/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * Copyright (c) 2013 Red Hat, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_da_format.h" #include "xfs_da_btree.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_inode_item.h" #include "xfs_bmap_btree.h" #include "xfs_bmap.h" #include "xfs_attr_sf.h" #include "xfs_attr_remote.h" #include "xfs_attr.h" #include "xfs_attr_leaf.h" #include "xfs_error.h" #include "xfs_trace.h" #include "xfs_buf_item.h" #include "xfs_cksum.h" #include "xfs_dinode.h" #include "xfs_dir2.h" /* * xfs_attr_leaf.c * * Routines to implement leaf blocks of attributes as Btrees of hashed names. */ /*======================================================================== * Function prototypes for the kernel. *========================================================================*/ /* * Routines used for growing the Btree. */ STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args, xfs_dablk_t which_block, struct xfs_buf **bpp); STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer, struct xfs_attr3_icleaf_hdr *ichdr, struct xfs_da_args *args, int freemap_index); STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args, struct xfs_attr3_icleaf_hdr *ichdr, struct xfs_buf *leaf_buffer); STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, xfs_da_state_blk_t *blk2); STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state, xfs_da_state_blk_t *leaf_blk_1, struct xfs_attr3_icleaf_hdr *ichdr1, xfs_da_state_blk_t *leaf_blk_2, struct xfs_attr3_icleaf_hdr *ichdr2, int *number_entries_in_blk1, int *number_usedbytes_in_blk1); /* * Utility routines. */ STATIC void xfs_attr3_leaf_moveents(struct xfs_attr_leafblock *src_leaf, struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start, struct xfs_attr_leafblock *dst_leaf, struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start, int move_count, struct xfs_mount *mp); STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); void xfs_attr3_leaf_hdr_from_disk( struct xfs_attr3_icleaf_hdr *to, struct xfs_attr_leafblock *from) { int i; ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) || from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)); if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) { struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from; to->forw = be32_to_cpu(hdr3->info.hdr.forw); to->back = be32_to_cpu(hdr3->info.hdr.back); to->magic = be16_to_cpu(hdr3->info.hdr.magic); to->count = be16_to_cpu(hdr3->count); to->usedbytes = be16_to_cpu(hdr3->usedbytes); to->firstused = be16_to_cpu(hdr3->firstused); to->holes = hdr3->holes; for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base); to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size); } return; } to->forw = be32_to_cpu(from->hdr.info.forw); to->back = be32_to_cpu(from->hdr.info.back); to->magic = be16_to_cpu(from->hdr.info.magic); to->count = be16_to_cpu(from->hdr.count); to->usedbytes = be16_to_cpu(from->hdr.usedbytes); to->firstused = be16_to_cpu(from->hdr.firstused); to->holes = from->hdr.holes; for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base); to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size); } } void xfs_attr3_leaf_hdr_to_disk( struct xfs_attr_leafblock *to, struct xfs_attr3_icleaf_hdr *from) { int i; ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC || from->magic == XFS_ATTR3_LEAF_MAGIC); if (from->magic == XFS_ATTR3_LEAF_MAGIC) { struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to; hdr3->info.hdr.forw = cpu_to_be32(from->forw); hdr3->info.hdr.back = cpu_to_be32(from->back); hdr3->info.hdr.magic = cpu_to_be16(from->magic); hdr3->count = cpu_to_be16(from->count); hdr3->usedbytes = cpu_to_be16(from->usedbytes); hdr3->firstused = cpu_to_be16(from->firstused); hdr3->holes = from->holes; hdr3->pad1 = 0; for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base); hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size); } return; } to->hdr.info.forw = cpu_to_be32(from->forw); to->hdr.info.back = cpu_to_be32(from->back); to->hdr.info.magic = cpu_to_be16(from->magic); to->hdr.count = cpu_to_be16(from->count); to->hdr.usedbytes = cpu_to_be16(from->usedbytes); to->hdr.firstused = cpu_to_be16(from->firstused); to->hdr.holes = from->holes; to->hdr.pad1 = 0; for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base); to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size); } } static bool xfs_attr3_leaf_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_attr_leafblock *leaf = bp->b_addr; struct xfs_attr3_icleaf_hdr ichdr; xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); if (xfs_sb_version_hascrc(&mp->m_sb)) { struct xfs_da3_node_hdr *hdr3 = bp->b_addr; if (ichdr.magic != XFS_ATTR3_LEAF_MAGIC) return false; if (!uuid_equal(&hdr3->info.uuid, &mp->m_sb.sb_uuid)) return false; if (be64_to_cpu(hdr3->info.blkno) != bp->b_bn) return false; } else { if (ichdr.magic != XFS_ATTR_LEAF_MAGIC) return false; } if (ichdr.count == 0) return false; /* XXX: need to range check rest of attr header values */ /* XXX: hash order check? */ return true; } static void xfs_attr3_leaf_write_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; struct xfs_buf_log_item *bip = bp->b_fspriv; struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr; if (!xfs_attr3_leaf_verify(bp)) { xfs_buf_ioerror(bp, EFSCORRUPTED); xfs_verifier_error(bp); return; } if (!xfs_sb_version_hascrc(&mp->m_sb)) return; if (bip) hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn); xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF); } /* * leaf/node format detection on trees is sketchy, so a node read can be done on * leaf level blocks when detection identifies the tree as a node format tree * incorrectly. In this case, we need to swap the verifier to match the correct * format of the block being read. */ static void xfs_attr3_leaf_read_verify( struct xfs_buf *bp) { struct xfs_mount *mp = bp->b_target->bt_mount; if (xfs_sb_version_hascrc(&mp->m_sb) && !xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF)) xfs_buf_ioerror(bp, EFSBADCRC); else if (!xfs_attr3_leaf_verify(bp)) xfs_buf_ioerror(bp, EFSCORRUPTED); if (bp->b_error) xfs_verifier_error(bp); } const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = { .verify_read = xfs_attr3_leaf_read_verify, .verify_write = xfs_attr3_leaf_write_verify, }; int xfs_attr3_leaf_read( struct xfs_trans *tp, struct xfs_inode *dp, xfs_dablk_t bno, xfs_daddr_t mappedbno, struct xfs_buf **bpp) { int err; err = xfs_da_read_buf(tp, dp, bno, mappedbno, bpp, XFS_ATTR_FORK, &xfs_attr3_leaf_buf_ops); if (!err && tp) xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF); return err; } /*======================================================================== * Namespace helper routines *========================================================================*/ /* * If namespace bits don't match return 0. * If all match then return 1. */ STATIC int xfs_attr_namesp_match(int arg_flags, int ondisk_flags) { return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags); } /*======================================================================== * External routines when attribute fork size < XFS_LITINO(mp). *========================================================================*/ /* * Query whether the requested number of additional bytes of extended * attribute space will be able to fit inline. * * Returns zero if not, else the di_forkoff fork offset to be used in the * literal area for attribute data once the new bytes have been added. * * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; * special case for dev/uuid inodes, they have fixed size data forks. */ int xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes) { int offset; int minforkoff; /* lower limit on valid forkoff locations */ int maxforkoff; /* upper limit on valid forkoff locations */ int dsize; xfs_mount_t *mp = dp->i_mount; /* rounded down */ offset = (XFS_LITINO(mp, dp->i_d.di_version) - bytes) >> 3; switch (dp->i_d.di_format) { case XFS_DINODE_FMT_DEV: minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; return (offset >= minforkoff) ? minforkoff : 0; case XFS_DINODE_FMT_UUID: minforkoff = roundup(sizeof(uuid_t), 8) >> 3; return (offset >= minforkoff) ? minforkoff : 0; } /* * If the requested numbers of bytes is smaller or equal to the * current attribute fork size we can always proceed. * * Note that if_bytes in the data fork might actually be larger than * the current data fork size is due to delalloc extents. In that * case either the extent count will go down when they are converted * to real extents, or the delalloc conversion will take care of the * literal area rebalancing. */ if (bytes <= XFS_IFORK_ASIZE(dp)) return dp->i_d.di_forkoff; /* * For attr2 we can try to move the forkoff if there is space in the * literal area, but for the old format we are done if there is no * space in the fixed attribute fork. */ if (!(mp->m_flags & XFS_MOUNT_ATTR2)) return 0; dsize = dp->i_df.if_bytes; switch (dp->i_d.di_format) { case XFS_DINODE_FMT_EXTENTS: /* * If there is no attr fork and the data fork is extents, * determine if creating the default attr fork will result * in the extents form migrating to btree. If so, the * minimum offset only needs to be the space required for * the btree root. */ if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > xfs_default_attroffset(dp)) dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); break; case XFS_DINODE_FMT_BTREE: /* * If we have a data btree then keep forkoff if we have one, * otherwise we are adding a new attr, so then we set * minforkoff to where the btree root can finish so we have * plenty of room for attrs */ if (dp->i_d.di_forkoff) { if (offset < dp->i_d.di_forkoff) return 0; return dp->i_d.di_forkoff; } dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot); break; } /* * A data fork btree root must have space for at least * MINDBTPTRS key/ptr pairs if the data fork is small or empty. */ minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); minforkoff = roundup(minforkoff, 8) >> 3; /* attr fork btree root can have at least this many key/ptr pairs */ maxforkoff = XFS_LITINO(mp, dp->i_d.di_version) - XFS_BMDR_SPACE_CALC(MINABTPTRS); maxforkoff = maxforkoff >> 3; /* rounded down */ if (offset >= maxforkoff) return maxforkoff; if (offset >= minforkoff) return offset; return 0; } /* * Switch on the ATTR2 superblock bit (implies also FEATURES2) */ STATIC void xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) { if ((mp->m_flags & XFS_MOUNT_ATTR2) && !(xfs_sb_version_hasattr2(&mp->m_sb))) { spin_lock(&mp->m_sb_lock); if (!xfs_sb_version_hasattr2(&mp->m_sb)) { xfs_sb_version_addattr2(&mp->m_sb); spin_unlock(&mp->m_sb_lock); xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2); } else spin_unlock(&mp->m_sb_lock); } } /* * Create the initial contents of a shortform attribute list. */ void xfs_attr_shortform_create(xfs_da_args_t *args) { xfs_attr_sf_hdr_t *hdr; xfs_inode_t *dp; xfs_ifork_t *ifp; trace_xfs_attr_sf_create(args); dp = args->dp; ASSERT(dp != NULL); ifp = dp->i_afp; ASSERT(ifp != NULL); ASSERT(ifp->if_bytes == 0); if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) { ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */ dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL; ifp->if_flags |= XFS_IFINLINE; } else { ASSERT(ifp->if_flags & XFS_IFINLINE); } xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; hdr->count = 0; hdr->totsize = cpu_to_be16(sizeof(*hdr)); xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); } /* * Add a name/value pair to the shortform attribute list. * Overflow from the inode has already been checked for. */ void xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int i, offset, size; xfs_mount_t *mp; xfs_inode_t *dp; xfs_ifork_t *ifp; trace_xfs_attr_sf_add(args); dp = args->dp; mp = dp->i_mount; dp->i_d.di_forkoff = forkoff; ifp = dp->i_afp; ASSERT(ifp->if_flags & XFS_IFINLINE); sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { #ifdef DEBUG if (sfe->namelen != args->namelen) continue; if (memcmp(args->name, sfe->nameval, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; ASSERT(0); #endif } offset = (char *)sfe - (char *)sf; size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); xfs_idata_realloc(dp, size, XFS_ATTR_FORK); sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); sfe->namelen = args->namelen; sfe->valuelen = args->valuelen; sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); memcpy(sfe->nameval, args->name, args->namelen); memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); sf->hdr.count++; be16_add_cpu(&sf->hdr.totsize, size); xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); xfs_sbversion_add_attr2(mp, args->trans); } /* * After the last attribute is removed revert to original inode format, * making all literal area available to the data fork once more. */ STATIC void xfs_attr_fork_reset( struct xfs_inode *ip, struct xfs_trans *tp) { xfs_idestroy_fork(ip, XFS_ATTR_FORK); ip->i_d.di_forkoff = 0; ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; ASSERT(ip->i_d.di_anextents == 0); ASSERT(ip->i_afp == NULL); xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); } /* * Remove an attribute from the shortform attribute list structure. */ int xfs_attr_shortform_remove(xfs_da_args_t *args) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int base, size=0, end, totsize, i; xfs_mount_t *mp; xfs_inode_t *dp; trace_xfs_attr_sf_remove(args); dp = args->dp; mp = dp->i_mount; base = sizeof(xfs_attr_sf_hdr_t); sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; sfe = &sf->list[0]; end = sf->hdr.count; for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), base += size, i++) { size = XFS_ATTR_SF_ENTSIZE(sfe); if (sfe->namelen != args->namelen) continue; if (memcmp(sfe->nameval, args->name, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; break; } if (i == end) return(XFS_ERROR(ENOATTR)); /* * Fix up the attribute fork data, covering the hole */ end = base + size; totsize = be16_to_cpu(sf->hdr.totsize); if (end != totsize) memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); sf->hdr.count--; be16_add_cpu(&sf->hdr.totsize, -size); /* * Fix up the start offset of the attribute fork */ totsize -= size; if (totsize == sizeof(xfs_attr_sf_hdr_t) && (mp->m_flags & XFS_MOUNT_ATTR2) && (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && !(args->op_flags & XFS_DA_OP_ADDNAME)) { xfs_attr_fork_reset(dp, args->trans); } else { xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); ASSERT(dp->i_d.di_forkoff); ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || (args->op_flags & XFS_DA_OP_ADDNAME) || !(mp->m_flags & XFS_MOUNT_ATTR2) || dp->i_d.di_format == XFS_DINODE_FMT_BTREE); xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); } xfs_sbversion_add_attr2(mp, args->trans); return(0); } /* * Look up a name in a shortform attribute list structure. */ /*ARGSUSED*/ int xfs_attr_shortform_lookup(xfs_da_args_t *args) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int i; xfs_ifork_t *ifp; trace_xfs_attr_sf_lookup(args); ifp = args->dp->i_afp; ASSERT(ifp->if_flags & XFS_IFINLINE); sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { if (sfe->namelen != args->namelen) continue; if (memcmp(args->name, sfe->nameval, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; return(XFS_ERROR(EEXIST)); } return(XFS_ERROR(ENOATTR)); } /* * Look up a name in a shortform attribute list structure. */ /*ARGSUSED*/ int xfs_attr_shortform_getvalue(xfs_da_args_t *args) { xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; int i; ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE); sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { if (sfe->namelen != args->namelen) continue; if (memcmp(args->name, sfe->nameval, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, sfe->flags)) continue; if (args->flags & ATTR_KERNOVAL) { args->valuelen = sfe->valuelen; return(XFS_ERROR(EEXIST)); } if (args->valuelen < sfe->valuelen) { args->valuelen = sfe->valuelen; return(XFS_ERROR(ERANGE)); } args->valuelen = sfe->valuelen; memcpy(args->value, &sfe->nameval[args->namelen], args->valuelen); return(XFS_ERROR(EEXIST)); } return(XFS_ERROR(ENOATTR)); } /* * Convert from using the shortform to the leaf. */ int xfs_attr_shortform_to_leaf(xfs_da_args_t *args) { xfs_inode_t *dp; xfs_attr_shortform_t *sf; xfs_attr_sf_entry_t *sfe; xfs_da_args_t nargs; char *tmpbuffer; int error, i, size; xfs_dablk_t blkno; struct xfs_buf *bp; xfs_ifork_t *ifp; trace_xfs_attr_sf_to_leaf(args); dp = args->dp; ifp = dp->i_afp; sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; size = be16_to_cpu(sf->hdr.totsize); tmpbuffer = kmem_alloc(size, KM_SLEEP); ASSERT(tmpbuffer != NULL); memcpy(tmpbuffer, ifp->if_u1.if_data, size); sf = (xfs_attr_shortform_t *)tmpbuffer; xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); xfs_bmap_local_to_extents_empty(dp, XFS_ATTR_FORK); bp = NULL; error = xfs_da_grow_inode(args, &blkno); if (error) { /* * If we hit an IO error middle of the transaction inside * grow_inode(), we may have inconsistent data. Bail out. */ if (error == EIO) goto out; xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ goto out; } ASSERT(blkno == 0); error = xfs_attr3_leaf_create(args, blkno, &bp); if (error) { error = xfs_da_shrink_inode(args, 0, bp); bp = NULL; if (error) goto out; xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */ memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */ goto out; } memset((char *)&nargs, 0, sizeof(nargs)); nargs.dp = dp; nargs.geo = args->geo; nargs.firstblock = args->firstblock; nargs.flist = args->flist; nargs.total = args->total; nargs.whichfork = XFS_ATTR_FORK; nargs.trans = args->trans; nargs.op_flags = XFS_DA_OP_OKNOENT; sfe = &sf->list[0]; for (i = 0; i < sf->hdr.count; i++) { nargs.name = sfe->nameval; nargs.namelen = sfe->namelen; nargs.value = &sfe->nameval[nargs.namelen]; nargs.valuelen = sfe->valuelen; nargs.hashval = xfs_da_hashname(sfe->nameval, sfe->namelen); nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags); error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */ ASSERT(error == ENOATTR); error = xfs_attr3_leaf_add(bp, &nargs); ASSERT(error != ENOSPC); if (error) goto out; sfe = XFS_ATTR_SF_NEXTENTRY(sfe); } error = 0; out: kmem_free(tmpbuffer); return(error); } /* * Check a leaf attribute block to see if all the entries would fit into * a shortform attribute list. */ int xfs_attr_shortform_allfit( struct xfs_buf *bp, struct xfs_inode *dp) { struct xfs_attr_leafblock *leaf; struct xfs_attr_leaf_entry *entry; xfs_attr_leaf_name_local_t *name_loc; struct xfs_attr3_icleaf_hdr leafhdr; int bytes; int i; leaf = bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&leafhdr, leaf); entry = xfs_attr3_leaf_entryp(leaf); bytes = sizeof(struct xfs_attr_sf_hdr); for (i = 0; i < leafhdr.count; entry++, i++) { if (entry->flags & XFS_ATTR_INCOMPLETE) continue; /* don't copy partial entries */ if (!(entry->flags & XFS_ATTR_LOCAL)) return(0); name_loc = xfs_attr3_leaf_name_local(leaf, i); if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) return(0); if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) return(0); bytes += sizeof(struct xfs_attr_sf_entry) - 1 + name_loc->namelen + be16_to_cpu(name_loc->valuelen); } if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && (bytes == sizeof(struct xfs_attr_sf_hdr))) return -1; return xfs_attr_shortform_bytesfit(dp, bytes); } /* * Convert a leaf attribute list to shortform attribute list */ int xfs_attr3_leaf_to_shortform( struct xfs_buf *bp, struct xfs_da_args *args, int forkoff) { struct xfs_attr_leafblock *leaf; struct xfs_attr3_icleaf_hdr ichdr; struct xfs_attr_leaf_entry *entry; struct xfs_attr_leaf_name_local *name_loc; struct xfs_da_args nargs; struct xfs_inode *dp = args->dp; char *tmpbuffer; int error; int i; trace_xfs_attr_leaf_to_sf(args); tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP); if (!tmpbuffer) return ENOMEM; memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(dp->i_mount)); leaf = (xfs_attr_leafblock_t *)tmpbuffer; xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); entry = xfs_attr3_leaf_entryp(leaf); /* XXX (dgc): buffer is about to be marked stale - why zero it? */ memset(bp->b_addr, 0, XFS_LBSIZE(dp->i_mount)); /* * Clean out the prior contents of the attribute list. */ error = xfs_da_shrink_inode(args, 0, bp); if (error) goto out; if (forkoff == -1) { ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE); xfs_attr_fork_reset(dp, args->trans); goto out; } xfs_attr_shortform_create(args); /* * Copy the attributes */ memset((char *)&nargs, 0, sizeof(nargs)); nargs.geo = args->geo; nargs.dp = dp; nargs.firstblock = args->firstblock; nargs.flist = args->flist; nargs.total = args->total; nargs.whichfork = XFS_ATTR_FORK; nargs.trans = args->trans; nargs.op_flags = XFS_DA_OP_OKNOENT; for (i = 0; i < ichdr.count; entry++, i++) { if (entry->flags & XFS_ATTR_INCOMPLETE) continue; /* don't copy partial entries */ if (!entry->nameidx) continue; ASSERT(entry->flags & XFS_ATTR_LOCAL); name_loc = xfs_attr3_leaf_name_local(leaf, i); nargs.name = name_loc->nameval; nargs.namelen = name_loc->namelen; nargs.value = &name_loc->nameval[nargs.namelen]; nargs.valuelen = be16_to_cpu(name_loc->valuelen); nargs.hashval = be32_to_cpu(entry->hashval); nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags); xfs_attr_shortform_add(&nargs, forkoff); } error = 0; out: kmem_free(tmpbuffer); return error; } /* * Convert from using a single leaf to a root node and a leaf. */ int xfs_attr3_leaf_to_node( struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf; struct xfs_attr3_icleaf_hdr icleafhdr; struct xfs_attr_leaf_entry *entries; struct xfs_da_node_entry *btree; struct xfs_da3_icnode_hdr icnodehdr; struct xfs_da_intnode *node; struct xfs_inode *dp = args->dp; struct xfs_mount *mp = dp->i_mount; struct xfs_buf *bp1 = NULL; struct xfs_buf *bp2 = NULL; xfs_dablk_t blkno; int error; trace_xfs_attr_leaf_to_node(args); error = xfs_da_grow_inode(args, &blkno); if (error) goto out; error = xfs_attr3_leaf_read(args->trans, dp, 0, -1, &bp1); if (error) goto out; error = xfs_da_get_buf(args->trans, dp, blkno, -1, &bp2, XFS_ATTR_FORK); if (error) goto out; /* copy leaf to new buffer, update identifiers */ xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF); bp2->b_ops = bp1->b_ops; memcpy(bp2->b_addr, bp1->b_addr, XFS_LBSIZE(mp)); if (xfs_sb_version_hascrc(&mp->m_sb)) { struct xfs_da3_blkinfo *hdr3 = bp2->b_addr; hdr3->blkno = cpu_to_be64(bp2->b_bn); } xfs_trans_log_buf(args->trans, bp2, 0, XFS_LBSIZE(mp) - 1); /* * Set up the new root node. */ error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); if (error) goto out; node = bp1->b_addr; dp->d_ops->node_hdr_from_disk(&icnodehdr, node); btree = dp->d_ops->node_tree_p(node); leaf = bp2->b_addr; xfs_attr3_leaf_hdr_from_disk(&icleafhdr, leaf); entries = xfs_attr3_leaf_entryp(leaf); /* both on-disk, don't endian-flip twice */ btree[0].hashval = entries[icleafhdr.count - 1].hashval; btree[0].before = cpu_to_be32(blkno); icnodehdr.count = 1; dp->d_ops->node_hdr_to_disk(node, &icnodehdr); xfs_trans_log_buf(args->trans, bp1, 0, XFS_LBSIZE(mp) - 1); error = 0; out: return error; } /*======================================================================== * Routines used for growing the Btree. *========================================================================*/ /* * Create the initial contents of a leaf attribute list * or a leaf in a node attribute list. */ STATIC int xfs_attr3_leaf_create( struct xfs_da_args *args, xfs_dablk_t blkno, struct xfs_buf **bpp) { struct xfs_attr_leafblock *leaf; struct xfs_attr3_icleaf_hdr ichdr; struct xfs_inode *dp = args->dp; struct xfs_mount *mp = dp->i_mount; struct xfs_buf *bp; int error; trace_xfs_attr_leaf_create(args); error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp, XFS_ATTR_FORK); if (error) return error; bp->b_ops = &xfs_attr3_leaf_buf_ops; xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF); leaf = bp->b_addr; memset(leaf, 0, XFS_LBSIZE(mp)); memset(&ichdr, 0, sizeof(ichdr)); ichdr.firstused = XFS_LBSIZE(mp); if (xfs_sb_version_hascrc(&mp->m_sb)) { struct xfs_da3_blkinfo *hdr3 = bp->b_addr; ichdr.magic = XFS_ATTR3_LEAF_MAGIC; hdr3->blkno = cpu_to_be64(bp->b_bn); hdr3->owner = cpu_to_be64(dp->i_ino); uuid_copy(&hdr3->uuid, &mp->m_sb.sb_uuid); ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr); } else { ichdr.magic = XFS_ATTR_LEAF_MAGIC; ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr); } ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base; xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr); xfs_trans_log_buf(args->trans, bp, 0, XFS_LBSIZE(mp) - 1); *bpp = bp; return 0; } /* * Split the leaf node, rebalance, then add the new entry. */ int xfs_attr3_leaf_split( struct xfs_da_state *state, struct xfs_da_state_blk *oldblk, struct xfs_da_state_blk *newblk) { xfs_dablk_t blkno; int error; trace_xfs_attr_leaf_split(state->args); /* * Allocate space for a new leaf node. */ ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); error = xfs_da_grow_inode(state->args, &blkno); if (error) return(error); error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp); if (error) return(error); newblk->blkno = blkno; newblk->magic = XFS_ATTR_LEAF_MAGIC; /* * Rebalance the entries across the two leaves. * NOTE: rebalance() currently depends on the 2nd block being empty. */ xfs_attr3_leaf_rebalance(state, oldblk, newblk); error = xfs_da3_blk_link(state, oldblk, newblk); if (error) return(error); /* * Save info on "old" attribute for "atomic rename" ops, leaf_add() * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the * "new" attrs info. Will need the "old" info to remove it later. * * Insert the "new" entry in the correct block. */ if (state->inleaf) { trace_xfs_attr_leaf_add_old(state->args); error = xfs_attr3_leaf_add(oldblk->bp, state->args); } else { trace_xfs_attr_leaf_add_new(state->args); error = xfs_attr3_leaf_add(newblk->bp, state->args); } /* * Update last hashval in each block since we added the name. */ oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); return(error); } /* * Add a name to the leaf attribute list structure. */ int xfs_attr3_leaf_add( struct xfs_buf *bp, struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf; struct xfs_attr3_icleaf_hdr ichdr; int tablesize; int entsize; int sum; int tmp; int i; trace_xfs_attr_leaf_add(args); leaf = bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); ASSERT(args->index >= 0 && args->index <= ichdr.count); entsize = xfs_attr_leaf_newentsize(args, NULL); /* * Search through freemap for first-fit on new name length. * (may need to figure in size of entry struct too) */ tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t) + xfs_attr3_leaf_hdr_size(leaf); for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) { if (tablesize > ichdr.firstused) { sum += ichdr.freemap[i].size; continue; } if (!ichdr.freemap[i].size) continue; /* no space in this map */ tmp = entsize; if (ichdr.freemap[i].base < ichdr.firstused) tmp += sizeof(xfs_attr_leaf_entry_t); if (ichdr.freemap[i].size >= tmp) { tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i); goto out_log_hdr; } sum += ichdr.freemap[i].size; } /* * If there are no holes in the address space of the block, * and we don't have enough freespace, then compaction will do us * no good and we should just give up. */ if (!ichdr.holes && sum < entsize) return XFS_ERROR(ENOSPC); /* * Compact the entries to coalesce free space. * This may change the hdr->count via dropping INCOMPLETE entries. */ xfs_attr3_leaf_compact(args, &ichdr, bp); /* * After compaction, the block is guaranteed to have only one * free region, in freemap[0]. If it is not big enough, give up. */ if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) { tmp = ENOSPC; goto out_log_hdr; } tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0); out_log_hdr: xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr); xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, &leaf->hdr, xfs_attr3_leaf_hdr_size(leaf))); return tmp; } /* * Add a name to a leaf attribute list structure. */ STATIC int xfs_attr3_leaf_add_work( struct xfs_buf *bp, struct xfs_attr3_icleaf_hdr *ichdr, struct xfs_da_args *args, int mapindex) { struct xfs_attr_leafblock *leaf; struct xfs_attr_leaf_entry *entry; struct xfs_attr_leaf_name_local *name_loc; struct xfs_attr_leaf_name_remote *name_rmt; struct xfs_mount *mp; int tmp; int i; trace_xfs_attr_leaf_add_work(args); leaf = bp->b_addr; ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE); ASSERT(args->index >= 0 && args->index <= ichdr->count); /* * Force open some space in the entry array and fill it in. */ entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; if (args->index < ichdr->count) { tmp = ichdr->count - args->index; tmp *= sizeof(xfs_attr_leaf_entry_t); memmove(entry + 1, entry, tmp); xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); } ichdr->count++; /* * Allocate space for the new string (at the end of the run). */ mp = args->trans->t_mountp; ASSERT(ichdr->freemap[mapindex].base < XFS_LBSIZE(mp)); ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0); ASSERT(ichdr->freemap[mapindex].size >= xfs_attr_leaf_newentsize(args, NULL)); ASSERT(ichdr->freemap[mapindex].size < XFS_LBSIZE(mp)); ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0); ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp); entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base + ichdr->freemap[mapindex].size); entry->hashval = cpu_to_be32(args->hashval); entry->flags = tmp ? XFS_ATTR_LOCAL : 0; entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); if (args->op_flags & XFS_DA_OP_RENAME) { entry->flags |= XFS_ATTR_INCOMPLETE; if ((args->blkno2 == args->blkno) && (args->index2 <= args->index)) { args->index2++; } } xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); ASSERT((args->index == 0) || (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); ASSERT((args->index == ichdr->count - 1) || (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); /* * For "remote" attribute values, simply note that we need to * allocate space for the "remote" value. We can't actually * allocate the extents in this transaction, and we can't decide * which blocks they should be as we might allocate more blocks * as part of this transaction (a split operation for example). */ if (entry->flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr3_leaf_name_local(leaf, args->index); name_loc->namelen = args->namelen; name_loc->valuelen = cpu_to_be16(args->valuelen); memcpy((char *)name_loc->nameval, args->name, args->namelen); memcpy((char *)&name_loc->nameval[args->namelen], args->value, be16_to_cpu(name_loc->valuelen)); } else { name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); name_rmt->namelen = args->namelen; memcpy((char *)name_rmt->name, args->name, args->namelen); entry->flags |= XFS_ATTR_INCOMPLETE; /* just in case */ name_rmt->valuelen = 0; name_rmt->valueblk = 0; args->rmtblkno = 1; args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen); args->rmtvaluelen = args->valuelen; } xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), xfs_attr_leaf_entsize(leaf, args->index))); /* * Update the control info for this leaf node */ if (be16_to_cpu(entry->nameidx) < ichdr->firstused) ichdr->firstused = be16_to_cpu(entry->nameidx); ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t) + xfs_attr3_leaf_hdr_size(leaf)); tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t) + xfs_attr3_leaf_hdr_size(leaf); for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { if (ichdr->freemap[i].base == tmp) { ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t); ichdr->freemap[i].size -= sizeof(xfs_attr_leaf_entry_t); } } ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index); return 0; } /* * Garbage collect a leaf attribute list block by copying it to a new buffer. */ STATIC void xfs_attr3_leaf_compact( struct xfs_da_args *args, struct xfs_attr3_icleaf_hdr *ichdr_dst, struct xfs_buf *bp) { struct xfs_attr_leafblock *leaf_src; struct xfs_attr_leafblock *leaf_dst; struct xfs_attr3_icleaf_hdr ichdr_src; struct xfs_trans *trans = args->trans; struct xfs_mount *mp = trans->t_mountp; char *tmpbuffer; trace_xfs_attr_leaf_compact(args); tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP); memcpy(tmpbuffer, bp->b_addr, XFS_LBSIZE(mp)); memset(bp->b_addr, 0, XFS_LBSIZE(mp)); leaf_src = (xfs_attr_leafblock_t *)tmpbuffer; leaf_dst = bp->b_addr; /* * Copy the on-disk header back into the destination buffer to ensure * all the information in the header that is not part of the incore * header structure is preserved. */ memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src)); /* Initialise the incore headers */ ichdr_src = *ichdr_dst; /* struct copy */ ichdr_dst->firstused = XFS_LBSIZE(mp); ichdr_dst->usedbytes = 0; ichdr_dst->count = 0; ichdr_dst->holes = 0; ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src); ichdr_dst->freemap[0].size = ichdr_dst->firstused - ichdr_dst->freemap[0].base; /* write the header back to initialise the underlying buffer */ xfs_attr3_leaf_hdr_to_disk(leaf_dst, ichdr_dst); /* * Copy all entry's in the same (sorted) order, * but allocate name/value pairs packed and in sequence. */ xfs_attr3_leaf_moveents(leaf_src, &ichdr_src, 0, leaf_dst, ichdr_dst, 0, ichdr_src.count, mp); /* * this logs the entire buffer, but the caller must write the header * back to the buffer when it is finished modifying it. */ xfs_trans_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1); kmem_free(tmpbuffer); } /* * Compare two leaf blocks "order". * Return 0 unless leaf2 should go before leaf1. */ static int xfs_attr3_leaf_order( struct xfs_buf *leaf1_bp, struct xfs_attr3_icleaf_hdr *leaf1hdr, struct xfs_buf *leaf2_bp, struct xfs_attr3_icleaf_hdr *leaf2hdr) { struct xfs_attr_leaf_entry *entries1; struct xfs_attr_leaf_entry *entries2; entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr); entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr); if (leaf1hdr->count > 0 && leaf2hdr->count > 0 && ((be32_to_cpu(entries2[0].hashval) < be32_to_cpu(entries1[0].hashval)) || (be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) < be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) { return 1; } return 0; } int xfs_attr_leaf_order( struct xfs_buf *leaf1_bp, struct xfs_buf *leaf2_bp) { struct xfs_attr3_icleaf_hdr ichdr1; struct xfs_attr3_icleaf_hdr ichdr2; xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1_bp->b_addr); xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2_bp->b_addr); return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2); } /* * Redistribute the attribute list entries between two leaf nodes, * taking into account the size of the new entry. * * NOTE: if new block is empty, then it will get the upper half of the * old block. At present, all (one) callers pass in an empty second block. * * This code adjusts the args->index/blkno and args->index2/blkno2 fields * to match what it is doing in splitting the attribute leaf block. Those * values are used in "atomic rename" operations on attributes. Note that * the "new" and "old" values can end up in different blocks. */ STATIC void xfs_attr3_leaf_rebalance( struct xfs_da_state *state, struct xfs_da_state_blk *blk1, struct xfs_da_state_blk *blk2) { struct xfs_da_args *args; struct xfs_attr_leafblock *leaf1; struct xfs_attr_leafblock *leaf2; struct xfs_attr3_icleaf_hdr ichdr1; struct xfs_attr3_icleaf_hdr ichdr2; struct xfs_attr_leaf_entry *entries1; struct xfs_attr_leaf_entry *entries2; int count; int totallen; int max; int space; int swap; /* * Set up environment. */ ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); leaf1 = blk1->bp->b_addr; leaf2 = blk2->bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1); xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2); ASSERT(ichdr2.count == 0); args = state->args; trace_xfs_attr_leaf_rebalance(args); /* * Check ordering of blocks, reverse if it makes things simpler. * * NOTE: Given that all (current) callers pass in an empty * second block, this code should never set "swap". */ swap = 0; if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) { struct xfs_da_state_blk *tmp_blk; struct xfs_attr3_icleaf_hdr tmp_ichdr; tmp_blk = blk1; blk1 = blk2; blk2 = tmp_blk; /* struct copies to swap them rather than reconverting */ tmp_ichdr = ichdr1; ichdr1 = ichdr2; ichdr2 = tmp_ichdr; leaf1 = blk1->bp->b_addr; leaf2 = blk2->bp->b_addr; swap = 1; } /* * Examine entries until we reduce the absolute difference in * byte usage between the two blocks to a minimum. Then get * the direction to copy and the number of elements to move. * * "inleaf" is true if the new entry should be inserted into blk1. * If "swap" is also true, then reverse the sense of "inleaf". */ state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1, blk2, &ichdr2, &count, &totallen); if (swap) state->inleaf = !state->inleaf; /* * Move any entries required from leaf to leaf: */ if (count < ichdr1.count) { /* * Figure the total bytes to be added to the destination leaf. */ /* number entries being moved */ count = ichdr1.count - count; space = ichdr1.usedbytes - totallen; space += count * sizeof(xfs_attr_leaf_entry_t); /* * leaf2 is the destination, compact it if it looks tight. */ max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1); max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t); if (space > max) xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp); /* * Move high entries from leaf1 to low end of leaf2. */ xfs_attr3_leaf_moveents(leaf1, &ichdr1, ichdr1.count - count, leaf2, &ichdr2, 0, count, state->mp); } else if (count > ichdr1.count) { /* * I assert that since all callers pass in an empty * second buffer, this code should never execute. */ ASSERT(0); /* * Figure the total bytes to be added to the destination leaf. */ /* number entries being moved */ count -= ichdr1.count; space = totallen - ichdr1.usedbytes; space += count * sizeof(xfs_attr_leaf_entry_t); /* * leaf1 is the destination, compact it if it looks tight. */ max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1); max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t); if (space > max) xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp); /* * Move low entries from leaf2 to high end of leaf1. */ xfs_attr3_leaf_moveents(leaf2, &ichdr2, 0, leaf1, &ichdr1, ichdr1.count, count, state->mp); } xfs_attr3_leaf_hdr_to_disk(leaf1, &ichdr1); xfs_attr3_leaf_hdr_to_disk(leaf2, &ichdr2); xfs_trans_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); xfs_trans_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); /* * Copy out last hashval in each block for B-tree code. */ entries1 = xfs_attr3_leaf_entryp(leaf1); entries2 = xfs_attr3_leaf_entryp(leaf2); blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval); blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval); /* * Adjust the expected index for insertion. * NOTE: this code depends on the (current) situation that the * second block was originally empty. * * If the insertion point moved to the 2nd block, we must adjust * the index. We must also track the entry just following the * new entry for use in an "atomic rename" operation, that entry * is always the "old" entry and the "new" entry is what we are * inserting. The index/blkno fields refer to the "old" entry, * while the index2/blkno2 fields refer to the "new" entry. */ if (blk1->index > ichdr1.count) { ASSERT(state->inleaf == 0); blk2->index = blk1->index - ichdr1.count; args->index = args->index2 = blk2->index; args->blkno = args->blkno2 = blk2->blkno; } else if (blk1->index == ichdr1.count) { if (state->inleaf) { args->index = blk1->index; args->blkno = blk1->blkno; args->index2 = 0; args->blkno2 = blk2->blkno; } else { /* * On a double leaf split, the original attr location * is already stored in blkno2/index2, so don't * overwrite it overwise we corrupt the tree. */ blk2->index = blk1->index - ichdr1.count; args->index = blk2->index; args->blkno = blk2->blkno; if (!state->extravalid) { /* * set the new attr location to match the old * one and let the higher level split code * decide where in the leaf to place it. */ args->index2 = blk2->index; args->blkno2 = blk2->blkno; } } } else { ASSERT(state->inleaf == 1); args->index = args->index2 = blk1->index; args->blkno = args->blkno2 = blk1->blkno; } } /* * Examine entries until we reduce the absolute difference in * byte usage between the two blocks to a minimum. * GROT: Is this really necessary? With other than a 512 byte blocksize, * GROT: there will always be enough room in either block for a new entry. * GROT: Do a double-split for this case? */ STATIC int xfs_attr3_leaf_figure_balance( struct xfs_da_state *state, struct xfs_da_state_blk *blk1, struct xfs_attr3_icleaf_hdr *ichdr1, struct xfs_da_state_blk *blk2, struct xfs_attr3_icleaf_hdr *ichdr2, int *countarg, int *usedbytesarg) { struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr; struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr; struct xfs_attr_leaf_entry *entry; int count; int max; int index; int totallen = 0; int half; int lastdelta; int foundit = 0; int tmp; /* * Examine entries until we reduce the absolute difference in * byte usage between the two blocks to a minimum. */ max = ichdr1->count + ichdr2->count; half = (max + 1) * sizeof(*entry); half += ichdr1->usedbytes + ichdr2->usedbytes + xfs_attr_leaf_newentsize(state->args, NULL); half /= 2; lastdelta = state->blocksize; entry = xfs_attr3_leaf_entryp(leaf1); for (count = index = 0; count < max; entry++, index++, count++) { #define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A)) /* * The new entry is in the first block, account for it. */ if (count == blk1->index) { tmp = totallen + sizeof(*entry) + xfs_attr_leaf_newentsize(state->args, NULL); if (XFS_ATTR_ABS(half - tmp) > lastdelta) break; lastdelta = XFS_ATTR_ABS(half - tmp); totallen = tmp; foundit = 1; } /* * Wrap around into the second block if necessary. */ if (count == ichdr1->count) { leaf1 = leaf2; entry = xfs_attr3_leaf_entryp(leaf1); index = 0; } /* * Figure out if next leaf entry would be too much. */ tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, index); if (XFS_ATTR_ABS(half - tmp) > lastdelta) break; lastdelta = XFS_ATTR_ABS(half - tmp); totallen = tmp; #undef XFS_ATTR_ABS } /* * Calculate the number of usedbytes that will end up in lower block. * If new entry not in lower block, fix up the count. */ totallen -= count * sizeof(*entry); if (foundit) { totallen -= sizeof(*entry) + xfs_attr_leaf_newentsize(state->args, NULL); } *countarg = count; *usedbytesarg = totallen; return foundit; } /*======================================================================== * Routines used for shrinking the Btree. *========================================================================*/ /* * Check a leaf block and its neighbors to see if the block should be * collapsed into one or the other neighbor. Always keep the block * with the smaller block number. * If the current block is over 50% full, don't try to join it, return 0. * If the block is empty, fill in the state structure and return 2. * If it can be collapsed, fill in the state structure and return 1. * If nothing can be done, return 0. * * GROT: allow for INCOMPLETE entries in calculation. */ int xfs_attr3_leaf_toosmall( struct xfs_da_state *state, int *action) { struct xfs_attr_leafblock *leaf; struct xfs_da_state_blk *blk; struct xfs_attr3_icleaf_hdr ichdr; struct xfs_buf *bp; xfs_dablk_t blkno; int bytes; int forward; int error; int retval; int i; trace_xfs_attr_leaf_toosmall(state->args); /* * Check for the degenerate case of the block being over 50% full. * If so, it's not worth even looking to see if we might be able * to coalesce with a sibling. */ blk = &state->path.blk[ state->path.active-1 ]; leaf = blk->bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); bytes = xfs_attr3_leaf_hdr_size(leaf) + ichdr.count * sizeof(xfs_attr_leaf_entry_t) + ichdr.usedbytes; if (bytes > (state->blocksize >> 1)) { *action = 0; /* blk over 50%, don't try to join */ return(0); } /* * Check for the degenerate case of the block being empty. * If the block is empty, we'll simply delete it, no need to * coalesce it with a sibling block. We choose (arbitrarily) * to merge with the forward block unless it is NULL. */ if (ichdr.count == 0) { /* * Make altpath point to the block we want to keep and * path point to the block we want to drop (this one). */ forward = (ichdr.forw != 0); memcpy(&state->altpath, &state->path, sizeof(state->path)); error = xfs_da3_path_shift(state, &state->altpath, forward, 0, &retval); if (error) return(error); if (retval) { *action = 0; } else { *action = 2; } return 0; } /* * Examine each sibling block to see if we can coalesce with * at least 25% free space to spare. We need to figure out * whether to merge with the forward or the backward block. * We prefer coalescing with the lower numbered sibling so as * to shrink an attribute list over time. */ /* start with smaller blk num */ forward = ichdr.forw < ichdr.back; for (i = 0; i < 2; forward = !forward, i++) { struct xfs_attr3_icleaf_hdr ichdr2; if (forward) blkno = ichdr.forw; else blkno = ichdr.back; if (blkno == 0) continue; error = xfs_attr3_leaf_read(state->args->trans, state->args->dp, blkno, -1, &bp); if (error) return(error); xfs_attr3_leaf_hdr_from_disk(&ichdr2, bp->b_addr); bytes = state->blocksize - (state->blocksize >> 2) - ichdr.usedbytes - ichdr2.usedbytes - ((ichdr.count + ichdr2.count) * sizeof(xfs_attr_leaf_entry_t)) - xfs_attr3_leaf_hdr_size(leaf); xfs_trans_brelse(state->args->trans, bp); if (bytes >= 0) break; /* fits with at least 25% to spare */ } if (i >= 2) { *action = 0; return(0); } /* * Make altpath point to the block we want to keep (the lower * numbered block) and path point to the block we want to drop. */ memcpy(&state->altpath, &state->path, sizeof(state->path)); if (blkno < blk->blkno) { error = xfs_da3_path_shift(state, &state->altpath, forward, 0, &retval); } else { error = xfs_da3_path_shift(state, &state->path, forward, 0, &retval); } if (error) return(error); if (retval) { *action = 0; } else { *action = 1; } return(0); } /* * Remove a name from the leaf attribute list structure. * * Return 1 if leaf is less than 37% full, 0 if >= 37% full. * If two leaves are 37% full, when combined they will leave 25% free. */ int xfs_attr3_leaf_remove( struct xfs_buf *bp, struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf; struct xfs_attr3_icleaf_hdr ichdr; struct xfs_attr_leaf_entry *entry; struct xfs_mount *mp = args->trans->t_mountp; int before; int after; int smallest; int entsize; int tablesize; int tmp; int i; trace_xfs_attr_leaf_remove(args); leaf = bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); ASSERT(ichdr.count > 0 && ichdr.count < XFS_LBSIZE(mp) / 8); ASSERT(args->index >= 0 && args->index < ichdr.count); ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) + xfs_attr3_leaf_hdr_size(leaf)); entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp)); /* * Scan through free region table: * check for adjacency of free'd entry with an existing one, * find smallest free region in case we need to replace it, * adjust any map that borders the entry table, */ tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t) + xfs_attr3_leaf_hdr_size(leaf); tmp = ichdr.freemap[0].size; before = after = -1; smallest = XFS_ATTR_LEAF_MAPSIZE - 1; entsize = xfs_attr_leaf_entsize(leaf, args->index); for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) { ASSERT(ichdr.freemap[i].base < XFS_LBSIZE(mp)); ASSERT(ichdr.freemap[i].size < XFS_LBSIZE(mp)); if (ichdr.freemap[i].base == tablesize) { ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t); ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t); } if (ichdr.freemap[i].base + ichdr.freemap[i].size == be16_to_cpu(entry->nameidx)) { before = i; } else if (ichdr.freemap[i].base == (be16_to_cpu(entry->nameidx) + entsize)) { after = i; } else if (ichdr.freemap[i].size < tmp) { tmp = ichdr.freemap[i].size; smallest = i; } } /* * Coalesce adjacent freemap regions, * or replace the smallest region. */ if ((before >= 0) || (after >= 0)) { if ((before >= 0) && (after >= 0)) { ichdr.freemap[before].size += entsize; ichdr.freemap[before].size += ichdr.freemap[after].size; ichdr.freemap[after].base = 0; ichdr.freemap[after].size = 0; } else if (before >= 0) { ichdr.freemap[before].size += entsize; } else { ichdr.freemap[after].base = be16_to_cpu(entry->nameidx); ichdr.freemap[after].size += entsize; } } else { /* * Replace smallest region (if it is smaller than free'd entry) */ if (ichdr.freemap[smallest].size < entsize) { ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx); ichdr.freemap[smallest].size = entsize; } } /* * Did we remove the first entry? */ if (be16_to_cpu(entry->nameidx) == ichdr.firstused) smallest = 1; else smallest = 0; /* * Compress the remaining entries and zero out the removed stuff. */ memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize); ichdr.usedbytes -= entsize; xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index), entsize)); tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t); memmove(entry, entry + 1, tmp); ichdr.count--; xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t))); entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count]; memset(entry, 0, sizeof(xfs_attr_leaf_entry_t)); /* * If we removed the first entry, re-find the first used byte * in the name area. Note that if the entry was the "firstused", * then we don't have a "hole" in our block resulting from * removing the name. */ if (smallest) { tmp = XFS_LBSIZE(mp); entry = xfs_attr3_leaf_entryp(leaf); for (i = ichdr.count - 1; i >= 0; entry++, i--) { ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused); ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp)); if (be16_to_cpu(entry->nameidx) < tmp) tmp = be16_to_cpu(entry->nameidx); } ichdr.firstused = tmp; if (!ichdr.firstused) ichdr.firstused = tmp - XFS_ATTR_LEAF_NAME_ALIGN; } else { ichdr.holes = 1; /* mark as needing compaction */ } xfs_attr3_leaf_hdr_to_disk(leaf, &ichdr); xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, &leaf->hdr, xfs_attr3_leaf_hdr_size(leaf))); /* * Check if leaf is less than 50% full, caller may want to * "join" the leaf with a sibling if so. */ tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) + ichdr.count * sizeof(xfs_attr_leaf_entry_t); return tmp < args->geo->magicpct; /* leaf is < 37% full */ } /* * Move all the attribute list entries from drop_leaf into save_leaf. */ void xfs_attr3_leaf_unbalance( struct xfs_da_state *state, struct xfs_da_state_blk *drop_blk, struct xfs_da_state_blk *save_blk) { struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr; struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr; struct xfs_attr3_icleaf_hdr drophdr; struct xfs_attr3_icleaf_hdr savehdr; struct xfs_attr_leaf_entry *entry; struct xfs_mount *mp = state->mp; trace_xfs_attr_leaf_unbalance(state->args); drop_leaf = drop_blk->bp->b_addr; save_leaf = save_blk->bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&drophdr, drop_leaf); xfs_attr3_leaf_hdr_from_disk(&savehdr, save_leaf); entry = xfs_attr3_leaf_entryp(drop_leaf); /* * Save last hashval from dying block for later Btree fixup. */ drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval); /* * Check if we need a temp buffer, or can we do it in place. * Note that we don't check "leaf" for holes because we will * always be dropping it, toosmall() decided that for us already. */ if (savehdr.holes == 0) { /* * dest leaf has no holes, so we add there. May need * to make some room in the entry array. */ if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, drop_blk->bp, &drophdr)) { xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0, save_leaf, &savehdr, 0, drophdr.count, mp); } else { xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0, save_leaf, &savehdr, savehdr.count, drophdr.count, mp); } } else { /* * Destination has holes, so we make a temporary copy * of the leaf and add them both to that. */ struct xfs_attr_leafblock *tmp_leaf; struct xfs_attr3_icleaf_hdr tmphdr; tmp_leaf = kmem_zalloc(state->blocksize, KM_SLEEP); /* * Copy the header into the temp leaf so that all the stuff * not in the incore header is present and gets copied back in * once we've moved all the entries. */ memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf)); memset(&tmphdr, 0, sizeof(tmphdr)); tmphdr.magic = savehdr.magic; tmphdr.forw = savehdr.forw; tmphdr.back = savehdr.back; tmphdr.firstused = state->blocksize; /* write the header to the temp buffer to initialise it */ xfs_attr3_leaf_hdr_to_disk(tmp_leaf, &tmphdr); if (xfs_attr3_leaf_order(save_blk->bp, &savehdr, drop_blk->bp, &drophdr)) { xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0, tmp_leaf, &tmphdr, 0, drophdr.count, mp); xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0, tmp_leaf, &tmphdr, tmphdr.count, savehdr.count, mp); } else { xfs_attr3_leaf_moveents(save_leaf, &savehdr, 0, tmp_leaf, &tmphdr, 0, savehdr.count, mp); xfs_attr3_leaf_moveents(drop_leaf, &drophdr, 0, tmp_leaf, &tmphdr, tmphdr.count, drophdr.count, mp); } memcpy(save_leaf, tmp_leaf, state->blocksize); savehdr = tmphdr; /* struct copy */ kmem_free(tmp_leaf); } xfs_attr3_leaf_hdr_to_disk(save_leaf, &savehdr); xfs_trans_log_buf(state->args->trans, save_blk->bp, 0, state->blocksize - 1); /* * Copy out last hashval in each block for B-tree code. */ entry = xfs_attr3_leaf_entryp(save_leaf); save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval); } /*======================================================================== * Routines used for finding things in the Btree. *========================================================================*/ /* * Look up a name in a leaf attribute list structure. * This is the internal routine, it uses the caller's buffer. * * Note that duplicate keys are allowed, but only check within the * current leaf node. The Btree code must check in adjacent leaf nodes. * * Return in args->index the index into the entry[] array of either * the found entry, or where the entry should have been (insert before * that entry). * * Don't change the args->value unless we find the attribute. */ int xfs_attr3_leaf_lookup_int( struct xfs_buf *bp, struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf; struct xfs_attr3_icleaf_hdr ichdr; struct xfs_attr_leaf_entry *entry; struct xfs_attr_leaf_entry *entries; struct xfs_attr_leaf_name_local *name_loc; struct xfs_attr_leaf_name_remote *name_rmt; xfs_dahash_t hashval; int probe; int span; trace_xfs_attr_leaf_lookup(args); leaf = bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); entries = xfs_attr3_leaf_entryp(leaf); ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8); /* * Binary search. (note: small blocks will skip this loop) */ hashval = args->hashval; probe = span = ichdr.count / 2; for (entry = &entries[probe]; span > 4; entry = &entries[probe]) { span /= 2; if (be32_to_cpu(entry->hashval) < hashval) probe += span; else if (be32_to_cpu(entry->hashval) > hashval) probe -= span; else break; } ASSERT(probe >= 0 && (!ichdr.count || probe < ichdr.count)); ASSERT(span <= 4 || be32_to_cpu(entry->hashval) == hashval); /* * Since we may have duplicate hashval's, find the first matching * hashval in the leaf. */ while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) { entry--; probe--; } while (probe < ichdr.count && be32_to_cpu(entry->hashval) < hashval) { entry++; probe++; } if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) { args->index = probe; return XFS_ERROR(ENOATTR); } /* * Duplicate keys may be present, so search all of them for a match. */ for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval); entry++, probe++) { /* * GROT: Add code to remove incomplete entries. */ /* * If we are looking for INCOMPLETE entries, show only those. * If we are looking for complete entries, show only those. */ if ((args->flags & XFS_ATTR_INCOMPLETE) != (entry->flags & XFS_ATTR_INCOMPLETE)) { continue; } if (entry->flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr3_leaf_name_local(leaf, probe); if (name_loc->namelen != args->namelen) continue; if (memcmp(args->name, name_loc->nameval, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, entry->flags)) continue; args->index = probe; return XFS_ERROR(EEXIST); } else { name_rmt = xfs_attr3_leaf_name_remote(leaf, probe); if (name_rmt->namelen != args->namelen) continue; if (memcmp(args->name, name_rmt->name, args->namelen) != 0) continue; if (!xfs_attr_namesp_match(args->flags, entry->flags)) continue; args->index = probe; args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); args->rmtblkno = be32_to_cpu(name_rmt->valueblk); args->rmtblkcnt = xfs_attr3_rmt_blocks( args->dp->i_mount, args->rmtvaluelen); return XFS_ERROR(EEXIST); } } args->index = probe; return XFS_ERROR(ENOATTR); } /* * Get the value associated with an attribute name from a leaf attribute * list structure. */ int xfs_attr3_leaf_getvalue( struct xfs_buf *bp, struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf; struct xfs_attr3_icleaf_hdr ichdr; struct xfs_attr_leaf_entry *entry; struct xfs_attr_leaf_name_local *name_loc; struct xfs_attr_leaf_name_remote *name_rmt; int valuelen; leaf = bp->b_addr; xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); ASSERT(ichdr.count < XFS_LBSIZE(args->dp->i_mount) / 8); ASSERT(args->index < ichdr.count); entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; if (entry->flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr3_leaf_name_local(leaf, args->index); ASSERT(name_loc->namelen == args->namelen); ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); valuelen = be16_to_cpu(name_loc->valuelen); if (args->flags & ATTR_KERNOVAL) { args->valuelen = valuelen; return 0; } if (args->valuelen < valuelen) { args->valuelen = valuelen; return XFS_ERROR(ERANGE); } args->valuelen = valuelen; memcpy(args->value, &name_loc->nameval[args->namelen], valuelen); } else { name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); ASSERT(name_rmt->namelen == args->namelen); ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen); args->rmtblkno = be32_to_cpu(name_rmt->valueblk); args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount, args->rmtvaluelen); if (args->flags & ATTR_KERNOVAL) { args->valuelen = args->rmtvaluelen; return 0; } if (args->valuelen < args->rmtvaluelen) { args->valuelen = args->rmtvaluelen; return XFS_ERROR(ERANGE); } args->valuelen = args->rmtvaluelen; } return 0; } /*======================================================================== * Utility routines. *========================================================================*/ /* * Move the indicated entries from one leaf to another. * NOTE: this routine modifies both source and destination leaves. */ /*ARGSUSED*/ STATIC void xfs_attr3_leaf_moveents( struct xfs_attr_leafblock *leaf_s, struct xfs_attr3_icleaf_hdr *ichdr_s, int start_s, struct xfs_attr_leafblock *leaf_d, struct xfs_attr3_icleaf_hdr *ichdr_d, int start_d, int count, struct xfs_mount *mp) { struct xfs_attr_leaf_entry *entry_s; struct xfs_attr_leaf_entry *entry_d; int desti; int tmp; int i; /* * Check for nothing to do. */ if (count == 0) return; /* * Set up environment. */ ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC || ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC); ASSERT(ichdr_s->magic == ichdr_d->magic); ASSERT(ichdr_s->count > 0 && ichdr_s->count < XFS_LBSIZE(mp) / 8); ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s)) + xfs_attr3_leaf_hdr_size(leaf_s)); ASSERT(ichdr_d->count < XFS_LBSIZE(mp) / 8); ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d)) + xfs_attr3_leaf_hdr_size(leaf_d)); ASSERT(start_s < ichdr_s->count); ASSERT(start_d <= ichdr_d->count); ASSERT(count <= ichdr_s->count); /* * Move the entries in the destination leaf up to make a hole? */ if (start_d < ichdr_d->count) { tmp = ichdr_d->count - start_d; tmp *= sizeof(xfs_attr_leaf_entry_t); entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count]; memmove(entry_d, entry_s, tmp); } /* * Copy all entry's in the same (sorted) order, * but allocate attribute info packed and in sequence. */ entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d]; desti = start_d; for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused); tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); #ifdef GROT /* * Code to drop INCOMPLETE entries. Difficult to use as we * may also need to change the insertion index. Code turned * off for 6.2, should be revisited later. */ if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); ichdr_s->usedbytes -= tmp; ichdr_s->count -= 1; entry_d--; /* to compensate for ++ in loop hdr */ desti--; if ((start_s + i) < offset) result++; /* insertion index adjustment */ } else { #endif /* GROT */ ichdr_d->firstused -= tmp; /* both on-disk, don't endian flip twice */ entry_d->hashval = entry_s->hashval; entry_d->nameidx = cpu_to_be16(ichdr_d->firstused); entry_d->flags = entry_s->flags; ASSERT(be16_to_cpu(entry_d->nameidx) + tmp <= XFS_LBSIZE(mp)); memmove(xfs_attr3_leaf_name(leaf_d, desti), xfs_attr3_leaf_name(leaf_s, start_s + i), tmp); ASSERT(be16_to_cpu(entry_s->nameidx) + tmp <= XFS_LBSIZE(mp)); memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp); ichdr_s->usedbytes -= tmp; ichdr_d->usedbytes += tmp; ichdr_s->count -= 1; ichdr_d->count += 1; tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t) + xfs_attr3_leaf_hdr_size(leaf_d); ASSERT(ichdr_d->firstused >= tmp); #ifdef GROT } #endif /* GROT */ } /* * Zero out the entries we just copied. */ if (start_s == ichdr_s->count) { tmp = count * sizeof(xfs_attr_leaf_entry_t); entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; ASSERT(((char *)entry_s + tmp) <= ((char *)leaf_s + XFS_LBSIZE(mp))); memset(entry_s, 0, tmp); } else { /* * Move the remaining entries down to fill the hole, * then zero the entries at the top. */ tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t); entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count]; entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s]; memmove(entry_d, entry_s, tmp); tmp = count * sizeof(xfs_attr_leaf_entry_t); entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count]; ASSERT(((char *)entry_s + tmp) <= ((char *)leaf_s + XFS_LBSIZE(mp))); memset(entry_s, 0, tmp); } /* * Fill in the freemap information */ ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d); ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t); ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base; ichdr_d->freemap[1].base = 0; ichdr_d->freemap[2].base = 0; ichdr_d->freemap[1].size = 0; ichdr_d->freemap[2].size = 0; ichdr_s->holes = 1; /* leaf may not be compact */ } /* * Pick up the last hashvalue from a leaf block. */ xfs_dahash_t xfs_attr_leaf_lasthash( struct xfs_buf *bp, int *count) { struct xfs_attr3_icleaf_hdr ichdr; struct xfs_attr_leaf_entry *entries; xfs_attr3_leaf_hdr_from_disk(&ichdr, bp->b_addr); entries = xfs_attr3_leaf_entryp(bp->b_addr); if (count) *count = ichdr.count; if (!ichdr.count) return 0; return be32_to_cpu(entries[ichdr.count - 1].hashval); } /* * Calculate the number of bytes used to store the indicated attribute * (whether local or remote only calculate bytes in this block). */ STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) { struct xfs_attr_leaf_entry *entries; xfs_attr_leaf_name_local_t *name_loc; xfs_attr_leaf_name_remote_t *name_rmt; int size; entries = xfs_attr3_leaf_entryp(leaf); if (entries[index].flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr3_leaf_name_local(leaf, index); size = xfs_attr_leaf_entsize_local(name_loc->namelen, be16_to_cpu(name_loc->valuelen)); } else { name_rmt = xfs_attr3_leaf_name_remote(leaf, index); size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); } return size; } /* * Calculate the number of bytes that would be required to store the new * attribute (whether local or remote only calculate bytes in this block). * This routine decides as a side effect whether the attribute will be * a "local" or a "remote" attribute. */ int xfs_attr_leaf_newentsize( struct xfs_da_args *args, int *local) { int size; size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen); if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) { if (local) *local = 1; return size; } if (local) *local = 0; return xfs_attr_leaf_entsize_remote(args->namelen); } /*======================================================================== * Manage the INCOMPLETE flag in a leaf entry *========================================================================*/ /* * Clear the INCOMPLETE flag on an entry in a leaf block. */ int xfs_attr3_leaf_clearflag( struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf; struct xfs_attr_leaf_entry *entry; struct xfs_attr_leaf_name_remote *name_rmt; struct xfs_buf *bp; int error; #ifdef DEBUG struct xfs_attr3_icleaf_hdr ichdr; xfs_attr_leaf_name_local_t *name_loc; int namelen; char *name; #endif /* DEBUG */ trace_xfs_attr_leaf_clearflag(args); /* * Set up the operation. */ error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp); if (error) return(error); leaf = bp->b_addr; entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); #ifdef DEBUG xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); ASSERT(args->index < ichdr.count); ASSERT(args->index >= 0); if (entry->flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr3_leaf_name_local(leaf, args->index); namelen = name_loc->namelen; name = (char *)name_loc->nameval; } else { name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); namelen = name_rmt->namelen; name = (char *)name_rmt->name; } ASSERT(be32_to_cpu(entry->hashval) == args->hashval); ASSERT(namelen == args->namelen); ASSERT(memcmp(name, args->name, namelen) == 0); #endif /* DEBUG */ entry->flags &= ~XFS_ATTR_INCOMPLETE; xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); if (args->rmtblkno) { ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); name_rmt->valueblk = cpu_to_be32(args->rmtblkno); name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); } /* * Commit the flag value change and start the next trans in series. */ return xfs_trans_roll(&args->trans, args->dp); } /* * Set the INCOMPLETE flag on an entry in a leaf block. */ int xfs_attr3_leaf_setflag( struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf; struct xfs_attr_leaf_entry *entry; struct xfs_attr_leaf_name_remote *name_rmt; struct xfs_buf *bp; int error; #ifdef DEBUG struct xfs_attr3_icleaf_hdr ichdr; #endif trace_xfs_attr_leaf_setflag(args); /* * Set up the operation. */ error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp); if (error) return(error); leaf = bp->b_addr; #ifdef DEBUG xfs_attr3_leaf_hdr_from_disk(&ichdr, leaf); ASSERT(args->index < ichdr.count); ASSERT(args->index >= 0); #endif entry = &xfs_attr3_leaf_entryp(leaf)[args->index]; ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); entry->flags |= XFS_ATTR_INCOMPLETE; xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); if ((entry->flags & XFS_ATTR_LOCAL) == 0) { name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index); name_rmt->valueblk = 0; name_rmt->valuelen = 0; xfs_trans_log_buf(args->trans, bp, XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); } /* * Commit the flag value change and start the next trans in series. */ return xfs_trans_roll(&args->trans, args->dp); } /* * In a single transaction, clear the INCOMPLETE flag on the leaf entry * given by args->blkno/index and set the INCOMPLETE flag on the leaf * entry given by args->blkno2/index2. * * Note that they could be in different blocks, or in the same block. */ int xfs_attr3_leaf_flipflags( struct xfs_da_args *args) { struct xfs_attr_leafblock *leaf1; struct xfs_attr_leafblock *leaf2; struct xfs_attr_leaf_entry *entry1; struct xfs_attr_leaf_entry *entry2; struct xfs_attr_leaf_name_remote *name_rmt; struct xfs_buf *bp1; struct xfs_buf *bp2; int error; #ifdef DEBUG struct xfs_attr3_icleaf_hdr ichdr1; struct xfs_attr3_icleaf_hdr ichdr2; xfs_attr_leaf_name_local_t *name_loc; int namelen1, namelen2; char *name1, *name2; #endif /* DEBUG */ trace_xfs_attr_leaf_flipflags(args); /* * Read the block containing the "old" attr */ error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, -1, &bp1); if (error) return error; /* * Read the block containing the "new" attr, if it is different */ if (args->blkno2 != args->blkno) { error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2, -1, &bp2); if (error) return error; } else { bp2 = bp1; } leaf1 = bp1->b_addr; entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index]; leaf2 = bp2->b_addr; entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2]; #ifdef DEBUG xfs_attr3_leaf_hdr_from_disk(&ichdr1, leaf1); ASSERT(args->index < ichdr1.count); ASSERT(args->index >= 0); xfs_attr3_leaf_hdr_from_disk(&ichdr2, leaf2); ASSERT(args->index2 < ichdr2.count); ASSERT(args->index2 >= 0); if (entry1->flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr3_leaf_name_local(leaf1, args->index); namelen1 = name_loc->namelen; name1 = (char *)name_loc->nameval; } else { name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); namelen1 = name_rmt->namelen; name1 = (char *)name_rmt->name; } if (entry2->flags & XFS_ATTR_LOCAL) { name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2); namelen2 = name_loc->namelen; name2 = (char *)name_loc->nameval; } else { name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); namelen2 = name_rmt->namelen; name2 = (char *)name_rmt->name; } ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); ASSERT(namelen1 == namelen2); ASSERT(memcmp(name1, name2, namelen1) == 0); #endif /* DEBUG */ ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); entry1->flags &= ~XFS_ATTR_INCOMPLETE; xfs_trans_log_buf(args->trans, bp1, XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); if (args->rmtblkno) { ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index); name_rmt->valueblk = cpu_to_be32(args->rmtblkno); name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen); xfs_trans_log_buf(args->trans, bp1, XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); } entry2->flags |= XFS_ATTR_INCOMPLETE; xfs_trans_log_buf(args->trans, bp2, XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2); name_rmt->valueblk = 0; name_rmt->valuelen = 0; xfs_trans_log_buf(args->trans, bp2, XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); } /* * Commit the flag value change and start the next trans in series. */ error = xfs_trans_roll(&args->trans, args->dp); return error; }