/* * sleep.c - ACPI sleep support. * * Copyright (c) 2005 Alexey Starikovskiy * Copyright (c) 2004 David Shaohua Li * Copyright (c) 2000-2003 Patrick Mochel * Copyright (c) 2003 Open Source Development Lab * * This file is released under the GPLv2. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include "internal.h" #include "sleep.h" u8 wake_sleep_flags = ACPI_NO_OPTIONAL_METHODS; static unsigned int gts, bfs; static int set_param_wake_flag(const char *val, struct kernel_param *kp) { int ret = param_set_int(val, kp); if (ret) return ret; if (kp->arg == (const char *)>s) { if (gts) wake_sleep_flags |= ACPI_EXECUTE_GTS; else wake_sleep_flags &= ~ACPI_EXECUTE_GTS; } if (kp->arg == (const char *)&bfs) { if (bfs) wake_sleep_flags |= ACPI_EXECUTE_BFS; else wake_sleep_flags &= ~ACPI_EXECUTE_BFS; } return ret; } module_param_call(gts, set_param_wake_flag, param_get_int, >s, 0644); module_param_call(bfs, set_param_wake_flag, param_get_int, &bfs, 0644); MODULE_PARM_DESC(gts, "Enable evaluation of _GTS on suspend."); MODULE_PARM_DESC(bfs, "Enable evaluation of _BFS on resume".); static u8 sleep_states[ACPI_S_STATE_COUNT]; static bool pwr_btn_event_pending; static void acpi_sleep_tts_switch(u32 acpi_state) { union acpi_object in_arg = { ACPI_TYPE_INTEGER }; struct acpi_object_list arg_list = { 1, &in_arg }; acpi_status status = AE_OK; in_arg.integer.value = acpi_state; status = acpi_evaluate_object(NULL, "\\_TTS", &arg_list, NULL); if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { /* * OS can't evaluate the _TTS object correctly. Some warning * message will be printed. But it won't break anything. */ printk(KERN_NOTICE "Failure in evaluating _TTS object\n"); } } static int tts_notify_reboot(struct notifier_block *this, unsigned long code, void *x) { acpi_sleep_tts_switch(ACPI_STATE_S5); return NOTIFY_DONE; } static struct notifier_block tts_notifier = { .notifier_call = tts_notify_reboot, .next = NULL, .priority = 0, }; static int acpi_sleep_prepare(u32 acpi_state) { #ifdef CONFIG_ACPI_SLEEP /* do we have a wakeup address for S2 and S3? */ if (acpi_state == ACPI_STATE_S3) { if (!acpi_wakeup_address) { return -EFAULT; } acpi_set_firmware_waking_vector( (acpi_physical_address)acpi_wakeup_address); } ACPI_FLUSH_CPU_CACHE(); #endif printk(KERN_INFO PREFIX "Preparing to enter system sleep state S%d\n", acpi_state); acpi_enable_wakeup_devices(acpi_state); acpi_enter_sleep_state_prep(acpi_state); return 0; } #ifdef CONFIG_ACPI_SLEEP static u32 acpi_target_sleep_state = ACPI_STATE_S0; /* * The ACPI specification wants us to save NVS memory regions during hibernation * and to restore them during the subsequent resume. Windows does that also for * suspend to RAM. However, it is known that this mechanism does not work on * all machines, so we allow the user to disable it with the help of the * 'acpi_sleep=nonvs' kernel command line option. */ static bool nvs_nosave; void __init acpi_nvs_nosave(void) { nvs_nosave = true; } /* * ACPI 1.0 wants us to execute _PTS before suspending devices, so we allow the * user to request that behavior by using the 'acpi_old_suspend_ordering' * kernel command line option that causes the following variable to be set. */ static bool old_suspend_ordering; void __init acpi_old_suspend_ordering(void) { old_suspend_ordering = true; } /** * acpi_pm_freeze - Disable the GPEs and suspend EC transactions. */ static int acpi_pm_freeze(void) { acpi_disable_all_gpes(); acpi_os_wait_events_complete(NULL); acpi_ec_block_transactions(); return 0; } /** * acpi_pre_suspend - Enable wakeup devices, "freeze" EC and save NVS. */ static int acpi_pm_pre_suspend(void) { acpi_pm_freeze(); return suspend_nvs_save(); } /** * __acpi_pm_prepare - Prepare the platform to enter the target state. * * If necessary, set the firmware waking vector and do arch-specific * nastiness to get the wakeup code to the waking vector. */ static int __acpi_pm_prepare(void) { int error = acpi_sleep_prepare(acpi_target_sleep_state); if (error) acpi_target_sleep_state = ACPI_STATE_S0; return error; } /** * acpi_pm_prepare - Prepare the platform to enter the target sleep * state and disable the GPEs. */ static int acpi_pm_prepare(void) { int error = __acpi_pm_prepare(); if (!error) error = acpi_pm_pre_suspend(); return error; } static int find_powerf_dev(struct device *dev, void *data) { struct acpi_device *device = to_acpi_device(dev); const char *hid = acpi_device_hid(device); return !strcmp(hid, ACPI_BUTTON_HID_POWERF); } /** * acpi_pm_finish - Instruct the platform to leave a sleep state. * * This is called after we wake back up (or if entering the sleep state * failed). */ static void acpi_pm_finish(void) { struct device *pwr_btn_dev; u32 acpi_state = acpi_target_sleep_state; acpi_ec_unblock_transactions(); suspend_nvs_free(); if (acpi_state == ACPI_STATE_S0) return; printk(KERN_INFO PREFIX "Waking up from system sleep state S%d\n", acpi_state); acpi_disable_wakeup_devices(acpi_state); acpi_leave_sleep_state(acpi_state); /* reset firmware waking vector */ acpi_set_firmware_waking_vector((acpi_physical_address) 0); acpi_target_sleep_state = ACPI_STATE_S0; /* If we were woken with the fixed power button, provide a small * hint to userspace in the form of a wakeup event on the fixed power * button device (if it can be found). * * We delay the event generation til now, as the PM layer requires * timekeeping to be running before we generate events. */ if (!pwr_btn_event_pending) return; pwr_btn_event_pending = false; pwr_btn_dev = bus_find_device(&acpi_bus_type, NULL, NULL, find_powerf_dev); if (pwr_btn_dev) { pm_wakeup_event(pwr_btn_dev, 0); put_device(pwr_btn_dev); } } /** * acpi_pm_end - Finish up suspend sequence. */ static void acpi_pm_end(void) { /* * This is necessary in case acpi_pm_finish() is not called during a * failing transition to a sleep state. */ acpi_target_sleep_state = ACPI_STATE_S0; acpi_sleep_tts_switch(acpi_target_sleep_state); } #else /* !CONFIG_ACPI_SLEEP */ #define acpi_target_sleep_state ACPI_STATE_S0 #endif /* CONFIG_ACPI_SLEEP */ #ifdef CONFIG_SUSPEND static u32 acpi_suspend_states[] = { [PM_SUSPEND_ON] = ACPI_STATE_S0, [PM_SUSPEND_STANDBY] = ACPI_STATE_S1, [PM_SUSPEND_MEM] = ACPI_STATE_S3, [PM_SUSPEND_MAX] = ACPI_STATE_S5 }; /** * acpi_suspend_begin - Set the target system sleep state to the state * associated with given @pm_state, if supported. */ static int acpi_suspend_begin(suspend_state_t pm_state) { u32 acpi_state = acpi_suspend_states[pm_state]; int error = 0; error = nvs_nosave ? 0 : suspend_nvs_alloc(); if (error) return error; if (sleep_states[acpi_state]) { acpi_target_sleep_state = acpi_state; acpi_sleep_tts_switch(acpi_target_sleep_state); } else { printk(KERN_ERR "ACPI does not support this state: %d\n", pm_state); error = -ENOSYS; } return error; } /** * acpi_suspend_enter - Actually enter a sleep state. * @pm_state: ignored * * Flush caches and go to sleep. For STR we have to call arch-specific * assembly, which in turn call acpi_enter_sleep_state(). * It's unfortunate, but it works. Please fix if you're feeling frisky. */ static int acpi_suspend_enter(suspend_state_t pm_state) { acpi_status status = AE_OK; u32 acpi_state = acpi_target_sleep_state; int error; ACPI_FLUSH_CPU_CACHE(); switch (acpi_state) { case ACPI_STATE_S1: barrier(); status = acpi_enter_sleep_state(acpi_state, wake_sleep_flags); break; case ACPI_STATE_S3: error = acpi_suspend_lowlevel(); if (error) return error; pr_info(PREFIX "Low-level resume complete\n"); break; } /* This violates the spec but is required for bug compatibility. */ acpi_write_bit_register(ACPI_BITREG_SCI_ENABLE, 1); /* Reprogram control registers and execute _BFS */ acpi_leave_sleep_state_prep(acpi_state, wake_sleep_flags); /* ACPI 3.0 specs (P62) says that it's the responsibility * of the OSPM to clear the status bit [ implying that the * POWER_BUTTON event should not reach userspace ] * * However, we do generate a small hint for userspace in the form of * a wakeup event. We flag this condition for now and generate the * event later, as we're currently too early in resume to be able to * generate wakeup events. */ if (ACPI_SUCCESS(status) && (acpi_state == ACPI_STATE_S3)) { acpi_event_status pwr_btn_status; acpi_get_event_status(ACPI_EVENT_POWER_BUTTON, &pwr_btn_status); if (pwr_btn_status & ACPI_EVENT_FLAG_SET) { acpi_clear_event(ACPI_EVENT_POWER_BUTTON); /* Flag for later */ pwr_btn_event_pending = true; } } /* * Disable and clear GPE status before interrupt is enabled. Some GPEs * (like wakeup GPE) haven't handler, this can avoid such GPE misfire. * acpi_leave_sleep_state will reenable specific GPEs later */ acpi_disable_all_gpes(); /* Allow EC transactions to happen. */ acpi_ec_unblock_transactions_early(); suspend_nvs_restore(); return ACPI_SUCCESS(status) ? 0 : -EFAULT; } static int acpi_suspend_state_valid(suspend_state_t pm_state) { u32 acpi_state; switch (pm_state) { case PM_SUSPEND_ON: case PM_SUSPEND_STANDBY: case PM_SUSPEND_MEM: acpi_state = acpi_suspend_states[pm_state]; return sleep_states[acpi_state]; default: return 0; } } static const struct platform_suspend_ops acpi_suspend_ops = { .valid = acpi_suspend_state_valid, .begin = acpi_suspend_begin, .prepare_late = acpi_pm_prepare, .enter = acpi_suspend_enter, .wake = acpi_pm_finish, .end = acpi_pm_end, }; /** * acpi_suspend_begin_old - Set the target system sleep state to the * state associated with given @pm_state, if supported, and * execute the _PTS control method. This function is used if the * pre-ACPI 2.0 suspend ordering has been requested. */ static int acpi_suspend_begin_old(suspend_state_t pm_state) { int error = acpi_suspend_begin(pm_state); if (!error) error = __acpi_pm_prepare(); return error; } /* * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has * been requested. */ static const struct platform_suspend_ops acpi_suspend_ops_old = { .valid = acpi_suspend_state_valid, .begin = acpi_suspend_begin_old, .prepare_late = acpi_pm_pre_suspend, .enter = acpi_suspend_enter, .wake = acpi_pm_finish, .end = acpi_pm_end, .recover = acpi_pm_finish, }; static int __init init_old_suspend_ordering(const struct dmi_system_id *d) { old_suspend_ordering = true; return 0; } static int __init init_nvs_nosave(const struct dmi_system_id *d) { acpi_nvs_nosave(); return 0; } static struct dmi_system_id __initdata acpisleep_dmi_table[] = { { .callback = init_old_suspend_ordering, .ident = "Abit KN9 (nForce4 variant)", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "http://www.abit.com.tw/"), DMI_MATCH(DMI_BOARD_NAME, "KN9 Series(NF-CK804)"), }, }, { .callback = init_old_suspend_ordering, .ident = "HP xw4600 Workstation", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), DMI_MATCH(DMI_PRODUCT_NAME, "HP xw4600 Workstation"), }, }, { .callback = init_old_suspend_ordering, .ident = "Asus Pundit P1-AH2 (M2N8L motherboard)", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTek Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "M2N8L"), }, }, { .callback = init_old_suspend_ordering, .ident = "Panasonic CF51-2L", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "Matsushita Electric Industrial Co.,Ltd."), DMI_MATCH(DMI_BOARD_NAME, "CF51-2L"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VGN-FW21E", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW21E"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VPCEB17FX", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB17FX"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VGN-SR11M", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR11M"), }, }, { .callback = init_nvs_nosave, .ident = "Everex StepNote Series", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Everex Systems, Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "Everex StepNote Series"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VPCEB1Z1E", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VPCEB1Z1E"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VGN-NW130D", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VGN-NW130D"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VPCCW29FX", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VPCCW29FX"), }, }, { .callback = init_nvs_nosave, .ident = "Averatec AV1020-ED2", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "AVERATEC"), DMI_MATCH(DMI_PRODUCT_NAME, "1000 Series"), }, }, { .callback = init_old_suspend_ordering, .ident = "Asus A8N-SLI DELUXE", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI DELUXE"), }, }, { .callback = init_old_suspend_ordering, .ident = "Asus A8N-SLI Premium", .matches = { DMI_MATCH(DMI_BOARD_VENDOR, "ASUSTeK Computer INC."), DMI_MATCH(DMI_BOARD_NAME, "A8N-SLI Premium"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VGN-SR26GN_P", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VGN-SR26GN_P"), }, }, { .callback = init_nvs_nosave, .ident = "Sony Vaio VGN-FW520F", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), DMI_MATCH(DMI_PRODUCT_NAME, "VGN-FW520F"), }, }, { .callback = init_nvs_nosave, .ident = "Asus K54C", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "K54C"), }, }, { .callback = init_nvs_nosave, .ident = "Asus K54HR", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."), DMI_MATCH(DMI_PRODUCT_NAME, "K54HR"), }, }, {}, }; #endif /* CONFIG_SUSPEND */ #ifdef CONFIG_HIBERNATION static unsigned long s4_hardware_signature; static struct acpi_table_facs *facs; static bool nosigcheck; void __init acpi_no_s4_hw_signature(void) { nosigcheck = true; } static int acpi_hibernation_begin(void) { int error; error = nvs_nosave ? 0 : suspend_nvs_alloc(); if (!error) { acpi_target_sleep_state = ACPI_STATE_S4; acpi_sleep_tts_switch(acpi_target_sleep_state); } return error; } static int acpi_hibernation_enter(void) { acpi_status status = AE_OK; ACPI_FLUSH_CPU_CACHE(); /* This shouldn't return. If it returns, we have a problem */ status = acpi_enter_sleep_state(ACPI_STATE_S4, wake_sleep_flags); /* Reprogram control registers and execute _BFS */ acpi_leave_sleep_state_prep(ACPI_STATE_S4, wake_sleep_flags); return ACPI_SUCCESS(status) ? 0 : -EFAULT; } static void acpi_hibernation_leave(void) { /* * If ACPI is not enabled by the BIOS and the boot kernel, we need to * enable it here. */ acpi_enable(); /* Reprogram control registers and execute _BFS */ acpi_leave_sleep_state_prep(ACPI_STATE_S4, wake_sleep_flags); /* Check the hardware signature */ if (facs && s4_hardware_signature != facs->hardware_signature) { printk(KERN_EMERG "ACPI: Hardware changed while hibernated, " "cannot resume!\n"); panic("ACPI S4 hardware signature mismatch"); } /* Restore the NVS memory area */ suspend_nvs_restore(); /* Allow EC transactions to happen. */ acpi_ec_unblock_transactions_early(); } static void acpi_pm_thaw(void) { acpi_ec_unblock_transactions(); acpi_enable_all_runtime_gpes(); } static const struct platform_hibernation_ops acpi_hibernation_ops = { .begin = acpi_hibernation_begin, .end = acpi_pm_end, .pre_snapshot = acpi_pm_prepare, .finish = acpi_pm_finish, .prepare = acpi_pm_prepare, .enter = acpi_hibernation_enter, .leave = acpi_hibernation_leave, .pre_restore = acpi_pm_freeze, .restore_cleanup = acpi_pm_thaw, }; /** * acpi_hibernation_begin_old - Set the target system sleep state to * ACPI_STATE_S4 and execute the _PTS control method. This * function is used if the pre-ACPI 2.0 suspend ordering has been * requested. */ static int acpi_hibernation_begin_old(void) { int error; /* * The _TTS object should always be evaluated before the _PTS object. * When the old_suspended_ordering is true, the _PTS object is * evaluated in the acpi_sleep_prepare. */ acpi_sleep_tts_switch(ACPI_STATE_S4); error = acpi_sleep_prepare(ACPI_STATE_S4); if (!error) { if (!nvs_nosave) error = suspend_nvs_alloc(); if (!error) acpi_target_sleep_state = ACPI_STATE_S4; } return error; } /* * The following callbacks are used if the pre-ACPI 2.0 suspend ordering has * been requested. */ static const struct platform_hibernation_ops acpi_hibernation_ops_old = { .begin = acpi_hibernation_begin_old, .end = acpi_pm_end, .pre_snapshot = acpi_pm_pre_suspend, .prepare = acpi_pm_freeze, .finish = acpi_pm_finish, .enter = acpi_hibernation_enter, .leave = acpi_hibernation_leave, .pre_restore = acpi_pm_freeze, .restore_cleanup = acpi_pm_thaw, .recover = acpi_pm_finish, }; #endif /* CONFIG_HIBERNATION */ int acpi_suspend(u32 acpi_state) { suspend_state_t states[] = { [1] = PM_SUSPEND_STANDBY, [3] = PM_SUSPEND_MEM, [5] = PM_SUSPEND_MAX }; if (acpi_state < 6 && states[acpi_state]) return pm_suspend(states[acpi_state]); if (acpi_state == 4) return hibernate(); return -EINVAL; } #ifdef CONFIG_PM /** * acpi_pm_device_sleep_state - return preferred power state of ACPI device * in the system sleep state given by %acpi_target_sleep_state * @dev: device to examine; its driver model wakeup flags control * whether it should be able to wake up the system * @d_min_p: used to store the upper limit of allowed states range * Return value: preferred power state of the device on success, -ENODEV on * failure (ie. if there's no 'struct acpi_device' for @dev) * * Find the lowest power (highest number) ACPI device power state that * device @dev can be in while the system is in the sleep state represented * by %acpi_target_sleep_state. If @wake is nonzero, the device should be * able to wake up the system from this sleep state. If @d_min_p is set, * the highest power (lowest number) device power state of @dev allowed * in this system sleep state is stored at the location pointed to by it. * * The caller must ensure that @dev is valid before using this function. * The caller is also responsible for figuring out if the device is * supposed to be able to wake up the system and passing this information * via @wake. */ int acpi_pm_device_sleep_state(struct device *dev, int *d_min_p) { acpi_handle handle = DEVICE_ACPI_HANDLE(dev); struct acpi_device *adev; char acpi_method[] = "_SxD"; unsigned long long d_min, d_max; if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) { printk(KERN_DEBUG "ACPI handle has no context!\n"); return -ENODEV; } acpi_method[2] = '0' + acpi_target_sleep_state; /* * If the sleep state is S0, we will return D3, but if the device has * _S0W, we will use the value from _S0W */ d_min = ACPI_STATE_D0; d_max = ACPI_STATE_D3; /* * If present, _SxD methods return the minimum D-state (highest power * state) we can use for the corresponding S-states. Otherwise, the * minimum D-state is D0 (ACPI 3.x). * * NOTE: We rely on acpi_evaluate_integer() not clobbering the integer * provided -- that's our fault recovery, we ignore retval. */ if (acpi_target_sleep_state > ACPI_STATE_S0) acpi_evaluate_integer(handle, acpi_method, NULL, &d_min); /* * If _PRW says we can wake up the system from the target sleep state, * the D-state returned by _SxD is sufficient for that (we assume a * wakeup-aware driver if wake is set). Still, if _SxW exists * (ACPI 3.x), it should return the maximum (lowest power) D-state that * can wake the system. _S0W may be valid, too. */ if (acpi_target_sleep_state == ACPI_STATE_S0 || (device_may_wakeup(dev) && adev->wakeup.sleep_state <= acpi_target_sleep_state)) { acpi_status status; acpi_method[3] = 'W'; status = acpi_evaluate_integer(handle, acpi_method, NULL, &d_max); if (ACPI_FAILURE(status)) { if (acpi_target_sleep_state != ACPI_STATE_S0 || status != AE_NOT_FOUND) d_max = d_min; } else if (d_max < d_min) { /* Warn the user of the broken DSDT */ printk(KERN_WARNING "ACPI: Wrong value from %s\n", acpi_method); /* Sanitize it */ d_min = d_max; } } if (d_min_p) *d_min_p = d_min; return d_max; } #endif /* CONFIG_PM */ #ifdef CONFIG_PM_SLEEP /** * acpi_pm_device_run_wake - Enable/disable wake-up for given device. * @phys_dev: Device to enable/disable the platform to wake-up the system for. * @enable: Whether enable or disable the wake-up functionality. * * Find the ACPI device object corresponding to @pci_dev and try to * enable/disable the GPE associated with it. */ int acpi_pm_device_run_wake(struct device *phys_dev, bool enable) { struct acpi_device *dev; acpi_handle handle; if (!device_run_wake(phys_dev)) return -EINVAL; handle = DEVICE_ACPI_HANDLE(phys_dev); if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &dev))) { dev_dbg(phys_dev, "ACPI handle has no context in %s!\n", __func__); return -ENODEV; } if (enable) { acpi_enable_wakeup_device_power(dev, ACPI_STATE_S0); acpi_enable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number); } else { acpi_disable_gpe(dev->wakeup.gpe_device, dev->wakeup.gpe_number); acpi_disable_wakeup_device_power(dev); } return 0; } /** * acpi_pm_device_sleep_wake - enable or disable the system wake-up * capability of given device * @dev: device to handle * @enable: 'true' - enable, 'false' - disable the wake-up capability */ int acpi_pm_device_sleep_wake(struct device *dev, bool enable) { acpi_handle handle; struct acpi_device *adev; int error; if (!device_can_wakeup(dev)) return -EINVAL; handle = DEVICE_ACPI_HANDLE(dev); if (!handle || ACPI_FAILURE(acpi_bus_get_device(handle, &adev))) { dev_dbg(dev, "ACPI handle has no context in %s!\n", __func__); return -ENODEV; } error = enable ? acpi_enable_wakeup_device_power(adev, acpi_target_sleep_state) : acpi_disable_wakeup_device_power(adev); if (!error) dev_info(dev, "wake-up capability %s by ACPI\n", enable ? "enabled" : "disabled"); return error; } #endif /* CONFIG_PM_SLEEP */ static void acpi_power_off_prepare(void) { /* Prepare to power off the system */ acpi_sleep_prepare(ACPI_STATE_S5); acpi_disable_all_gpes(); } static void acpi_power_off(void) { /* acpi_sleep_prepare(ACPI_STATE_S5) should have already been called */ printk(KERN_DEBUG "%s called\n", __func__); local_irq_disable(); acpi_enter_sleep_state(ACPI_STATE_S5, wake_sleep_flags); } /* * ACPI 2.0 created the optional _GTS and _BFS, * but industry adoption has been neither rapid nor broad. * * Linux gets into trouble when it executes poorly validated * paths through the BIOS, so disable _GTS and _BFS by default, * but do speak up and offer the option to enable them. */ static void __init acpi_gts_bfs_check(void) { acpi_handle dummy; if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_PATHNAME__GTS, &dummy))) { printk(KERN_NOTICE PREFIX "BIOS offers _GTS\n"); printk(KERN_NOTICE PREFIX "If \"acpi.gts=1\" improves suspend, " "please notify linux-acpi@vger.kernel.org\n"); } if (ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT, METHOD_PATHNAME__BFS, &dummy))) { printk(KERN_NOTICE PREFIX "BIOS offers _BFS\n"); printk(KERN_NOTICE PREFIX "If \"acpi.bfs=1\" improves resume, " "please notify linux-acpi@vger.kernel.org\n"); } } int __init acpi_sleep_init(void) { acpi_status status; u8 type_a, type_b; #ifdef CONFIG_SUSPEND int i = 0; dmi_check_system(acpisleep_dmi_table); #endif if (acpi_disabled) return 0; sleep_states[ACPI_STATE_S0] = 1; printk(KERN_INFO PREFIX "(supports S0"); #ifdef CONFIG_SUSPEND for (i = ACPI_STATE_S1; i < ACPI_STATE_S4; i++) { status = acpi_get_sleep_type_data(i, &type_a, &type_b); if (ACPI_SUCCESS(status)) { sleep_states[i] = 1; printk(" S%d", i); } } suspend_set_ops(old_suspend_ordering ? &acpi_suspend_ops_old : &acpi_suspend_ops); #endif #ifdef CONFIG_HIBERNATION status = acpi_get_sleep_type_data(ACPI_STATE_S4, &type_a, &type_b); if (ACPI_SUCCESS(status)) { hibernation_set_ops(old_suspend_ordering ? &acpi_hibernation_ops_old : &acpi_hibernation_ops); sleep_states[ACPI_STATE_S4] = 1; printk(" S4"); if (!nosigcheck) { acpi_get_table(ACPI_SIG_FACS, 1, (struct acpi_table_header **)&facs); if (facs) s4_hardware_signature = facs->hardware_signature; } } #endif status = acpi_get_sleep_type_data(ACPI_STATE_S5, &type_a, &type_b); if (ACPI_SUCCESS(status)) { sleep_states[ACPI_STATE_S5] = 1; printk(" S5"); pm_power_off_prepare = acpi_power_off_prepare; pm_power_off = acpi_power_off; } printk(")\n"); /* * Register the tts_notifier to reboot notifier list so that the _TTS * object can also be evaluated when the system enters S5. */ register_reboot_notifier(&tts_notifier); acpi_gts_bfs_check(); return 0; }