/**************************************************************************** * Driver for Solarflare network controllers and boards * Copyright 2005-2006 Fen Systems Ltd. * Copyright 2006-2013 Solarflare Communications Inc. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation, incorporated herein by reference. */ #ifndef EFX_NIC_H #define EFX_NIC_H #include #include #include "net_driver.h" #include "efx.h" #include "mcdi.h" enum { EFX_REV_FALCON_A0 = 0, EFX_REV_FALCON_A1 = 1, EFX_REV_FALCON_B0 = 2, EFX_REV_SIENA_A0 = 3, EFX_REV_HUNT_A0 = 4, }; static inline int efx_nic_rev(struct efx_nic *efx) { return efx->type->revision; } u32 efx_farch_fpga_ver(struct efx_nic *efx); /* NIC has two interlinked PCI functions for the same port. */ static inline bool efx_nic_is_dual_func(struct efx_nic *efx) { return efx_nic_rev(efx) < EFX_REV_FALCON_B0; } /* Read the current event from the event queue */ static inline efx_qword_t *efx_event(struct efx_channel *channel, unsigned int index) { return ((efx_qword_t *) (channel->eventq.buf.addr)) + (index & channel->eventq_mask); } /* See if an event is present * * We check both the high and low dword of the event for all ones. We * wrote all ones when we cleared the event, and no valid event can * have all ones in either its high or low dwords. This approach is * robust against reordering. * * Note that using a single 64-bit comparison is incorrect; even * though the CPU read will be atomic, the DMA write may not be. */ static inline int efx_event_present(efx_qword_t *event) { return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | EFX_DWORD_IS_ALL_ONES(event->dword[1])); } /* Returns a pointer to the specified transmit descriptor in the TX * descriptor queue belonging to the specified channel. */ static inline efx_qword_t * efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) { return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index; } /* Report whether the NIC considers this TX queue empty, given the * write_count used for the last doorbell push. May return false * negative. */ static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, unsigned int write_count) { unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); if (empty_read_count == 0) return false; return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; } static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue) { return __efx_nic_tx_is_empty(tx_queue, tx_queue->write_count); } /* Decide whether to push a TX descriptor to the NIC vs merely writing * the doorbell. This can reduce latency when we are adding a single * descriptor to an empty queue, but is otherwise pointless. Further, * Falcon and Siena have hardware bugs (SF bug 33851) that may be * triggered if we don't check this. */ static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) { bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count); tx_queue->empty_read_count = 0; return was_empty && tx_queue->write_count - write_count == 1; } /* Returns a pointer to the specified descriptor in the RX descriptor queue */ static inline efx_qword_t * efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) { return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index; } enum { PHY_TYPE_NONE = 0, PHY_TYPE_TXC43128 = 1, PHY_TYPE_88E1111 = 2, PHY_TYPE_SFX7101 = 3, PHY_TYPE_QT2022C2 = 4, PHY_TYPE_PM8358 = 6, PHY_TYPE_SFT9001A = 8, PHY_TYPE_QT2025C = 9, PHY_TYPE_SFT9001B = 10, }; #define FALCON_XMAC_LOOPBACKS \ ((1 << LOOPBACK_XGMII) | \ (1 << LOOPBACK_XGXS) | \ (1 << LOOPBACK_XAUI)) /* Alignment of PCIe DMA boundaries (4KB) */ #define EFX_PAGE_SIZE 4096 /* Size and alignment of buffer table entries (same) */ #define EFX_BUF_SIZE EFX_PAGE_SIZE /** * struct falcon_board_type - board operations and type information * @id: Board type id, as found in NVRAM * @init: Allocate resources and initialise peripheral hardware * @init_phy: Do board-specific PHY initialisation * @fini: Shut down hardware and free resources * @set_id_led: Set state of identifying LED or revert to automatic function * @monitor: Board-specific health check function */ struct falcon_board_type { u8 id; int (*init) (struct efx_nic *nic); void (*init_phy) (struct efx_nic *efx); void (*fini) (struct efx_nic *nic); void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode); int (*monitor) (struct efx_nic *nic); }; /** * struct falcon_board - board information * @type: Type of board * @major: Major rev. ('A', 'B' ...) * @minor: Minor rev. (0, 1, ...) * @i2c_adap: I2C adapter for on-board peripherals * @i2c_data: Data for bit-banging algorithm * @hwmon_client: I2C client for hardware monitor * @ioexp_client: I2C client for power/port control */ struct falcon_board { const struct falcon_board_type *type; int major; int minor; struct i2c_adapter i2c_adap; struct i2c_algo_bit_data i2c_data; struct i2c_client *hwmon_client, *ioexp_client; }; /** * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device * @device_id: Controller's id for the device * @size: Size (in bytes) * @addr_len: Number of address bytes in read/write commands * @munge_address: Flag whether addresses should be munged. * Some devices with 9-bit addresses (e.g. AT25040A EEPROM) * use bit 3 of the command byte as address bit A8, rather * than having a two-byte address. If this flag is set, then * commands should be munged in this way. * @erase_command: Erase command (or 0 if sector erase not needed). * @erase_size: Erase sector size (in bytes) * Erase commands affect sectors with this size and alignment. * This must be a power of two. * @block_size: Write block size (in bytes). * Write commands are limited to blocks with this size and alignment. */ struct falcon_spi_device { int device_id; unsigned int size; unsigned int addr_len; unsigned int munge_address:1; u8 erase_command; unsigned int erase_size; unsigned int block_size; }; static inline bool falcon_spi_present(const struct falcon_spi_device *spi) { return spi->size != 0; } enum { FALCON_STAT_tx_bytes, FALCON_STAT_tx_packets, FALCON_STAT_tx_pause, FALCON_STAT_tx_control, FALCON_STAT_tx_unicast, FALCON_STAT_tx_multicast, FALCON_STAT_tx_broadcast, FALCON_STAT_tx_lt64, FALCON_STAT_tx_64, FALCON_STAT_tx_65_to_127, FALCON_STAT_tx_128_to_255, FALCON_STAT_tx_256_to_511, FALCON_STAT_tx_512_to_1023, FALCON_STAT_tx_1024_to_15xx, FALCON_STAT_tx_15xx_to_jumbo, FALCON_STAT_tx_gtjumbo, FALCON_STAT_tx_non_tcpudp, FALCON_STAT_tx_mac_src_error, FALCON_STAT_tx_ip_src_error, FALCON_STAT_rx_bytes, FALCON_STAT_rx_good_bytes, FALCON_STAT_rx_bad_bytes, FALCON_STAT_rx_packets, FALCON_STAT_rx_good, FALCON_STAT_rx_bad, FALCON_STAT_rx_pause, FALCON_STAT_rx_control, FALCON_STAT_rx_unicast, FALCON_STAT_rx_multicast, FALCON_STAT_rx_broadcast, FALCON_STAT_rx_lt64, FALCON_STAT_rx_64, FALCON_STAT_rx_65_to_127, FALCON_STAT_rx_128_to_255, FALCON_STAT_rx_256_to_511, FALCON_STAT_rx_512_to_1023, FALCON_STAT_rx_1024_to_15xx, FALCON_STAT_rx_15xx_to_jumbo, FALCON_STAT_rx_gtjumbo, FALCON_STAT_rx_bad_lt64, FALCON_STAT_rx_bad_gtjumbo, FALCON_STAT_rx_overflow, FALCON_STAT_rx_symbol_error, FALCON_STAT_rx_align_error, FALCON_STAT_rx_length_error, FALCON_STAT_rx_internal_error, FALCON_STAT_rx_nodesc_drop_cnt, FALCON_STAT_COUNT }; /** * struct falcon_nic_data - Falcon NIC state * @pci_dev2: Secondary function of Falcon A * @board: Board state and functions * @stats: Hardware statistics * @stats_disable_count: Nest count for disabling statistics fetches * @stats_pending: Is there a pending DMA of MAC statistics. * @stats_timer: A timer for regularly fetching MAC statistics. * @spi_flash: SPI flash device * @spi_eeprom: SPI EEPROM device * @spi_lock: SPI bus lock * @mdio_lock: MDIO bus lock * @xmac_poll_required: XMAC link state needs polling */ struct falcon_nic_data { struct pci_dev *pci_dev2; struct falcon_board board; u64 stats[FALCON_STAT_COUNT]; unsigned int stats_disable_count; bool stats_pending; struct timer_list stats_timer; struct falcon_spi_device spi_flash; struct falcon_spi_device spi_eeprom; struct mutex spi_lock; struct mutex mdio_lock; bool xmac_poll_required; }; static inline struct falcon_board *falcon_board(struct efx_nic *efx) { struct falcon_nic_data *data = efx->nic_data; return &data->board; } enum { SIENA_STAT_tx_bytes, SIENA_STAT_tx_good_bytes, SIENA_STAT_tx_bad_bytes, SIENA_STAT_tx_packets, SIENA_STAT_tx_bad, SIENA_STAT_tx_pause, SIENA_STAT_tx_control, SIENA_STAT_tx_unicast, SIENA_STAT_tx_multicast, SIENA_STAT_tx_broadcast, SIENA_STAT_tx_lt64, SIENA_STAT_tx_64, SIENA_STAT_tx_65_to_127, SIENA_STAT_tx_128_to_255, SIENA_STAT_tx_256_to_511, SIENA_STAT_tx_512_to_1023, SIENA_STAT_tx_1024_to_15xx, SIENA_STAT_tx_15xx_to_jumbo, SIENA_STAT_tx_gtjumbo, SIENA_STAT_tx_collision, SIENA_STAT_tx_single_collision, SIENA_STAT_tx_multiple_collision, SIENA_STAT_tx_excessive_collision, SIENA_STAT_tx_deferred, SIENA_STAT_tx_late_collision, SIENA_STAT_tx_excessive_deferred, SIENA_STAT_tx_non_tcpudp, SIENA_STAT_tx_mac_src_error, SIENA_STAT_tx_ip_src_error, SIENA_STAT_rx_bytes, SIENA_STAT_rx_good_bytes, SIENA_STAT_rx_bad_bytes, SIENA_STAT_rx_packets, SIENA_STAT_rx_good, SIENA_STAT_rx_bad, SIENA_STAT_rx_pause, SIENA_STAT_rx_control, SIENA_STAT_rx_unicast, SIENA_STAT_rx_multicast, SIENA_STAT_rx_broadcast, SIENA_STAT_rx_lt64, SIENA_STAT_rx_64, SIENA_STAT_rx_65_to_127, SIENA_STAT_rx_128_to_255, SIENA_STAT_rx_256_to_511, SIENA_STAT_rx_512_to_1023, SIENA_STAT_rx_1024_to_15xx, SIENA_STAT_rx_15xx_to_jumbo, SIENA_STAT_rx_gtjumbo, SIENA_STAT_rx_bad_gtjumbo, SIENA_STAT_rx_overflow, SIENA_STAT_rx_false_carrier, SIENA_STAT_rx_symbol_error, SIENA_STAT_rx_align_error, SIENA_STAT_rx_length_error, SIENA_STAT_rx_internal_error, SIENA_STAT_rx_nodesc_drop_cnt, SIENA_STAT_COUNT }; /** * struct siena_nic_data - Siena NIC state * @wol_filter_id: Wake-on-LAN packet filter id * @stats: Hardware statistics */ struct siena_nic_data { int wol_filter_id; u64 stats[SIENA_STAT_COUNT]; }; enum { EF10_STAT_tx_bytes, EF10_STAT_tx_packets, EF10_STAT_tx_pause, EF10_STAT_tx_control, EF10_STAT_tx_unicast, EF10_STAT_tx_multicast, EF10_STAT_tx_broadcast, EF10_STAT_tx_lt64, EF10_STAT_tx_64, EF10_STAT_tx_65_to_127, EF10_STAT_tx_128_to_255, EF10_STAT_tx_256_to_511, EF10_STAT_tx_512_to_1023, EF10_STAT_tx_1024_to_15xx, EF10_STAT_tx_15xx_to_jumbo, EF10_STAT_rx_bytes, EF10_STAT_rx_bytes_minus_good_bytes, EF10_STAT_rx_good_bytes, EF10_STAT_rx_bad_bytes, EF10_STAT_rx_packets, EF10_STAT_rx_good, EF10_STAT_rx_bad, EF10_STAT_rx_pause, EF10_STAT_rx_control, EF10_STAT_rx_unicast, EF10_STAT_rx_multicast, EF10_STAT_rx_broadcast, EF10_STAT_rx_lt64, EF10_STAT_rx_64, EF10_STAT_rx_65_to_127, EF10_STAT_rx_128_to_255, EF10_STAT_rx_256_to_511, EF10_STAT_rx_512_to_1023, EF10_STAT_rx_1024_to_15xx, EF10_STAT_rx_15xx_to_jumbo, EF10_STAT_rx_gtjumbo, EF10_STAT_rx_bad_gtjumbo, EF10_STAT_rx_overflow, EF10_STAT_rx_align_error, EF10_STAT_rx_length_error, EF10_STAT_rx_nodesc_drops, EF10_STAT_rx_pm_trunc_bb_overflow, EF10_STAT_rx_pm_discard_bb_overflow, EF10_STAT_rx_pm_trunc_vfifo_full, EF10_STAT_rx_pm_discard_vfifo_full, EF10_STAT_rx_pm_trunc_qbb, EF10_STAT_rx_pm_discard_qbb, EF10_STAT_rx_pm_discard_mapping, EF10_STAT_rx_dp_q_disabled_packets, EF10_STAT_rx_dp_di_dropped_packets, EF10_STAT_rx_dp_streaming_packets, EF10_STAT_rx_dp_emerg_fetch, EF10_STAT_rx_dp_emerg_wait, EF10_STAT_COUNT }; /* Maximum number of TX PIO buffers we may allocate to a function. * This matches the total number of buffers on each SFC9100-family * controller. */ #define EF10_TX_PIOBUF_COUNT 16 /** * struct efx_ef10_nic_data - EF10 architecture NIC state * @mcdi_buf: DMA buffer for MCDI * @warm_boot_count: Last seen MC warm boot count * @vi_base: Absolute index of first VI in this function * @n_allocated_vis: Number of VIs allocated to this function * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot * @must_restore_filters: Flag: filters have yet to be restored after MC reboot * @n_piobufs: Number of PIO buffers allocated to this function * @wc_membase: Base address of write-combining mapping of the memory BAR * @pio_write_base: Base address for writing PIO buffers * @pio_write_vi_base: Relative VI number for @pio_write_base * @piobuf_handle: Handle of each PIO buffer allocated * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC * reboot * @rx_rss_context: Firmware handle for our RSS context * @stats: Hardware statistics * @workaround_35388: Flag: firmware supports workaround for bug 35388 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated * after MC reboot * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of * %MC_CMD_GET_CAPABILITIES response) */ struct efx_ef10_nic_data { struct efx_buffer mcdi_buf; u16 warm_boot_count; unsigned int vi_base; unsigned int n_allocated_vis; bool must_realloc_vis; bool must_restore_filters; unsigned int n_piobufs; void __iomem *wc_membase, *pio_write_base; unsigned int pio_write_vi_base; unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT]; bool must_restore_piobufs; u32 rx_rss_context; u64 stats[EF10_STAT_COUNT]; bool workaround_35388; bool must_check_datapath_caps; u32 datapath_caps; }; /* * On the SFC9000 family each port is associated with 1 PCI physical * function (PF) handled by sfc and a configurable number of virtual * functions (VFs) that may be handled by some other driver, often in * a VM guest. The queue pointer registers are mapped in both PF and * VF BARs such that an 8K region provides access to a single RX, TX * and event queue (collectively a Virtual Interface, VI or VNIC). * * The PF has access to all 1024 VIs while VFs are mapped to VIs * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE). * The number of VIs and the VI_SCALE value are configurable but must * be established at boot time by firmware. */ /* Maximum VI_SCALE parameter supported by Siena */ #define EFX_VI_SCALE_MAX 6 /* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX), * so this is the smallest allowed value. */ #define EFX_VI_BASE 128U /* Maximum number of VFs allowed */ #define EFX_VF_COUNT_MAX 127 /* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */ #define EFX_MAX_VF_EVQ_SIZE 8192UL /* The number of buffer table entries reserved for each VI on a VF */ #define EFX_VF_BUFTBL_PER_VI \ ((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) * \ sizeof(efx_qword_t) / EFX_BUF_SIZE) #ifdef CONFIG_SFC_SRIOV static inline bool efx_sriov_wanted(struct efx_nic *efx) { return efx->vf_count != 0; } static inline bool efx_sriov_enabled(struct efx_nic *efx) { return efx->vf_init_count != 0; } static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 1 << efx->vi_scale; } int efx_init_sriov(void); void efx_sriov_probe(struct efx_nic *efx); int efx_sriov_init(struct efx_nic *efx); void efx_sriov_mac_address_changed(struct efx_nic *efx); void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event); void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event); void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event); void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq); void efx_sriov_flr(struct efx_nic *efx, unsigned flr); void efx_sriov_reset(struct efx_nic *efx); void efx_sriov_fini(struct efx_nic *efx); void efx_fini_sriov(void); #else static inline bool efx_sriov_wanted(struct efx_nic *efx) { return false; } static inline bool efx_sriov_enabled(struct efx_nic *efx) { return false; } static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; } static inline int efx_init_sriov(void) { return 0; } static inline void efx_sriov_probe(struct efx_nic *efx) {} static inline int efx_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; } static inline void efx_sriov_mac_address_changed(struct efx_nic *efx) {} static inline void efx_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event) {} static inline void efx_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event) {} static inline void efx_sriov_event(struct efx_channel *channel, efx_qword_t *event) {} static inline void efx_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq) {} static inline void efx_sriov_flr(struct efx_nic *efx, unsigned flr) {} static inline void efx_sriov_reset(struct efx_nic *efx) {} static inline void efx_sriov_fini(struct efx_nic *efx) {} static inline void efx_fini_sriov(void) {} #endif int efx_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac); int efx_sriov_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos); int efx_sriov_get_vf_config(struct net_device *dev, int vf, struct ifla_vf_info *ivf); int efx_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf, bool spoofchk); struct ethtool_ts_info; int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel); void efx_ptp_defer_probe_with_channel(struct efx_nic *efx); void efx_ptp_remove(struct efx_nic *efx); int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr); int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr); void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info); bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb); int efx_ptp_get_mode(struct efx_nic *efx); int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted, unsigned int new_mode); int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb); void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev); void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev); void __efx_rx_skb_attach_timestamp(struct efx_channel *channel, struct sk_buff *skb); static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel, struct sk_buff *skb) { if (channel->sync_events_state == SYNC_EVENTS_VALID) __efx_rx_skb_attach_timestamp(channel, skb); } void efx_ptp_start_datapath(struct efx_nic *efx); void efx_ptp_stop_datapath(struct efx_nic *efx); extern const struct efx_nic_type falcon_a1_nic_type; extern const struct efx_nic_type falcon_b0_nic_type; extern const struct efx_nic_type siena_a0_nic_type; extern const struct efx_nic_type efx_hunt_a0_nic_type; /************************************************************************** * * Externs * ************************************************************************** */ int falcon_probe_board(struct efx_nic *efx, u16 revision_info); /* TX data path */ static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) { return tx_queue->efx->type->tx_probe(tx_queue); } static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue) { tx_queue->efx->type->tx_init(tx_queue); } static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) { tx_queue->efx->type->tx_remove(tx_queue); } static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) { tx_queue->efx->type->tx_write(tx_queue); } /* RX data path */ static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) { return rx_queue->efx->type->rx_probe(rx_queue); } static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_init(rx_queue); } static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_remove(rx_queue); } static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_write(rx_queue); } static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue) { rx_queue->efx->type->rx_defer_refill(rx_queue); } /* Event data path */ static inline int efx_nic_probe_eventq(struct efx_channel *channel) { return channel->efx->type->ev_probe(channel); } static inline int efx_nic_init_eventq(struct efx_channel *channel) { return channel->efx->type->ev_init(channel); } static inline void efx_nic_fini_eventq(struct efx_channel *channel) { channel->efx->type->ev_fini(channel); } static inline void efx_nic_remove_eventq(struct efx_channel *channel) { channel->efx->type->ev_remove(channel); } static inline int efx_nic_process_eventq(struct efx_channel *channel, int quota) { return channel->efx->type->ev_process(channel, quota); } static inline void efx_nic_eventq_read_ack(struct efx_channel *channel) { channel->efx->type->ev_read_ack(channel); } void efx_nic_event_test_start(struct efx_channel *channel); /* Falcon/Siena queue operations */ int efx_farch_tx_probe(struct efx_tx_queue *tx_queue); void efx_farch_tx_init(struct efx_tx_queue *tx_queue); void efx_farch_tx_fini(struct efx_tx_queue *tx_queue); void efx_farch_tx_remove(struct efx_tx_queue *tx_queue); void efx_farch_tx_write(struct efx_tx_queue *tx_queue); int efx_farch_rx_probe(struct efx_rx_queue *rx_queue); void efx_farch_rx_init(struct efx_rx_queue *rx_queue); void efx_farch_rx_fini(struct efx_rx_queue *rx_queue); void efx_farch_rx_remove(struct efx_rx_queue *rx_queue); void efx_farch_rx_write(struct efx_rx_queue *rx_queue); void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue); int efx_farch_ev_probe(struct efx_channel *channel); int efx_farch_ev_init(struct efx_channel *channel); void efx_farch_ev_fini(struct efx_channel *channel); void efx_farch_ev_remove(struct efx_channel *channel); int efx_farch_ev_process(struct efx_channel *channel, int quota); void efx_farch_ev_read_ack(struct efx_channel *channel); void efx_farch_ev_test_generate(struct efx_channel *channel); /* Falcon/Siena filter operations */ int efx_farch_filter_table_probe(struct efx_nic *efx); void efx_farch_filter_table_restore(struct efx_nic *efx); void efx_farch_filter_table_remove(struct efx_nic *efx); void efx_farch_filter_update_rx_scatter(struct efx_nic *efx); s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec, bool replace); int efx_farch_filter_remove_safe(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id); int efx_farch_filter_get_safe(struct efx_nic *efx, enum efx_filter_priority priority, u32 filter_id, struct efx_filter_spec *); void efx_farch_filter_clear_rx(struct efx_nic *efx, enum efx_filter_priority priority); u32 efx_farch_filter_count_rx_used(struct efx_nic *efx, enum efx_filter_priority priority); u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx); s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx, enum efx_filter_priority priority, u32 *buf, u32 size); #ifdef CONFIG_RFS_ACCEL s32 efx_farch_filter_rfs_insert(struct efx_nic *efx, struct efx_filter_spec *spec); bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id, unsigned int index); #endif void efx_farch_filter_sync_rx_mode(struct efx_nic *efx); bool efx_nic_event_present(struct efx_channel *channel); /* Some statistics are computed as A - B where A and B each increase * linearly with some hardware counter(s) and the counters are read * asynchronously. If the counters contributing to B are always read * after those contributing to A, the computed value may be lower than * the true value by some variable amount, and may decrease between * subsequent computations. * * We should never allow statistics to decrease or to exceed the true * value. Since the computed value will never be greater than the * true value, we can achieve this by only storing the computed value * when it increases. */ static inline void efx_update_diff_stat(u64 *stat, u64 diff) { if ((s64)(diff - *stat) > 0) *stat = diff; } /* Interrupts */ int efx_nic_init_interrupt(struct efx_nic *efx); void efx_nic_irq_test_start(struct efx_nic *efx); void efx_nic_fini_interrupt(struct efx_nic *efx); /* Falcon/Siena interrupts */ void efx_farch_irq_enable_master(struct efx_nic *efx); void efx_farch_irq_test_generate(struct efx_nic *efx); void efx_farch_irq_disable_master(struct efx_nic *efx); irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id); irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id); irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx); static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel) { return ACCESS_ONCE(channel->event_test_cpu); } static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx) { return ACCESS_ONCE(efx->last_irq_cpu); } /* Global Resources */ int efx_nic_flush_queues(struct efx_nic *efx); void siena_prepare_flush(struct efx_nic *efx); int efx_farch_fini_dmaq(struct efx_nic *efx); void siena_finish_flush(struct efx_nic *efx); void falcon_start_nic_stats(struct efx_nic *efx); void falcon_stop_nic_stats(struct efx_nic *efx); int falcon_reset_xaui(struct efx_nic *efx); void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw); void efx_farch_init_common(struct efx_nic *efx); void efx_ef10_handle_drain_event(struct efx_nic *efx); static inline void efx_nic_push_rx_indir_table(struct efx_nic *efx) { efx->type->rx_push_indir_table(efx); } void efx_farch_rx_push_indir_table(struct efx_nic *efx); int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, unsigned int len, gfp_t gfp_flags); void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); /* Tests */ struct efx_farch_register_test { unsigned address; efx_oword_t mask; }; int efx_farch_test_registers(struct efx_nic *efx, const struct efx_farch_register_test *regs, size_t n_regs); size_t efx_nic_get_regs_len(struct efx_nic *efx); void efx_nic_get_regs(struct efx_nic *efx, void *buf); size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u8 *names); void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count, const unsigned long *mask, u64 *stats, const void *dma_buf, bool accumulate); void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat); #define EFX_MAX_FLUSH_TIME 5000 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq, efx_qword_t *event); #endif /* EFX_NIC_H */