/* * Copyright (c) 2000-2005 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_bit.h" #include "xfs_log.h" #include "xfs_inum.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_trans.h" #include "xfs_mount.h" #include "xfs_bmap_btree.h" #include "xfs_dinode.h" #include "xfs_inode.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_rw.h" #include "xfs_iomap.h" #include "xfs_vnodeops.h" #include "xfs_trace.h" #include "xfs_bmap.h" #include #include #include #include void xfs_count_page_state( struct page *page, int *delalloc, int *unwritten) { struct buffer_head *bh, *head; *delalloc = *unwritten = 0; bh = head = page_buffers(page); do { if (buffer_unwritten(bh)) (*unwritten) = 1; else if (buffer_delay(bh)) (*delalloc) = 1; } while ((bh = bh->b_this_page) != head); } STATIC struct block_device * xfs_find_bdev_for_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; if (XFS_IS_REALTIME_INODE(ip)) return mp->m_rtdev_targp->bt_bdev; else return mp->m_ddev_targp->bt_bdev; } /* * We're now finished for good with this ioend structure. * Update the page state via the associated buffer_heads, * release holds on the inode and bio, and finally free * up memory. Do not use the ioend after this. */ STATIC void xfs_destroy_ioend( xfs_ioend_t *ioend) { struct buffer_head *bh, *next; for (bh = ioend->io_buffer_head; bh; bh = next) { next = bh->b_private; bh->b_end_io(bh, !ioend->io_error); } if (ioend->io_iocb) { if (ioend->io_isasync) aio_complete(ioend->io_iocb, ioend->io_result, 0); inode_dio_done(ioend->io_inode); } mempool_free(ioend, xfs_ioend_pool); } /* * If the end of the current ioend is beyond the current EOF, * return the new EOF value, otherwise zero. */ STATIC xfs_fsize_t xfs_ioend_new_eof( xfs_ioend_t *ioend) { xfs_inode_t *ip = XFS_I(ioend->io_inode); xfs_fsize_t isize; xfs_fsize_t bsize; bsize = ioend->io_offset + ioend->io_size; isize = MAX(ip->i_size, ip->i_new_size); isize = MIN(isize, bsize); return isize > ip->i_d.di_size ? isize : 0; } /* * Fast and loose check if this write could update the on-disk inode size. */ static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend) { return ioend->io_offset + ioend->io_size > XFS_I(ioend->io_inode)->i_d.di_size; } /* * Update on-disk file size now that data has been written to disk. The * current in-memory file size is i_size. If a write is beyond eof i_new_size * will be the intended file size until i_size is updated. If this write does * not extend all the way to the valid file size then restrict this update to * the end of the write. * * This function does not block as blocking on the inode lock in IO completion * can lead to IO completion order dependency deadlocks.. If it can't get the * inode ilock it will return EAGAIN. Callers must handle this. */ STATIC int xfs_setfilesize( xfs_ioend_t *ioend) { xfs_inode_t *ip = XFS_I(ioend->io_inode); xfs_fsize_t isize; if (unlikely(ioend->io_error)) return 0; if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) return EAGAIN; isize = xfs_ioend_new_eof(ioend); if (isize) { trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); ip->i_d.di_size = isize; xfs_mark_inode_dirty(ip); } xfs_iunlock(ip, XFS_ILOCK_EXCL); return 0; } /* * Schedule IO completion handling on the final put of an ioend. * * If there is no work to do we might as well call it a day and free the * ioend right now. */ STATIC void xfs_finish_ioend( struct xfs_ioend *ioend) { if (atomic_dec_and_test(&ioend->io_remaining)) { if (ioend->io_type == IO_UNWRITTEN) queue_work(xfsconvertd_workqueue, &ioend->io_work); else if (xfs_ioend_is_append(ioend)) queue_work(xfsdatad_workqueue, &ioend->io_work); else xfs_destroy_ioend(ioend); } } /* * IO write completion. */ STATIC void xfs_end_io( struct work_struct *work) { xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); struct xfs_inode *ip = XFS_I(ioend->io_inode); int error = 0; /* * For unwritten extents we need to issue transactions to convert a * range to normal written extens after the data I/O has finished. */ if (ioend->io_type == IO_UNWRITTEN && likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) { error = xfs_iomap_write_unwritten(ip, ioend->io_offset, ioend->io_size); if (error) ioend->io_error = error; } /* * We might have to update the on-disk file size after extending * writes. */ error = xfs_setfilesize(ioend); ASSERT(!error || error == EAGAIN); /* * If we didn't complete processing of the ioend, requeue it to the * tail of the workqueue for another attempt later. Otherwise destroy * it. */ if (error == EAGAIN) { atomic_inc(&ioend->io_remaining); xfs_finish_ioend(ioend); /* ensure we don't spin on blocked ioends */ delay(1); } else { xfs_destroy_ioend(ioend); } } /* * Call IO completion handling in caller context on the final put of an ioend. */ STATIC void xfs_finish_ioend_sync( struct xfs_ioend *ioend) { if (atomic_dec_and_test(&ioend->io_remaining)) xfs_end_io(&ioend->io_work); } /* * Allocate and initialise an IO completion structure. * We need to track unwritten extent write completion here initially. * We'll need to extend this for updating the ondisk inode size later * (vs. incore size). */ STATIC xfs_ioend_t * xfs_alloc_ioend( struct inode *inode, unsigned int type) { xfs_ioend_t *ioend; ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); /* * Set the count to 1 initially, which will prevent an I/O * completion callback from happening before we have started * all the I/O from calling the completion routine too early. */ atomic_set(&ioend->io_remaining, 1); ioend->io_isasync = 0; ioend->io_error = 0; ioend->io_list = NULL; ioend->io_type = type; ioend->io_inode = inode; ioend->io_buffer_head = NULL; ioend->io_buffer_tail = NULL; ioend->io_offset = 0; ioend->io_size = 0; ioend->io_iocb = NULL; ioend->io_result = 0; INIT_WORK(&ioend->io_work, xfs_end_io); return ioend; } STATIC int xfs_map_blocks( struct inode *inode, loff_t offset, struct xfs_bmbt_irec *imap, int type, int nonblocking) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; ssize_t count = 1 << inode->i_blkbits; xfs_fileoff_t offset_fsb, end_fsb; int error = 0; int bmapi_flags = XFS_BMAPI_ENTIRE; int nimaps = 1; if (XFS_FORCED_SHUTDOWN(mp)) return -XFS_ERROR(EIO); if (type == IO_UNWRITTEN) bmapi_flags |= XFS_BMAPI_IGSTATE; if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { if (nonblocking) return -XFS_ERROR(EAGAIN); xfs_ilock(ip, XFS_ILOCK_SHARED); } ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || (ip->i_df.if_flags & XFS_IFEXTENTS)); ASSERT(offset <= mp->m_maxioffset); if (offset + count > mp->m_maxioffset) count = mp->m_maxioffset - offset; end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); offset_fsb = XFS_B_TO_FSBT(mp, offset); error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, bmapi_flags, NULL, 0, imap, &nimaps, NULL); xfs_iunlock(ip, XFS_ILOCK_SHARED); if (error) return -XFS_ERROR(error); if (type == IO_DELALLOC && (!nimaps || isnullstartblock(imap->br_startblock))) { error = xfs_iomap_write_allocate(ip, offset, count, imap); if (!error) trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); return -XFS_ERROR(error); } #ifdef DEBUG if (type == IO_UNWRITTEN) { ASSERT(nimaps); ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); } #endif if (nimaps) trace_xfs_map_blocks_found(ip, offset, count, type, imap); return 0; } STATIC int xfs_imap_valid( struct inode *inode, struct xfs_bmbt_irec *imap, xfs_off_t offset) { offset >>= inode->i_blkbits; return offset >= imap->br_startoff && offset < imap->br_startoff + imap->br_blockcount; } /* * BIO completion handler for buffered IO. */ STATIC void xfs_end_bio( struct bio *bio, int error) { xfs_ioend_t *ioend = bio->bi_private; ASSERT(atomic_read(&bio->bi_cnt) >= 1); ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; /* Toss bio and pass work off to an xfsdatad thread */ bio->bi_private = NULL; bio->bi_end_io = NULL; bio_put(bio); xfs_finish_ioend(ioend); } STATIC void xfs_submit_ioend_bio( struct writeback_control *wbc, xfs_ioend_t *ioend, struct bio *bio) { atomic_inc(&ioend->io_remaining); bio->bi_private = ioend; bio->bi_end_io = xfs_end_bio; /* * If the I/O is beyond EOF we mark the inode dirty immediately * but don't update the inode size until I/O completion. */ if (xfs_ioend_new_eof(ioend)) xfs_mark_inode_dirty(XFS_I(ioend->io_inode)); submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); } STATIC struct bio * xfs_alloc_ioend_bio( struct buffer_head *bh) { int nvecs = bio_get_nr_vecs(bh->b_bdev); struct bio *bio = bio_alloc(GFP_NOIO, nvecs); ASSERT(bio->bi_private == NULL); bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); bio->bi_bdev = bh->b_bdev; return bio; } STATIC void xfs_start_buffer_writeback( struct buffer_head *bh) { ASSERT(buffer_mapped(bh)); ASSERT(buffer_locked(bh)); ASSERT(!buffer_delay(bh)); ASSERT(!buffer_unwritten(bh)); mark_buffer_async_write(bh); set_buffer_uptodate(bh); clear_buffer_dirty(bh); } STATIC void xfs_start_page_writeback( struct page *page, int clear_dirty, int buffers) { ASSERT(PageLocked(page)); ASSERT(!PageWriteback(page)); if (clear_dirty) clear_page_dirty_for_io(page); set_page_writeback(page); unlock_page(page); /* If no buffers on the page are to be written, finish it here */ if (!buffers) end_page_writeback(page); } static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) { return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); } /* * Submit all of the bios for all of the ioends we have saved up, covering the * initial writepage page and also any probed pages. * * Because we may have multiple ioends spanning a page, we need to start * writeback on all the buffers before we submit them for I/O. If we mark the * buffers as we got, then we can end up with a page that only has buffers * marked async write and I/O complete on can occur before we mark the other * buffers async write. * * The end result of this is that we trip a bug in end_page_writeback() because * we call it twice for the one page as the code in end_buffer_async_write() * assumes that all buffers on the page are started at the same time. * * The fix is two passes across the ioend list - one to start writeback on the * buffer_heads, and then submit them for I/O on the second pass. */ STATIC void xfs_submit_ioend( struct writeback_control *wbc, xfs_ioend_t *ioend) { xfs_ioend_t *head = ioend; xfs_ioend_t *next; struct buffer_head *bh; struct bio *bio; sector_t lastblock = 0; /* Pass 1 - start writeback */ do { next = ioend->io_list; for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) xfs_start_buffer_writeback(bh); } while ((ioend = next) != NULL); /* Pass 2 - submit I/O */ ioend = head; do { next = ioend->io_list; bio = NULL; for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { if (!bio) { retry: bio = xfs_alloc_ioend_bio(bh); } else if (bh->b_blocknr != lastblock + 1) { xfs_submit_ioend_bio(wbc, ioend, bio); goto retry; } if (bio_add_buffer(bio, bh) != bh->b_size) { xfs_submit_ioend_bio(wbc, ioend, bio); goto retry; } lastblock = bh->b_blocknr; } if (bio) xfs_submit_ioend_bio(wbc, ioend, bio); xfs_finish_ioend(ioend); } while ((ioend = next) != NULL); } /* * Cancel submission of all buffer_heads so far in this endio. * Toss the endio too. Only ever called for the initial page * in a writepage request, so only ever one page. */ STATIC void xfs_cancel_ioend( xfs_ioend_t *ioend) { xfs_ioend_t *next; struct buffer_head *bh, *next_bh; do { next = ioend->io_list; bh = ioend->io_buffer_head; do { next_bh = bh->b_private; clear_buffer_async_write(bh); unlock_buffer(bh); } while ((bh = next_bh) != NULL); mempool_free(ioend, xfs_ioend_pool); } while ((ioend = next) != NULL); } /* * Test to see if we've been building up a completion structure for * earlier buffers -- if so, we try to append to this ioend if we * can, otherwise we finish off any current ioend and start another. * Return true if we've finished the given ioend. */ STATIC void xfs_add_to_ioend( struct inode *inode, struct buffer_head *bh, xfs_off_t offset, unsigned int type, xfs_ioend_t **result, int need_ioend) { xfs_ioend_t *ioend = *result; if (!ioend || need_ioend || type != ioend->io_type) { xfs_ioend_t *previous = *result; ioend = xfs_alloc_ioend(inode, type); ioend->io_offset = offset; ioend->io_buffer_head = bh; ioend->io_buffer_tail = bh; if (previous) previous->io_list = ioend; *result = ioend; } else { ioend->io_buffer_tail->b_private = bh; ioend->io_buffer_tail = bh; } bh->b_private = NULL; ioend->io_size += bh->b_size; } STATIC void xfs_map_buffer( struct inode *inode, struct buffer_head *bh, struct xfs_bmbt_irec *imap, xfs_off_t offset) { sector_t bn; struct xfs_mount *m = XFS_I(inode)->i_mount; xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + ((offset - iomap_offset) >> inode->i_blkbits); ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); bh->b_blocknr = bn; set_buffer_mapped(bh); } STATIC void xfs_map_at_offset( struct inode *inode, struct buffer_head *bh, struct xfs_bmbt_irec *imap, xfs_off_t offset) { ASSERT(imap->br_startblock != HOLESTARTBLOCK); ASSERT(imap->br_startblock != DELAYSTARTBLOCK); xfs_map_buffer(inode, bh, imap, offset); set_buffer_mapped(bh); clear_buffer_delay(bh); clear_buffer_unwritten(bh); } /* * Test if a given page is suitable for writing as part of an unwritten * or delayed allocate extent. */ STATIC int xfs_is_delayed_page( struct page *page, unsigned int type) { if (PageWriteback(page)) return 0; if (page->mapping && page_has_buffers(page)) { struct buffer_head *bh, *head; int acceptable = 0; bh = head = page_buffers(page); do { if (buffer_unwritten(bh)) acceptable = (type == IO_UNWRITTEN); else if (buffer_delay(bh)) acceptable = (type == IO_DELALLOC); else if (buffer_dirty(bh) && buffer_mapped(bh)) acceptable = (type == IO_OVERWRITE); else break; } while ((bh = bh->b_this_page) != head); if (acceptable) return 1; } return 0; } /* * Allocate & map buffers for page given the extent map. Write it out. * except for the original page of a writepage, this is called on * delalloc/unwritten pages only, for the original page it is possible * that the page has no mapping at all. */ STATIC int xfs_convert_page( struct inode *inode, struct page *page, loff_t tindex, struct xfs_bmbt_irec *imap, xfs_ioend_t **ioendp, struct writeback_control *wbc) { struct buffer_head *bh, *head; xfs_off_t end_offset; unsigned long p_offset; unsigned int type; int len, page_dirty; int count = 0, done = 0, uptodate = 1; xfs_off_t offset = page_offset(page); if (page->index != tindex) goto fail; if (!trylock_page(page)) goto fail; if (PageWriteback(page)) goto fail_unlock_page; if (page->mapping != inode->i_mapping) goto fail_unlock_page; if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) goto fail_unlock_page; /* * page_dirty is initially a count of buffers on the page before * EOF and is decremented as we move each into a cleanable state. * * Derivation: * * End offset is the highest offset that this page should represent. * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) * will evaluate non-zero and be less than PAGE_CACHE_SIZE and * hence give us the correct page_dirty count. On any other page, * it will be zero and in that case we need page_dirty to be the * count of buffers on the page. */ end_offset = min_t(unsigned long long, (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, i_size_read(inode)); len = 1 << inode->i_blkbits; p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), PAGE_CACHE_SIZE); p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; page_dirty = p_offset / len; bh = head = page_buffers(page); do { if (offset >= end_offset) break; if (!buffer_uptodate(bh)) uptodate = 0; if (!(PageUptodate(page) || buffer_uptodate(bh))) { done = 1; continue; } if (buffer_unwritten(bh) || buffer_delay(bh) || buffer_mapped(bh)) { if (buffer_unwritten(bh)) type = IO_UNWRITTEN; else if (buffer_delay(bh)) type = IO_DELALLOC; else type = IO_OVERWRITE; if (!xfs_imap_valid(inode, imap, offset)) { done = 1; continue; } lock_buffer(bh); if (type != IO_OVERWRITE) xfs_map_at_offset(inode, bh, imap, offset); xfs_add_to_ioend(inode, bh, offset, type, ioendp, done); page_dirty--; count++; } else { done = 1; } } while (offset += len, (bh = bh->b_this_page) != head); if (uptodate && bh == head) SetPageUptodate(page); if (count) { if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) done = 1; } xfs_start_page_writeback(page, !page_dirty, count); return done; fail_unlock_page: unlock_page(page); fail: return 1; } /* * Convert & write out a cluster of pages in the same extent as defined * by mp and following the start page. */ STATIC void xfs_cluster_write( struct inode *inode, pgoff_t tindex, struct xfs_bmbt_irec *imap, xfs_ioend_t **ioendp, struct writeback_control *wbc, pgoff_t tlast) { struct pagevec pvec; int done = 0, i; pagevec_init(&pvec, 0); while (!done && tindex <= tlast) { unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) break; for (i = 0; i < pagevec_count(&pvec); i++) { done = xfs_convert_page(inode, pvec.pages[i], tindex++, imap, ioendp, wbc); if (done) break; } pagevec_release(&pvec); cond_resched(); } } STATIC void xfs_vm_invalidatepage( struct page *page, unsigned long offset) { trace_xfs_invalidatepage(page->mapping->host, page, offset); block_invalidatepage(page, offset); } /* * If the page has delalloc buffers on it, we need to punch them out before we * invalidate the page. If we don't, we leave a stale delalloc mapping on the * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read * is done on that same region - the delalloc extent is returned when none is * supposed to be there. * * We prevent this by truncating away the delalloc regions on the page before * invalidating it. Because they are delalloc, we can do this without needing a * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this * truncation without a transaction as there is no space left for block * reservation (typically why we see a ENOSPC in writeback). * * This is not a performance critical path, so for now just do the punching a * buffer head at a time. */ STATIC void xfs_aops_discard_page( struct page *page) { struct inode *inode = page->mapping->host; struct xfs_inode *ip = XFS_I(inode); struct buffer_head *bh, *head; loff_t offset = page_offset(page); if (!xfs_is_delayed_page(page, IO_DELALLOC)) goto out_invalidate; if (XFS_FORCED_SHUTDOWN(ip->i_mount)) goto out_invalidate; xfs_alert(ip->i_mount, "page discard on page %p, inode 0x%llx, offset %llu.", page, ip->i_ino, offset); xfs_ilock(ip, XFS_ILOCK_EXCL); bh = head = page_buffers(page); do { int error; xfs_fileoff_t start_fsb; if (!buffer_delay(bh)) goto next_buffer; start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); if (error) { /* something screwed, just bail */ if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_alert(ip->i_mount, "page discard unable to remove delalloc mapping."); } break; } next_buffer: offset += 1 << inode->i_blkbits; } while ((bh = bh->b_this_page) != head); xfs_iunlock(ip, XFS_ILOCK_EXCL); out_invalidate: xfs_vm_invalidatepage(page, 0); return; } /* * Write out a dirty page. * * For delalloc space on the page we need to allocate space and flush it. * For unwritten space on the page we need to start the conversion to * regular allocated space. * For any other dirty buffer heads on the page we should flush them. */ STATIC int xfs_vm_writepage( struct page *page, struct writeback_control *wbc) { struct inode *inode = page->mapping->host; struct buffer_head *bh, *head; struct xfs_bmbt_irec imap; xfs_ioend_t *ioend = NULL, *iohead = NULL; loff_t offset; unsigned int type; __uint64_t end_offset; pgoff_t end_index, last_index; ssize_t len; int err, imap_valid = 0, uptodate = 1; int count = 0; int nonblocking = 0; trace_xfs_writepage(inode, page, 0); ASSERT(page_has_buffers(page)); /* * Refuse to write the page out if we are called from reclaim context. * * This avoids stack overflows when called from deeply used stacks in * random callers for direct reclaim or memcg reclaim. We explicitly * allow reclaim from kswapd as the stack usage there is relatively low. * * This should really be done by the core VM, but until that happens * filesystems like XFS, btrfs and ext4 have to take care of this * by themselves. */ if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC) goto redirty; /* * Given that we do not allow direct reclaim to call us, we should * never be called while in a filesystem transaction. */ if (WARN_ON(current->flags & PF_FSTRANS)) goto redirty; /* Is this page beyond the end of the file? */ offset = i_size_read(inode); end_index = offset >> PAGE_CACHE_SHIFT; last_index = (offset - 1) >> PAGE_CACHE_SHIFT; if (page->index >= end_index) { if ((page->index >= end_index + 1) || !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { unlock_page(page); return 0; } } end_offset = min_t(unsigned long long, (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset); len = 1 << inode->i_blkbits; bh = head = page_buffers(page); offset = page_offset(page); type = IO_OVERWRITE; if (wbc->sync_mode == WB_SYNC_NONE) nonblocking = 1; do { int new_ioend = 0; if (offset >= end_offset) break; if (!buffer_uptodate(bh)) uptodate = 0; /* * set_page_dirty dirties all buffers in a page, independent * of their state. The dirty state however is entirely * meaningless for holes (!mapped && uptodate), so skip * buffers covering holes here. */ if (!buffer_mapped(bh) && buffer_uptodate(bh)) { imap_valid = 0; continue; } if (buffer_unwritten(bh)) { if (type != IO_UNWRITTEN) { type = IO_UNWRITTEN; imap_valid = 0; } } else if (buffer_delay(bh)) { if (type != IO_DELALLOC) { type = IO_DELALLOC; imap_valid = 0; } } else if (buffer_uptodate(bh)) { if (type != IO_OVERWRITE) { type = IO_OVERWRITE; imap_valid = 0; } } else { if (PageUptodate(page)) { ASSERT(buffer_mapped(bh)); imap_valid = 0; } continue; } if (imap_valid) imap_valid = xfs_imap_valid(inode, &imap, offset); if (!imap_valid) { /* * If we didn't have a valid mapping then we need to * put the new mapping into a separate ioend structure. * This ensures non-contiguous extents always have * separate ioends, which is particularly important * for unwritten extent conversion at I/O completion * time. */ new_ioend = 1; err = xfs_map_blocks(inode, offset, &imap, type, nonblocking); if (err) goto error; imap_valid = xfs_imap_valid(inode, &imap, offset); } if (imap_valid) { lock_buffer(bh); if (type != IO_OVERWRITE) xfs_map_at_offset(inode, bh, &imap, offset); xfs_add_to_ioend(inode, bh, offset, type, &ioend, new_ioend); count++; } if (!iohead) iohead = ioend; } while (offset += len, ((bh = bh->b_this_page) != head)); if (uptodate && bh == head) SetPageUptodate(page); xfs_start_page_writeback(page, 1, count); if (ioend && imap_valid) { xfs_off_t end_index; end_index = imap.br_startoff + imap.br_blockcount; /* to bytes */ end_index <<= inode->i_blkbits; /* to pages */ end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; /* check against file size */ if (end_index > last_index) end_index = last_index; xfs_cluster_write(inode, page->index + 1, &imap, &ioend, wbc, end_index); } if (iohead) xfs_submit_ioend(wbc, iohead); return 0; error: if (iohead) xfs_cancel_ioend(iohead); if (err == -EAGAIN) goto redirty; xfs_aops_discard_page(page); ClearPageUptodate(page); unlock_page(page); return err; redirty: redirty_page_for_writepage(wbc, page); unlock_page(page); return 0; } STATIC int xfs_vm_writepages( struct address_space *mapping, struct writeback_control *wbc) { xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); return generic_writepages(mapping, wbc); } /* * Called to move a page into cleanable state - and from there * to be released. The page should already be clean. We always * have buffer heads in this call. * * Returns 1 if the page is ok to release, 0 otherwise. */ STATIC int xfs_vm_releasepage( struct page *page, gfp_t gfp_mask) { int delalloc, unwritten; trace_xfs_releasepage(page->mapping->host, page, 0); xfs_count_page_state(page, &delalloc, &unwritten); if (WARN_ON(delalloc)) return 0; if (WARN_ON(unwritten)) return 0; return try_to_free_buffers(page); } STATIC int __xfs_get_blocks( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create, int direct) { struct xfs_inode *ip = XFS_I(inode); struct xfs_mount *mp = ip->i_mount; xfs_fileoff_t offset_fsb, end_fsb; int error = 0; int lockmode = 0; struct xfs_bmbt_irec imap; int nimaps = 1; xfs_off_t offset; ssize_t size; int new = 0; if (XFS_FORCED_SHUTDOWN(mp)) return -XFS_ERROR(EIO); offset = (xfs_off_t)iblock << inode->i_blkbits; ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); size = bh_result->b_size; if (!create && direct && offset >= i_size_read(inode)) return 0; if (create) { lockmode = XFS_ILOCK_EXCL; xfs_ilock(ip, lockmode); } else { lockmode = xfs_ilock_map_shared(ip); } ASSERT(offset <= mp->m_maxioffset); if (offset + size > mp->m_maxioffset) size = mp->m_maxioffset - offset; end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); offset_fsb = XFS_B_TO_FSBT(mp, offset); error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL); if (error) goto out_unlock; if (create && (!nimaps || (imap.br_startblock == HOLESTARTBLOCK || imap.br_startblock == DELAYSTARTBLOCK))) { if (direct) { error = xfs_iomap_write_direct(ip, offset, size, &imap, nimaps); } else { error = xfs_iomap_write_delay(ip, offset, size, &imap); } if (error) goto out_unlock; trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); } else if (nimaps) { trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); } else { trace_xfs_get_blocks_notfound(ip, offset, size); goto out_unlock; } xfs_iunlock(ip, lockmode); if (imap.br_startblock != HOLESTARTBLOCK && imap.br_startblock != DELAYSTARTBLOCK) { /* * For unwritten extents do not report a disk address on * the read case (treat as if we're reading into a hole). */ if (create || !ISUNWRITTEN(&imap)) xfs_map_buffer(inode, bh_result, &imap, offset); if (create && ISUNWRITTEN(&imap)) { if (direct) bh_result->b_private = inode; set_buffer_unwritten(bh_result); } } /* * If this is a realtime file, data may be on a different device. * to that pointed to from the buffer_head b_bdev currently. */ bh_result->b_bdev = xfs_find_bdev_for_inode(inode); /* * If we previously allocated a block out beyond eof and we are now * coming back to use it then we will need to flag it as new even if it * has a disk address. * * With sub-block writes into unwritten extents we also need to mark * the buffer as new so that the unwritten parts of the buffer gets * correctly zeroed. */ if (create && ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || (offset >= i_size_read(inode)) || (new || ISUNWRITTEN(&imap)))) set_buffer_new(bh_result); if (imap.br_startblock == DELAYSTARTBLOCK) { BUG_ON(direct); if (create) { set_buffer_uptodate(bh_result); set_buffer_mapped(bh_result); set_buffer_delay(bh_result); } } /* * If this is O_DIRECT or the mpage code calling tell them how large * the mapping is, so that we can avoid repeated get_blocks calls. */ if (direct || size > (1 << inode->i_blkbits)) { xfs_off_t mapping_size; mapping_size = imap.br_startoff + imap.br_blockcount - iblock; mapping_size <<= inode->i_blkbits; ASSERT(mapping_size > 0); if (mapping_size > size) mapping_size = size; if (mapping_size > LONG_MAX) mapping_size = LONG_MAX; bh_result->b_size = mapping_size; } return 0; out_unlock: xfs_iunlock(ip, lockmode); return -error; } int xfs_get_blocks( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __xfs_get_blocks(inode, iblock, bh_result, create, 0); } STATIC int xfs_get_blocks_direct( struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create) { return __xfs_get_blocks(inode, iblock, bh_result, create, 1); } /* * Complete a direct I/O write request. * * If the private argument is non-NULL __xfs_get_blocks signals us that we * need to issue a transaction to convert the range from unwritten to written * extents. In case this is regular synchronous I/O we just call xfs_end_io * to do this and we are done. But in case this was a successful AIO * request this handler is called from interrupt context, from which we * can't start transactions. In that case offload the I/O completion to * the workqueues we also use for buffered I/O completion. */ STATIC void xfs_end_io_direct_write( struct kiocb *iocb, loff_t offset, ssize_t size, void *private, int ret, bool is_async) { struct xfs_ioend *ioend = iocb->private; /* * blockdev_direct_IO can return an error even after the I/O * completion handler was called. Thus we need to protect * against double-freeing. */ iocb->private = NULL; ioend->io_offset = offset; ioend->io_size = size; ioend->io_iocb = iocb; ioend->io_result = ret; if (private && size > 0) ioend->io_type = IO_UNWRITTEN; if (is_async) { ioend->io_isasync = 1; xfs_finish_ioend(ioend); } else { xfs_finish_ioend_sync(ioend); } } STATIC ssize_t xfs_vm_direct_IO( int rw, struct kiocb *iocb, const struct iovec *iov, loff_t offset, unsigned long nr_segs) { struct inode *inode = iocb->ki_filp->f_mapping->host; struct block_device *bdev = xfs_find_bdev_for_inode(inode); ssize_t ret; if (rw & WRITE) { iocb->private = xfs_alloc_ioend(inode, IO_DIRECT); ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset, nr_segs, xfs_get_blocks_direct, xfs_end_io_direct_write, NULL, 0); if (ret != -EIOCBQUEUED && iocb->private) xfs_destroy_ioend(iocb->private); } else { ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, offset, nr_segs, xfs_get_blocks_direct, NULL, NULL, 0); } return ret; } STATIC void xfs_vm_write_failed( struct address_space *mapping, loff_t to) { struct inode *inode = mapping->host; if (to > inode->i_size) { /* * punch out the delalloc blocks we have already allocated. We * don't call xfs_setattr() to do this as we may be in the * middle of a multi-iovec write and so the vfs inode->i_size * will not match the xfs ip->i_size and so it will zero too * much. Hence we jus truncate the page cache to zero what is * necessary and punch the delalloc blocks directly. */ struct xfs_inode *ip = XFS_I(inode); xfs_fileoff_t start_fsb; xfs_fileoff_t end_fsb; int error; truncate_pagecache(inode, to, inode->i_size); /* * Check if there are any blocks that are outside of i_size * that need to be trimmed back. */ start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1; end_fsb = XFS_B_TO_FSB(ip->i_mount, to); if (end_fsb <= start_fsb) return; xfs_ilock(ip, XFS_ILOCK_EXCL); error = xfs_bmap_punch_delalloc_range(ip, start_fsb, end_fsb - start_fsb); if (error) { /* something screwed, just bail */ if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { xfs_alert(ip->i_mount, "xfs_vm_write_failed: unable to clean up ino %lld", ip->i_ino); } } xfs_iunlock(ip, XFS_ILOCK_EXCL); } } STATIC int xfs_vm_write_begin( struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned flags, struct page **pagep, void **fsdata) { int ret; ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS, pagep, xfs_get_blocks); if (unlikely(ret)) xfs_vm_write_failed(mapping, pos + len); return ret; } STATIC int xfs_vm_write_end( struct file *file, struct address_space *mapping, loff_t pos, unsigned len, unsigned copied, struct page *page, void *fsdata) { int ret; ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); if (unlikely(ret < len)) xfs_vm_write_failed(mapping, pos + len); return ret; } STATIC sector_t xfs_vm_bmap( struct address_space *mapping, sector_t block) { struct inode *inode = (struct inode *)mapping->host; struct xfs_inode *ip = XFS_I(inode); trace_xfs_vm_bmap(XFS_I(inode)); xfs_ilock(ip, XFS_IOLOCK_SHARED); xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); xfs_iunlock(ip, XFS_IOLOCK_SHARED); return generic_block_bmap(mapping, block, xfs_get_blocks); } STATIC int xfs_vm_readpage( struct file *unused, struct page *page) { return mpage_readpage(page, xfs_get_blocks); } STATIC int xfs_vm_readpages( struct file *unused, struct address_space *mapping, struct list_head *pages, unsigned nr_pages) { return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); } const struct address_space_operations xfs_address_space_operations = { .readpage = xfs_vm_readpage, .readpages = xfs_vm_readpages, .writepage = xfs_vm_writepage, .writepages = xfs_vm_writepages, .releasepage = xfs_vm_releasepage, .invalidatepage = xfs_vm_invalidatepage, .write_begin = xfs_vm_write_begin, .write_end = xfs_vm_write_end, .bmap = xfs_vm_bmap, .direct_IO = xfs_vm_direct_IO, .migratepage = buffer_migrate_page, .is_partially_uptodate = block_is_partially_uptodate, .error_remove_page = generic_error_remove_page, };