_heartbeat(void) { int cpu; if (is_uv_system()) for_each_online_cpu(cpu) uv_heartbeat_enable(cpu); return 0; } late_initcall(uv_init_heartbeat); #endif /* !CONFIG_HOTPLUG_CPU */ /* Direct Legacy VGA I/O traffic to designated IOH */ int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) { int domain, bus, rc; PR_DEVEL("devfn %x decode %d cmd %x flags %d\n", pdev->devfn, decode, command_bits, flags); if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) return 0; if ((command_bits & PCI_COMMAND_IO) == 0) return 0; domain = pci_domain_nr(pdev->bus); bus = pdev->bus->number; rc = uv_bios_set_legacy_vga_target(decode, domain, bus); PR_DEVEL("vga decode %d %x:%x, rc: %d\n", decode, domain, bus, rc); return rc; } /* * Called on each cpu to initialize the per_cpu UV data area. * FIXME: hotplug not supported yet */ void uv_cpu_init(void) { /* CPU 0 initialization will be done via uv_system_init. */ if (smp_processor_id() == 0) return; uv_hub_info->nr_online_cpus++; if (get_uv_system_type() == UV_NON_UNIQUE_APIC) set_x2apic_extra_bits(uv_hub_info->pnode); } struct mn { unsigned char m_val; unsigned char n_val; unsigned char m_shift; unsigned char n_lshift; }; static void get_mn(struct mn *mnp) { union uvh_rh_gam_config_mmr_u m_n_config; union uv3h_gr0_gam_gr_config_u m_gr_config; m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR); mnp->n_val = m_n_config.s.n_skt; if (is_uv4_hub()) { mnp->m_val = 0; mnp->n_lshift = 0; } else if (is_uv3_hub()) { mnp->m_val = m_n_config.s3.m_skt; m_gr_config.v = uv_read_local_mmr(UV3H_GR0_GAM_GR_CONFIG); mnp->n_lshift = m_gr_config.s3.m_skt; } else if (is_uv2_hub()) { mnp->m_val = m_n_config.s2.m_skt; mnp->n_lshift = mnp->m_val == 40 ? 40 : 39; } else if (is_uv1_hub()) { mnp->m_val = m_n_config.s1.m_skt; mnp->n_lshift = mnp->m_val; } mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0; } void __init uv_init_hub_info(struct uv_hub_info_s *hub_info) { struct mn mn = {0}; /* avoid unitialized warnings */ union uvh_node_id_u node_id; get_mn(&mn); hub_info->m_val = mn.m_val; hub_info->n_val = mn.n_val; hub_info->m_shift = mn.m_shift; hub_info->n_lshift = mn.n_lshift ? mn.n_lshift : 0; hub_info->hub_revision = uv_hub_info->hub_revision; hub_info->pnode_mask = uv_cpuid.pnode_mask; hub_info->min_pnode = _min_pnode; hub_info->min_socket = _min_socket; hub_info->pnode_to_socket = _pnode_to_socket; hub_info->socket_to_node = _socket_to_node; hub_info->socket_to_pnode = _socket_to_pnode; hub_info->gr_table_len = _gr_table_len; hub_info->gr_table = _gr_table; hub_info->gpa_mask = mn.m_val ? (1UL << (mn.m_val + mn.n_val)) - 1 : (1UL << uv_cpuid.gpa_shift) - 1; node_id.v = uv_read_local_mmr(UVH_NODE_ID); hub_info->gnode_extra = (node_id.s.node_id & ~((1 << mn.n_val) - 1)) >> 1; hub_info->gnode_upper = ((unsigned long)hub_info->gnode_extra << mn.m_val); if (uv_gp_table) { hub_info->global_mmr_base = uv_gp_table->mmr_base; hub_info->global_mmr_shift = uv_gp_table->mmr_shift; hub_info->global_gru_base = uv_gp_table->gru_base; hub_info->global_gru_shift = uv_gp_table->gru_shift; hub_info->gpa_shift = uv_gp_table->gpa_shift; hub_info->gpa_mask = (1UL << hub_info->gpa_shift) - 1; } else { hub_info->global_mmr_base = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) & ~UV_MMR_ENABLE; hub_info->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT; } get_lowmem_redirect( &hub_info->lowmem_remap_base, &hub_info->lowmem_remap_top); hub_info->apic_pnode_shift = uv_cpuid.socketid_shift; /* show system specific info */ pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hub_info->n_val, hub_info->m_val, hub_info->m_shift, hub_info->n_lshift); pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hub_info->gpa_mask, hub_info->gpa_shift, hub_info->pnode_mask, hub_info->apic_pnode_shift); pr_info("UV: mmr_base/shift:0x%lx/%ld gru_base/shift:0x%lx/%ld\n", hub_info->global_mmr_base, hub_info->global_mmr_shift, hub_info->global_gru_base, hub_info->global_gru_shift); pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hub_info->gnode_upper, hub_info->gnode_extra); } static void __init decode_gam_params(unsigned long ptr) { uv_gp_table = (struct uv_gam_parameters *)ptr; pr_info("UV: GAM Params...\n"); pr_info("UV: mmr_base/shift:0x%llx/%d gru_base/shift:0x%llx/%d gpa_shift:%d\n", uv_gp_table->mmr_base, uv_gp_table->mmr_shift, uv_gp_table->gru_base, uv_gp_table->gru_shift, uv_gp_table->gpa_shift); } static void __init decode_gam_rng_tbl(unsigned long ptr) { struct uv_gam_range_entry *gre = (struct uv_gam_range_entry *)ptr; unsigned long lgre = 0; int index = 0; int sock_min = 999999, pnode_min = 99999; int sock_max = -1, pnode_max = -1; uv_gre_table = gre; for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { if (!index) { pr_info("UV: GAM Range Table...\n"); pr_info("UV: # %20s %14s %5s %4s %5s %3s %2s %3s\n", "Range", "", "Size", "Type", "NASID", "SID", "PN", "PXM"); } pr_info( "UV: %2d: 0x%014lx-0x%014lx %5luG %3d %04x %02x %02x %3d\n", index++, (unsigned long)lgre << UV_GAM_RANGE_SHFT, (unsigned long)gre->limit << UV_GAM_RANGE_SHFT, ((unsigned long)(gre->limit - lgre)) >> (30 - UV_GAM_RANGE_SHFT), /* 64M -> 1G */ gre->type, gre->nasid, gre->sockid, gre->pnode, gre->pxm); lgre = gre->limit; if (sock_min > gre->sockid) sock_min = gre->sockid; if (sock_max < gre->sockid) sock_max = gre->sockid; if (pnode_min > gre->pnode) pnode_min = gre->pnode; if (pnode_max < gre->pnode) pnode_max = gre->pnode; } _min_socket = sock_min; _max_socket = sock_max; _min_pnode = pnode_min; _max_pnode = pnode_max; _gr_table_len = index; pr_info( "UV: GRT: %d entries, sockets(min:%x,max:%x) pnodes(min:%x,max:%x)\n", index, _min_socket, _max_socket, _min_pnode, _max_pnode); } static void __init decode_uv_systab(void) { struct uv_systab *st; int i; st = uv_systab; if ((!st || st->revision < UV_SYSTAB_VERSION_UV4) && !is_uv4_hub()) return; if (st->revision != UV_SYSTAB_VERSION_UV4_LATEST) { pr_crit( "UV: BIOS UVsystab version(%x) mismatch, expecting(%x)\n", st->revision, UV_SYSTAB_VERSION_UV4_LATEST); BUG(); } for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) { unsigned long ptr = st->entry[i].offset; if (!ptr) continue; ptr = ptr + (unsigned long)st; switch (st->entry[i].type) { case UV_SYSTAB_TYPE_GAM_PARAMS: decode_gam_params(ptr); break; case UV_SYSTAB_TYPE_GAM_RNG_TBL: decode_gam_rng_tbl(ptr); break; } } } /* * Setup physical blade translations from UVH_NODE_PRESENT_TABLE * .. NB: UVH_NODE_PRESENT_TABLE is going away, * .. being replaced by GAM Range Table */ static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info) { size_t bytes; int blade, i, j, uv_pb = 0, num_nodes = num_possible_nodes(); pr_info("UV: NODE_PRESENT_DEPTH = %d\n", UVH_NODE_PRESENT_TABLE_DEPTH); for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { unsigned long np; np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); if (np) pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np); uv_pb += hweight64(np); } if (uv_possible_blades != uv_pb) uv_possible_blades = uv_pb; bytes = num_nodes * sizeof(_node_to_pnode[0]); _node_to_pnode = kmalloc(bytes, GFP_KERNEL); BUG_ON(!_node_to_pnode); for (blade = 0, i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { unsigned short pnode; unsigned long present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); for (j = 0; j < 64; j++) { if (!test_bit(j, &present)) continue; pnode = (i * 64 + j) & hub_info->pnode_mask; _node_to_pnode[blade++] = pnode; } if (blade > num_nodes) { pr_err("UV: blade count(%d) exceeds node count(%d)!\n", blade, num_nodes); BUG(); } } } static void __init build_socket_tables(void) { struct uv_gam_range_entry *gre = uv_gre_table; int num, nump; int cpu, i, lnid; int minsock = _min_socket; int maxsock = _max_socket; int minpnode = _min_pnode; int maxpnode = _max_pnode; size_t bytes; if (!gre) { if (is_uv1_hub() || is_uv2_hub() || is_uv3_hub()) { pr_info("UV: No UVsystab socket table, ignoring\n"); return; /* not required */ } pr_crit( "UV: Error: UVsystab address translations not available!\n"); BUG(); } /* build socket id -> node id, pnode */ num = maxsock - minsock + 1; bytes = num * sizeof(_socket_to_node[0]); _socket_to_node = kmalloc(bytes, GFP_KERNEL); _socket_to_pnode = kmalloc(bytes, GFP_KERNEL); nump = maxpnode - minpnode + 1; bytes = nump * sizeof(_pnode_to_socket[0]); _pnode_to_socket = kmalloc(bytes, GFP_KERNEL); BUG_ON(!_socket_to_node || !_socket_to_pnode || !_pnode_to_socket); for (i = 0; i < num; i++) _socket_to_node[i] = _socket_to_pnode[i] = SOCK_EMPTY; for (i = 0; i < nump; i++) _pnode_to_socket[i] = SOCK_EMPTY; /* fill in pnode/node/addr conversion list values */ pr_info("UV: GAM Building socket/pnode/pxm conversion tables\n"); for (; gre->type != UV_GAM_RANGE_TYPE_UNUSED; gre++) { if (gre->type == UV_GAM_RANGE_TYPE_HOLE) continue; i = gre->sockid - minsock; if (_socket_to_pnode[i] != SOCK_EMPTY) continue; /* duplicate */ _socket_to_pnode[i] = gre->pnode; _socket_to_node[i] = gre->pxm; i = gre->pnode - minpnode; _pnode_to_socket[i] = gre->sockid; pr_info( "UV: sid:%02x type:%d nasid:%04x pn:%02x pxm:%2d pn2s:%2x\n", gre->sockid, gre->type, gre->nasid, _socket_to_pnode[gre->sockid - minsock], _socket_to_node[gre->sockid - minsock], _pnode_to_socket[gre->pnode - minpnode]); } /* check socket -> node values */ lnid = -1; for_each_present_cpu(cpu) { int nid = cpu_to_node(cpu); int apicid, sockid; if (lnid == nid) continue; lnid = nid; apicid = per_cpu(x86_cpu_to_apicid, cpu); sockid = apicid >> uv_cpuid.socketid_shift; i = sockid - minsock; if (nid != _socket_to_node[i]) { pr_warn( "UV: %02x: type:%d socket:%02x PXM:%02x != node:%2d\n", i, sockid, gre->type, _socket_to_node[i], nid); _socket_to_node[i] = nid; } } /* Setup physical blade to pnode translation from GAM Range Table */ bytes = num_possible_nodes() * sizeof(_node_to_pnode[0]); _node_to_pnode = kmalloc(bytes, GFP_KERNEL); BUG_ON(!_node_to_pnode); for (lnid = 0; lnid < num_possible_nodes(); lnid++) { unsigned short sockid; for (sockid = minsock; sockid <= maxsock; sockid++) { if (lnid == _socket_to_node[sockid - minsock]) { _node_to_pnode[lnid] = _socket_to_pnode[sockid - minsock]; break; } } if (sockid > maxsock) { pr_err("UV: socket for node %d not found!\n", lnid); BUG(); } } /* * If socket id == pnode or socket id == node for all nodes, * system runs faster by removing corresponding conversion table. */ pr_info("UV: Checking socket->node/pnode for identity maps\n"); if (minsock == 0) { for (i = 0; i < num; i++) if (_socket_to_node[i] == SOCK_EMPTY || i != _socket_to_node[i]) break; if (i >= num) { kfree(_socket_to_node); _socket_to_node = NULL; pr_info("UV: 1:1 socket_to_node table removed\n"); } } if (minsock == minpnode) { for (i = 0; i < num; i++) if (_socket_to_pnode[i] != SOCK_EMPTY && _socket_to_pnode[i] != i + minpnode) break; if (i >= num) { kfree(_socket_to_pnode); _socket_to_pnode = NULL; pr_info("UV: 1:1 socket_to_pnode table removed\n"); } } } void __init uv_system_init(void) { struct uv_hub_info_s hub_info = {0}; int bytes, cpu, nodeid; unsigned short min_pnode = 9999, max_pnode = 0; char *hub = is_uv4_hub() ? "UV400" : is_uv3_hub() ? "UV300" : is_uv2_hub() ? "UV2000/3000" : is_uv1_hub() ? "UV100/1000" : NULL; if (!hub) { pr_err("UV: Unknown/unsupported UV hub\n"); return; } pr_info("UV: Found %s hub\n", hub); /* We now only need to map the MMRs on UV1 */ if (is_uv1_hub()) map_low_mmrs(); uv_bios_init(); /* get uv_systab for decoding */ decode_uv_systab(); build_socket_tables(); build_uv_gr_table(); uv_init_hub_info(&hub_info); uv_possible_blades = num_possible_nodes(); if (!_node_to_pnode) boot_init_possible_blades(&hub_info); /* uv_num_possible_blades() is really the hub count */ pr_info("UV: Found %d hubs, %d nodes, %d cpus\n", uv_num_possible_blades(), num_possible_nodes(), num_possible_cpus()); uv_bios_get_sn_info(0, &uv_type, &sn_partition_id, &sn_coherency_id, &sn_region_size, &system_serial_number); hub_info.coherency_domain_number = sn_coherency_id; uv_rtc_init(); bytes = sizeof(void *) * uv_num_possible_blades(); __uv_hub_info_list = kzalloc(bytes, GFP_KERNEL); BUG_ON(!__uv_hub_info_list); bytes = sizeof(struct uv_hub_info_s); for_each_node(nodeid) { struct uv_hub_info_s *new_hub; unsigned short pnode; if (__uv_hub_info_list[nodeid]) { pr_err("UV: Node %d UV HUB already initialized!?\n", nodeid); BUG(); } /* Allocate new per hub info list */ new_hub = (nodeid == 0) ? &uv_hub_info_node0 : kzalloc_node(bytes, GFP_KERNEL, nodeid); BUG_ON(!new_hub); __uv_hub_info_list[nodeid] = new_hub; new_hub = uv_hub_info_list(nodeid); BUG_ON(!new_hub); *new_hub = hub_info; pnode = _node_to_pnode[nodeid]; min_pnode = min(pnode, min_pnode); max_pnode = max(pnode, max_pnode); new_hub->pnode = pnode; new_hub->numa_blade_id = uv_node_to_blade_id(nodeid); new_hub->memory_nid = -1; new_hub->nr_possible_cpus = 0; new_hub->nr_online_cpus = 0; } /* Initialize per cpu info */ for_each_possible_cpu(cpu) { int apicid = per_cpu(x86_cpu_to_apicid, cpu); nodeid = cpu_to_node(cpu); uv_cpu_info_per(cpu)->p_uv_hub_info = uv_hub_info_list(nodeid); uv_cpu_info_per(cpu)->blade_cpu_id = uv_cpu_hub_info(cpu)->nr_possible_cpus++; if (uv_cpu_hub_info(cpu)->memory_nid == -1) uv_cpu_hub_info(cpu)->memory_nid = cpu_to_node(cpu); uv_cpu_scir_info(cpu)->offset = uv_scir_offset(apicid); } /* Display per node info */ for_each_node(nodeid) { pr_info("UV: UVHUB node:%2d pn:%02x nrcpus:%d\n", nodeid, uv_hub_info_list(nodeid)->pnode, uv_hub_info_list(nodeid)->nr_possible_cpus); } pr_info("UV: min_pnode:%02x max_pnode:%02x\n", min_pnode, max_pnode); map_gru_high(max_pnode); map_mmr_high(max_pnode); map_mmioh_high(min_pnode, max_pnode); uv_nmi_setup(); uv_cpu_init(); uv_scir_register_cpu_notifier(); proc_mkdir("sgi_uv", NULL); /* register Legacy VGA I/O redirection handler */ pci_register_set_vga_state(uv_set_vga_state); /* * For a kdump kernel the reset must be BOOT_ACPI, not BOOT_EFI, as * EFI is not enabled in the kdump kernel. */ if (is_kdump_kernel()) reboot_type = BOOT_ACPI; } apic_driver(apic_x2apic_uv_x);