/* * Faraday FTGMAC100 Gigabit Ethernet * * (C) Copyright 2009-2011 Faraday Technology * Po-Yu Chuang * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ftgmac100.h" #define DRV_NAME "ftgmac100" #define DRV_VERSION "0.7" /* Arbitrary values, I am not sure the HW has limits */ #define MAX_RX_QUEUE_ENTRIES 1024 #define MAX_TX_QUEUE_ENTRIES 1024 #define MIN_RX_QUEUE_ENTRIES 32 #define MIN_TX_QUEUE_ENTRIES 32 /* Defaults */ #define DEF_RX_QUEUE_ENTRIES 128 #define DEF_TX_QUEUE_ENTRIES 128 #define MAX_PKT_SIZE 1536 #define RX_BUF_SIZE MAX_PKT_SIZE /* must be smaller than 0x3fff */ /* Min number of tx ring entries before stopping queue */ #define TX_THRESHOLD (MAX_SKB_FRAGS + 1) struct ftgmac100 { /* Registers */ struct resource *res; void __iomem *base; /* Rx ring */ unsigned int rx_q_entries; struct ftgmac100_rxdes *rxdes; dma_addr_t rxdes_dma; struct sk_buff **rx_skbs; unsigned int rx_pointer; u32 rxdes0_edorr_mask; /* Tx ring */ unsigned int tx_q_entries; struct ftgmac100_txdes *txdes; dma_addr_t txdes_dma; struct sk_buff **tx_skbs; unsigned int tx_clean_pointer; unsigned int tx_pointer; u32 txdes0_edotr_mask; /* Used to signal the reset task of ring change request */ unsigned int new_rx_q_entries; unsigned int new_tx_q_entries; /* Scratch page to use when rx skb alloc fails */ void *rx_scratch; dma_addr_t rx_scratch_dma; /* Component structures */ struct net_device *netdev; struct device *dev; struct ncsi_dev *ndev; struct napi_struct napi; struct work_struct reset_task; struct mii_bus *mii_bus; /* Link management */ int cur_speed; int cur_duplex; bool use_ncsi; /* Misc */ bool need_mac_restart; bool is_aspeed; }; static int ftgmac100_reset_mac(struct ftgmac100 *priv, u32 maccr) { struct net_device *netdev = priv->netdev; int i; /* NOTE: reset clears all registers */ iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR); iowrite32(maccr | FTGMAC100_MACCR_SW_RST, priv->base + FTGMAC100_OFFSET_MACCR); for (i = 0; i < 50; i++) { unsigned int maccr; maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR); if (!(maccr & FTGMAC100_MACCR_SW_RST)) return 0; udelay(1); } netdev_err(netdev, "Hardware reset failed\n"); return -EIO; } static int ftgmac100_reset_and_config_mac(struct ftgmac100 *priv) { u32 maccr = 0; switch (priv->cur_speed) { case SPEED_10: case 0: /* no link */ break; case SPEED_100: maccr |= FTGMAC100_MACCR_FAST_MODE; break; case SPEED_1000: maccr |= FTGMAC100_MACCR_GIGA_MODE; break; default: netdev_err(priv->netdev, "Unknown speed %d !\n", priv->cur_speed); break; } /* (Re)initialize the queue pointers */ priv->rx_pointer = 0; priv->tx_clean_pointer = 0; priv->tx_pointer = 0; /* The doc says reset twice with 10us interval */ if (ftgmac100_reset_mac(priv, maccr)) return -EIO; usleep_range(10, 1000); return ftgmac100_reset_mac(priv, maccr); } static void ftgmac100_write_mac_addr(struct ftgmac100 *priv, const u8 *mac) { unsigned int maddr = mac[0] << 8 | mac[1]; unsigned int laddr = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5]; iowrite32(maddr, priv->base + FTGMAC100_OFFSET_MAC_MADR); iowrite32(laddr, priv->base + FTGMAC100_OFFSET_MAC_LADR); } static void ftgmac100_initial_mac(struct ftgmac100 *priv) { u8 mac[ETH_ALEN]; unsigned int m; unsigned int l; void *addr; addr = device_get_mac_address(priv->dev, mac, ETH_ALEN); if (addr) { ether_addr_copy(priv->netdev->dev_addr, mac); dev_info(priv->dev, "Read MAC address %pM from device tree\n", mac); return; } m = ioread32(priv->base + FTGMAC100_OFFSET_MAC_MADR); l = ioread32(priv->base + FTGMAC100_OFFSET_MAC_LADR); mac[0] = (m >> 8) & 0xff; mac[1] = m & 0xff; mac[2] = (l >> 24) & 0xff; mac[3] = (l >> 16) & 0xff; mac[4] = (l >> 8) & 0xff; mac[5] = l & 0xff; if (is_valid_ether_addr(mac)) { ether_addr_copy(priv->netdev->dev_addr, mac); dev_info(priv->dev, "Read MAC address %pM from chip\n", mac); } else { eth_hw_addr_random(priv->netdev); dev_info(priv->dev, "Generated random MAC address %pM\n", priv->netdev->dev_addr); } } static int ftgmac100_set_mac_addr(struct net_device *dev, void *p) { int ret; ret = eth_prepare_mac_addr_change(dev, p); if (ret < 0) return ret; eth_commit_mac_addr_change(dev, p); ftgmac100_write_mac_addr(netdev_priv(dev), dev->dev_addr); return 0; } static void ftgmac100_init_hw(struct ftgmac100 *priv) { u32 reg, rfifo_sz, tfifo_sz; /* Clear stale interrupts */ reg = ioread32(priv->base + FTGMAC100_OFFSET_ISR); iowrite32(reg, priv->base + FTGMAC100_OFFSET_ISR); /* Setup RX ring buffer base */ iowrite32(priv->rxdes_dma, priv->base + FTGMAC100_OFFSET_RXR_BADR); /* Setup TX ring buffer base */ iowrite32(priv->txdes_dma, priv->base + FTGMAC100_OFFSET_NPTXR_BADR); /* Configure RX buffer size */ iowrite32(FTGMAC100_RBSR_SIZE(RX_BUF_SIZE), priv->base + FTGMAC100_OFFSET_RBSR); /* Set RX descriptor autopoll */ iowrite32(FTGMAC100_APTC_RXPOLL_CNT(1), priv->base + FTGMAC100_OFFSET_APTC); /* Write MAC address */ ftgmac100_write_mac_addr(priv, priv->netdev->dev_addr); /* Configure descriptor sizes and increase burst sizes according * to values in Aspeed SDK. The FIFO arbitration is enabled and * the thresholds set based on the recommended values in the * AST2400 specification. */ iowrite32(FTGMAC100_DBLAC_RXDES_SIZE(2) | /* 2*8 bytes RX descs */ FTGMAC100_DBLAC_TXDES_SIZE(2) | /* 2*8 bytes TX descs */ FTGMAC100_DBLAC_RXBURST_SIZE(3) | /* 512 bytes max RX bursts */ FTGMAC100_DBLAC_TXBURST_SIZE(3) | /* 512 bytes max TX bursts */ FTGMAC100_DBLAC_RX_THR_EN | /* Enable fifo threshold arb */ FTGMAC100_DBLAC_RXFIFO_HTHR(6) | /* 6/8 of FIFO high threshold */ FTGMAC100_DBLAC_RXFIFO_LTHR(2), /* 2/8 of FIFO low threshold */ priv->base + FTGMAC100_OFFSET_DBLAC); /* Interrupt mitigation configured for 1 interrupt/packet. HW interrupt * mitigation doesn't seem to provide any benefit with NAPI so leave * it at that. */ iowrite32(FTGMAC100_ITC_RXINT_THR(1) | FTGMAC100_ITC_TXINT_THR(1), priv->base + FTGMAC100_OFFSET_ITC); /* Configure FIFO sizes in the TPAFCR register */ reg = ioread32(priv->base + FTGMAC100_OFFSET_FEAR); rfifo_sz = reg & 0x00000007; tfifo_sz = (reg >> 3) & 0x00000007; reg = ioread32(priv->base + FTGMAC100_OFFSET_TPAFCR); reg &= ~0x3f000000; reg |= (tfifo_sz << 27); reg |= (rfifo_sz << 24); iowrite32(reg, priv->base + FTGMAC100_OFFSET_TPAFCR); } static void ftgmac100_start_hw(struct ftgmac100 *priv) { u32 maccr = ioread32(priv->base + FTGMAC100_OFFSET_MACCR); /* Keep the original GMAC and FAST bits */ maccr &= (FTGMAC100_MACCR_FAST_MODE | FTGMAC100_MACCR_GIGA_MODE); /* Add all the main enable bits */ maccr |= FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_TXMAC_EN | FTGMAC100_MACCR_RXMAC_EN | FTGMAC100_MACCR_CRC_APD | FTGMAC100_MACCR_PHY_LINK_LEVEL | FTGMAC100_MACCR_RX_RUNT | FTGMAC100_MACCR_RX_BROADPKT; /* Add other bits as needed */ if (priv->cur_duplex == DUPLEX_FULL) maccr |= FTGMAC100_MACCR_FULLDUP; /* Hit the HW */ iowrite32(maccr, priv->base + FTGMAC100_OFFSET_MACCR); } static void ftgmac100_stop_hw(struct ftgmac100 *priv) { iowrite32(0, priv->base + FTGMAC100_OFFSET_MACCR); } static int ftgmac100_alloc_rx_buf(struct ftgmac100 *priv, unsigned int entry, struct ftgmac100_rxdes *rxdes, gfp_t gfp) { struct net_device *netdev = priv->netdev; struct sk_buff *skb; dma_addr_t map; int err; skb = netdev_alloc_skb_ip_align(netdev, RX_BUF_SIZE); if (unlikely(!skb)) { if (net_ratelimit()) netdev_warn(netdev, "failed to allocate rx skb\n"); err = -ENOMEM; map = priv->rx_scratch_dma; } else { map = dma_map_single(priv->dev, skb->data, RX_BUF_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(priv->dev, map))) { if (net_ratelimit()) netdev_err(netdev, "failed to map rx page\n"); dev_kfree_skb_any(skb); map = priv->rx_scratch_dma; skb = NULL; err = -ENOMEM; } } /* Store skb */ priv->rx_skbs[entry] = skb; /* Store DMA address into RX desc */ rxdes->rxdes3 = cpu_to_le32(map); /* Ensure the above is ordered vs clearing the OWN bit */ dma_wmb(); /* Clean status (which resets own bit) */ if (entry == (priv->rx_q_entries - 1)) rxdes->rxdes0 = cpu_to_le32(priv->rxdes0_edorr_mask); else rxdes->rxdes0 = 0; return 0; } static unsigned int ftgmac100_next_rx_pointer(struct ftgmac100 *priv, unsigned int pointer) { return (pointer + 1) & (priv->rx_q_entries - 1); } static void ftgmac100_rx_packet_error(struct ftgmac100 *priv, u32 status) { struct net_device *netdev = priv->netdev; if (status & FTGMAC100_RXDES0_RX_ERR) netdev->stats.rx_errors++; if (status & FTGMAC100_RXDES0_CRC_ERR) netdev->stats.rx_crc_errors++; if (status & (FTGMAC100_RXDES0_FTL | FTGMAC100_RXDES0_RUNT | FTGMAC100_RXDES0_RX_ODD_NB)) netdev->stats.rx_length_errors++; } static bool ftgmac100_rx_packet(struct ftgmac100 *priv, int *processed) { struct net_device *netdev = priv->netdev; struct ftgmac100_rxdes *rxdes; struct sk_buff *skb; unsigned int pointer, size; u32 status, csum_vlan; dma_addr_t map; /* Grab next RX descriptor */ pointer = priv->rx_pointer; rxdes = &priv->rxdes[pointer]; /* Grab descriptor status */ status = le32_to_cpu(rxdes->rxdes0); /* Do we have a packet ? */ if (!(status & FTGMAC100_RXDES0_RXPKT_RDY)) return false; /* Order subsequent reads with the test for the ready bit */ dma_rmb(); /* We don't cope with fragmented RX packets */ if (unlikely(!(status & FTGMAC100_RXDES0_FRS) || !(status & FTGMAC100_RXDES0_LRS))) goto drop; /* Grab received size and csum vlan field in the descriptor */ size = status & FTGMAC100_RXDES0_VDBC; csum_vlan = le32_to_cpu(rxdes->rxdes1); /* Any error (other than csum offload) flagged ? */ if (unlikely(status & RXDES0_ANY_ERROR)) { /* Correct for incorrect flagging of runt packets * with vlan tags... Just accept a runt packet that * has been flagged as vlan and whose size is at * least 60 bytes. */ if ((status & FTGMAC100_RXDES0_RUNT) && (csum_vlan & FTGMAC100_RXDES1_VLANTAG_AVAIL) && (size >= 60)) status &= ~FTGMAC100_RXDES0_RUNT; /* Any error still in there ? */ if (status & RXDES0_ANY_ERROR) { ftgmac100_rx_packet_error(priv, status); goto drop; } } /* If the packet had no skb (failed to allocate earlier) * then try to allocate one and skip */ skb = priv->rx_skbs[pointer]; if (!unlikely(skb)) { ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC); goto drop; } if (unlikely(status & FTGMAC100_RXDES0_MULTICAST)) netdev->stats.multicast++; /* If the HW found checksum errors, bounce it to software. * * If we didn't, we need to see if the packet was recognized * by HW as one of the supported checksummed protocols before * we accept the HW test results. */ if (netdev->features & NETIF_F_RXCSUM) { u32 err_bits = FTGMAC100_RXDES1_TCP_CHKSUM_ERR | FTGMAC100_RXDES1_UDP_CHKSUM_ERR | FTGMAC100_RXDES1_IP_CHKSUM_ERR; if ((csum_vlan & err_bits) || !(csum_vlan & FTGMAC100_RXDES1_PROT_MASK)) skb->ip_summed = CHECKSUM_NONE; else skb->ip_summed = CHECKSUM_UNNECESSARY; } /* Transfer received size to skb */ skb_put(skb, size); /* Tear down DMA mapping, do necessary cache management */ map = le32_to_cpu(rxdes->rxdes3); #if defined(CONFIG_ARM) && !defined(CONFIG_ARM_DMA_USE_IOMMU) /* When we don't have an iommu, we can save cycles by not * invalidating the cache for the part of the packet that * wasn't received. */ dma_unmap_single(priv->dev, map, size, DMA_FROM_DEVICE); #else dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE); #endif /* Resplenish rx ring */ ftgmac100_alloc_rx_buf(priv, pointer, rxdes, GFP_ATOMIC); priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer); skb->protocol = eth_type_trans(skb, netdev); netdev->stats.rx_packets++; netdev->stats.rx_bytes += size; /* push packet to protocol stack */ if (skb->ip_summed == CHECKSUM_NONE) netif_receive_skb(skb); else napi_gro_receive(&priv->napi, skb); (*processed)++; return true; drop: /* Clean rxdes0 (which resets own bit) */ rxdes->rxdes0 = cpu_to_le32(status & priv->rxdes0_edorr_mask); priv->rx_pointer = ftgmac100_next_rx_pointer(priv, pointer); netdev->stats.rx_dropped++; return true; } static u32 ftgmac100_base_tx_ctlstat(struct ftgmac100 *priv, unsigned int index) { if (index == (priv->tx_q_entries - 1)) return priv->txdes0_edotr_mask; else return 0; } static unsigned int ftgmac100_next_tx_pointer(struct ftgmac100 *priv, unsigned int pointer) { return (pointer + 1) & (priv->tx_q_entries - 1); } static u32 ftgmac100_tx_buf_avail(struct ftgmac100 *priv) { /* Returns the number of available slots in the TX queue * * This always leaves one free slot so we don't have to * worry about empty vs. full, and this simplifies the * test for ftgmac100_tx_buf_cleanable() below */ return (priv->tx_clean_pointer - priv->tx_pointer - 1) & (priv->tx_q_entries - 1); } static bool ftgmac100_tx_buf_cleanable(struct ftgmac100 *priv) { return priv->tx_pointer != priv->tx_clean_pointer; } static void ftgmac100_free_tx_packet(struct ftgmac100 *priv, unsigned int pointer, struct sk_buff *skb, struct ftgmac100_txdes *txdes, u32 ctl_stat) { dma_addr_t map = le32_to_cpu(txdes->txdes3); size_t len; if (ctl_stat & FTGMAC100_TXDES0_FTS) { len = skb_headlen(skb); dma_unmap_single(priv->dev, map, len, DMA_TO_DEVICE); } else { len = FTGMAC100_TXDES0_TXBUF_SIZE(ctl_stat); dma_unmap_page(priv->dev, map, len, DMA_TO_DEVICE); } /* Free SKB on last segment */ if (ctl_stat & FTGMAC100_TXDES0_LTS) dev_kfree_skb(skb); priv->tx_skbs[pointer] = NULL; } static bool ftgmac100_tx_complete_packet(struct ftgmac100 *priv) { struct net_device *netdev = priv->netdev; struct ftgmac100_txdes *txdes; struct sk_buff *skb; unsigned int pointer; u32 ctl_stat; pointer = priv->tx_clean_pointer; txdes = &priv->txdes[pointer]; ctl_stat = le32_to_cpu(txdes->txdes0); if (ctl_stat & FTGMAC100_TXDES0_TXDMA_OWN) return false; skb = priv->tx_skbs[pointer]; netdev->stats.tx_packets++; netdev->stats.tx_bytes += skb->len; ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat); txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask); priv->tx_clean_pointer = ftgmac100_next_tx_pointer(priv, pointer); return true; } static void ftgmac100_tx_complete(struct ftgmac100 *priv) { struct net_device *netdev = priv->netdev; /* Process all completed packets */ while (ftgmac100_tx_buf_cleanable(priv) && ftgmac100_tx_complete_packet(priv)) ; /* Restart queue if needed */ smp_mb(); if (unlikely(netif_queue_stopped(netdev) && ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD)) { struct netdev_queue *txq; txq = netdev_get_tx_queue(netdev, 0); __netif_tx_lock(txq, smp_processor_id()); if (netif_queue_stopped(netdev) && ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD) netif_wake_queue(netdev); __netif_tx_unlock(txq); } } static bool ftgmac100_prep_tx_csum(struct sk_buff *skb, u32 *csum_vlan) { if (skb->protocol == cpu_to_be16(ETH_P_IP)) { u8 ip_proto = ip_hdr(skb)->protocol; *csum_vlan |= FTGMAC100_TXDES1_IP_CHKSUM; switch(ip_proto) { case IPPROTO_TCP: *csum_vlan |= FTGMAC100_TXDES1_TCP_CHKSUM; return true; case IPPROTO_UDP: *csum_vlan |= FTGMAC100_TXDES1_UDP_CHKSUM; return true; case IPPROTO_IP: return true; } } return skb_checksum_help(skb) == 0; } static int ftgmac100_hard_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct ftgmac100 *priv = netdev_priv(netdev); struct ftgmac100_txdes *txdes, *first; unsigned int pointer, nfrags, len, i, j; u32 f_ctl_stat, ctl_stat, csum_vlan; dma_addr_t map; /* The HW doesn't pad small frames */ if (eth_skb_pad(skb)) { netdev->stats.tx_dropped++; return NETDEV_TX_OK; } /* Reject oversize packets */ if (unlikely(skb->len > MAX_PKT_SIZE)) { if (net_ratelimit()) netdev_dbg(netdev, "tx packet too big\n"); goto drop; } /* Do we have a limit on #fragments ? I yet have to get a reply * from Aspeed. If there's one I haven't hit it. */ nfrags = skb_shinfo(skb)->nr_frags; /* Get header len */ len = skb_headlen(skb); /* Map the packet head */ map = dma_map_single(priv->dev, skb->data, len, DMA_TO_DEVICE); if (dma_mapping_error(priv->dev, map)) { if (net_ratelimit()) netdev_err(netdev, "map tx packet head failed\n"); goto drop; } /* Grab the next free tx descriptor */ pointer = priv->tx_pointer; txdes = first = &priv->txdes[pointer]; /* Setup it up with the packet head. Don't write the head to the * ring just yet */ priv->tx_skbs[pointer] = skb; f_ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer); f_ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN; f_ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len); f_ctl_stat |= FTGMAC100_TXDES0_FTS; if (nfrags == 0) f_ctl_stat |= FTGMAC100_TXDES0_LTS; txdes->txdes3 = cpu_to_le32(map); /* Setup HW checksumming */ csum_vlan = 0; if (skb->ip_summed == CHECKSUM_PARTIAL && !ftgmac100_prep_tx_csum(skb, &csum_vlan)) goto drop; txdes->txdes1 = cpu_to_le32(csum_vlan); /* Next descriptor */ pointer = ftgmac100_next_tx_pointer(priv, pointer); /* Add the fragments */ for (i = 0; i < nfrags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; len = frag->size; /* Map it */ map = skb_frag_dma_map(priv->dev, frag, 0, len, DMA_TO_DEVICE); if (dma_mapping_error(priv->dev, map)) goto dma_err; /* Setup descriptor */ priv->tx_skbs[pointer] = skb; txdes = &priv->txdes[pointer]; ctl_stat = ftgmac100_base_tx_ctlstat(priv, pointer); ctl_stat |= FTGMAC100_TXDES0_TXDMA_OWN; ctl_stat |= FTGMAC100_TXDES0_TXBUF_SIZE(len); if (i == (nfrags - 1)) ctl_stat |= FTGMAC100_TXDES0_LTS; txdes->txdes0 = cpu_to_le32(ctl_stat); txdes->txdes1 = 0; txdes->txdes3 = cpu_to_le32(map); /* Next one */ pointer = ftgmac100_next_tx_pointer(priv, pointer); } /* Order the previous packet and descriptor udpates * before setting the OWN bit on the first descriptor. */ dma_wmb(); first->txdes0 = cpu_to_le32(f_ctl_stat); /* Update next TX pointer */ priv->tx_pointer = pointer; /* If there isn't enough room for all the fragments of a new packet * in the TX ring, stop the queue. The sequence below is race free * vs. a concurrent restart in ftgmac100_poll() */ if (unlikely(ftgmac100_tx_buf_avail(priv) < TX_THRESHOLD)) { netif_stop_queue(netdev); /* Order the queue stop with the test below */ smp_mb(); if (ftgmac100_tx_buf_avail(priv) >= TX_THRESHOLD) netif_wake_queue(netdev); } /* Poke transmitter to read the updated TX descriptors */ iowrite32(1, priv->base + FTGMAC100_OFFSET_NPTXPD); return NETDEV_TX_OK; dma_err: if (net_ratelimit()) netdev_err(netdev, "map tx fragment failed\n"); /* Free head */ pointer = priv->tx_pointer; ftgmac100_free_tx_packet(priv, pointer, skb, first, f_ctl_stat); first->txdes0 = cpu_to_le32(f_ctl_stat & priv->txdes0_edotr_mask); /* Then all fragments */ for (j = 0; j < i; j++) { pointer = ftgmac100_next_tx_pointer(priv, pointer); txdes = &priv->txdes[pointer]; ctl_stat = le32_to_cpu(txdes->txdes0); ftgmac100_free_tx_packet(priv, pointer, skb, txdes, ctl_stat); txdes->txdes0 = cpu_to_le32(ctl_stat & priv->txdes0_edotr_mask); } /* This cannot be reached if we successfully mapped the * last fragment, so we know ftgmac100_free_tx_packet() * hasn't freed the skb yet. */ drop: /* Drop the packet */ dev_kfree_skb_any(skb); netdev->stats.tx_dropped++; return NETDEV_TX_OK; } static void ftgmac100_free_buffers(struct ftgmac100 *priv) { int i; /* Free all RX buffers */ for (i = 0; i < priv->rx_q_entries; i++) { struct ftgmac100_rxdes *rxdes = &priv->rxdes[i]; struct sk_buff *skb = priv->rx_skbs[i]; dma_addr_t map = le32_to_cpu(rxdes->rxdes3); if (!skb) continue; priv->rx_skbs[i] = NULL; dma_unmap_single(priv->dev, map, RX_BUF_SIZE, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); } /* Free all TX buffers */ for (i = 0; i < priv->tx_q_entries; i++) { struct ftgmac100_txdes *txdes = &priv->txdes[i]; struct sk_buff *skb = priv->tx_skbs[i]; if (!skb) continue; ftgmac100_free_tx_packet(priv, i, skb, txdes, le32_to_cpu(txdes->txdes0)); } } static void ftgmac100_free_rings(struct ftgmac100 *priv) { /* Free skb arrays */ kfree(priv->rx_skbs); kfree(priv->tx_skbs); /* Free descriptors */ if (priv->rxdes) dma_free_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes), priv->rxdes, priv->rxdes_dma); priv->rxdes = NULL; if (priv->txdes) dma_free_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes), priv->txdes, priv->txdes_dma); priv->txdes = NULL; /* Free scratch packet buffer */ if (priv->rx_scratch) dma_free_coherent(priv->dev, RX_BUF_SIZE, priv->rx_scratch, priv->rx_scratch_dma); } static int ftgmac100_alloc_rings(struct ftgmac100 *priv) { /* Allocate skb arrays */ priv->rx_skbs = kcalloc(MAX_RX_QUEUE_ENTRIES, sizeof(void *), GFP_KERNEL); if (!priv->rx_skbs) return -ENOMEM; priv->tx_skbs = kcalloc(MAX_TX_QUEUE_ENTRIES, sizeof(void *), GFP_KERNEL); if (!priv->tx_skbs) return -ENOMEM; /* Allocate descriptors */ priv->rxdes = dma_zalloc_coherent(priv->dev, MAX_RX_QUEUE_ENTRIES * sizeof(struct ftgmac100_rxdes), &priv->rxdes_dma, GFP_KERNEL); if (!priv->rxdes) return -ENOMEM; priv->txdes = dma_zalloc_coherent(priv->dev, MAX_TX_QUEUE_ENTRIES * sizeof(struct ftgmac100_txdes), &priv->txdes_dma, GFP_KERNEL); if (!priv->txdes) return -ENOMEM; /* Allocate scratch packet buffer */ priv->rx_scratch = dma_alloc_coherent(priv->dev, RX_BUF_SIZE, &priv->rx_scratch_dma, GFP_KERNEL); if (!priv->rx_scratch) return -ENOMEM; return 0; } static void ftgmac100_init_rings(struct ftgmac100 *priv) { struct ftgmac100_rxdes *rxdes = NULL; struct ftgmac100_txdes *txdes = NULL; int i; /* Update entries counts */ priv->rx_q_entries = priv->new_rx_q_entries; priv->tx_q_entries = priv->new_tx_q_entries; if (WARN_ON(priv->rx_q_entries < MIN_RX_QUEUE_ENTRIES)) return; /* Initialize RX ring */ for (i = 0; i < priv->rx_q_entries; i++) { rxdes = &priv->rxdes[i]; rxdes->rxdes0 = 0; rxdes->rxdes3 = cpu_to_le32(priv->rx_scratch_dma); } /* Mark the end of the ring */ rxdes->rxdes0 |= cpu_to_le32(priv->rxdes0_edorr_mask); if (WARN_ON(priv->tx_q_entries < MIN_RX_QUEUE_ENTRIES)) return; /* Initialize TX ring */ for (i = 0; i < priv->tx_q_entries; i++) { txdes = &priv->txdes[i]; txdes->txdes0 = 0; } txdes->txdes0 |= cpu_to_le32(priv->txdes0_edotr_mask); } static int ftgmac100_alloc_rx_buffers(struct ftgmac100 *priv) { int i; for (i = 0; i < priv->rx_q_entries; i++) { struct ftgmac100_rxdes *rxdes = &priv->rxdes[i]; if (ftgmac100_alloc_rx_buf(priv, i, rxdes, GFP_KERNEL)) return -ENOMEM; } return 0; } static void ftgmac100_adjust_link(struct net_device *netdev) { struct ftgmac100 *priv = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; int new_speed; /* We store "no link" as speed 0 */ if (!phydev->link) new_speed = 0; else new_speed = phydev->speed; if (phydev->speed == priv->cur_speed && phydev->duplex == priv->cur_duplex) return; /* Print status if we have a link or we had one and just lost it, * don't print otherwise. */ if (new_speed || priv->cur_speed) phy_print_status(phydev); priv->cur_speed = new_speed; priv->cur_duplex = phydev->duplex; /* Link is down, do nothing else */ if (!new_speed) return; /* Disable all interrupts */ iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); /* Reset the adapter asynchronously */ schedule_work(&priv->reset_task); } static int ftgmac100_mii_probe(struct ftgmac100 *priv) { struct net_device *netdev = priv->netdev; struct phy_device *phydev; phydev = phy_find_first(priv->mii_bus); if (!phydev) { netdev_info(netdev, "%s: no PHY found\n", netdev->name); return -ENODEV; } phydev = phy_connect(netdev, phydev_name(phydev), &ftgmac100_adjust_link, PHY_INTERFACE_MODE_GMII); if (IS_ERR(phydev)) { netdev_err(netdev, "%s: Could not attach to PHY\n", netdev->name); return PTR_ERR(phydev); } return 0; } static int ftgmac100_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum) { struct net_device *netdev = bus->priv; struct ftgmac100 *priv = netdev_priv(netdev); unsigned int phycr; int i; phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); /* preserve MDC cycle threshold */ phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK; phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) | FTGMAC100_PHYCR_REGAD(regnum) | FTGMAC100_PHYCR_MIIRD; iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR); for (i = 0; i < 10; i++) { phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); if ((phycr & FTGMAC100_PHYCR_MIIRD) == 0) { int data; data = ioread32(priv->base + FTGMAC100_OFFSET_PHYDATA); return FTGMAC100_PHYDATA_MIIRDATA(data); } udelay(100); } netdev_err(netdev, "mdio read timed out\n"); return -EIO; } static int ftgmac100_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum, u16 value) { struct net_device *netdev = bus->priv; struct ftgmac100 *priv = netdev_priv(netdev); unsigned int phycr; int data; int i; phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); /* preserve MDC cycle threshold */ phycr &= FTGMAC100_PHYCR_MDC_CYCTHR_MASK; phycr |= FTGMAC100_PHYCR_PHYAD(phy_addr) | FTGMAC100_PHYCR_REGAD(regnum) | FTGMAC100_PHYCR_MIIWR; data = FTGMAC100_PHYDATA_MIIWDATA(value); iowrite32(data, priv->base + FTGMAC100_OFFSET_PHYDATA); iowrite32(phycr, priv->base + FTGMAC100_OFFSET_PHYCR); for (i = 0; i < 10; i++) { phycr = ioread32(priv->base + FTGMAC100_OFFSET_PHYCR); if ((phycr & FTGMAC100_PHYCR_MIIWR) == 0) return 0; udelay(100); } netdev_err(netdev, "mdio write timed out\n"); return -EIO; } static void ftgmac100_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); strlcpy(info->bus_info, dev_name(&netdev->dev), sizeof(info->bus_info)); } static int ftgmac100_nway_reset(struct net_device *ndev) { if (!ndev->phydev) return -ENXIO; return phy_start_aneg(ndev->phydev); } static void ftgmac100_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ering) { struct ftgmac100 *priv = netdev_priv(netdev); memset(ering, 0, sizeof(*ering)); ering->rx_max_pending = MAX_RX_QUEUE_ENTRIES; ering->tx_max_pending = MAX_TX_QUEUE_ENTRIES; ering->rx_pending = priv->rx_q_entries; ering->tx_pending = priv->tx_q_entries; } static int ftgmac100_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ering) { struct ftgmac100 *priv = netdev_priv(netdev); if (ering->rx_pending > MAX_RX_QUEUE_ENTRIES || ering->tx_pending > MAX_TX_QUEUE_ENTRIES || ering->rx_pending < MIN_RX_QUEUE_ENTRIES || ering->tx_pending < MIN_TX_QUEUE_ENTRIES || !is_power_of_2(ering->rx_pending) || !is_power_of_2(ering->tx_pending)) return -EINVAL; priv->new_rx_q_entries = ering->rx_pending; priv->new_tx_q_entries = ering->tx_pending; if (netif_running(netdev)) schedule_work(&priv->reset_task); return 0; } static const struct ethtool_ops ftgmac100_ethtool_ops = { .get_drvinfo = ftgmac100_get_drvinfo, .get_link = ethtool_op_get_link, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, .get_ringparam = ftgmac100_get_ringparam, .set_ringparam = ftgmac100_set_ringparam, }; static irqreturn_t ftgmac100_interrupt(int irq, void *dev_id) { struct net_device *netdev = dev_id; struct ftgmac100 *priv = netdev_priv(netdev); unsigned int status, new_mask = FTGMAC100_INT_BAD; /* Fetch and clear interrupt bits, process abnormal ones */ status = ioread32(priv->base + FTGMAC100_OFFSET_ISR); iowrite32(status, priv->base + FTGMAC100_OFFSET_ISR); if (unlikely(status & FTGMAC100_INT_BAD)) { /* RX buffer unavailable */ if (status & FTGMAC100_INT_NO_RXBUF) netdev->stats.rx_over_errors++; /* received packet lost due to RX FIFO full */ if (status & FTGMAC100_INT_RPKT_LOST) netdev->stats.rx_fifo_errors++; /* sent packet lost due to excessive TX collision */ if (status & FTGMAC100_INT_XPKT_LOST) netdev->stats.tx_fifo_errors++; /* AHB error -> Reset the chip */ if (status & FTGMAC100_INT_AHB_ERR) { if (net_ratelimit()) netdev_warn(netdev, "AHB bus error ! Resetting chip.\n"); iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); schedule_work(&priv->reset_task); return IRQ_HANDLED; } /* We may need to restart the MAC after such errors, delay * this until after we have freed some Rx buffers though */ priv->need_mac_restart = true; /* Disable those errors until we restart */ new_mask &= ~status; } /* Only enable "bad" interrupts while NAPI is on */ iowrite32(new_mask, priv->base + FTGMAC100_OFFSET_IER); /* Schedule NAPI bh */ napi_schedule_irqoff(&priv->napi); return IRQ_HANDLED; } static bool ftgmac100_check_rx(struct ftgmac100 *priv) { struct ftgmac100_rxdes *rxdes = &priv->rxdes[priv->rx_pointer]; /* Do we have a packet ? */ return !!(rxdes->rxdes0 & cpu_to_le32(FTGMAC100_RXDES0_RXPKT_RDY)); } static int ftgmac100_poll(struct napi_struct *napi, int budget) { struct ftgmac100 *priv = container_of(napi, struct ftgmac100, napi); int work_done = 0; bool more; /* Handle TX completions */ if (ftgmac100_tx_buf_cleanable(priv)) ftgmac100_tx_complete(priv); /* Handle RX packets */ do { more = ftgmac100_rx_packet(priv, &work_done); } while (more && work_done < budget); /* The interrupt is telling us to kick the MAC back to life * after an RX overflow */ if (unlikely(priv->need_mac_restart)) { ftgmac100_start_hw(priv); /* Re-enable "bad" interrupts */ iowrite32(FTGMAC100_INT_BAD, priv->base + FTGMAC100_OFFSET_IER); } /* As long as we are waiting for transmit packets to be * completed we keep NAPI going */ if (ftgmac100_tx_buf_cleanable(priv)) work_done = budget; if (work_done < budget) { /* We are about to re-enable all interrupts. However * the HW has been latching RX/TX packet interrupts while * they were masked. So we clear them first, then we need * to re-check if there's something to process */ iowrite32(FTGMAC100_INT_RXTX, priv->base + FTGMAC100_OFFSET_ISR); if (ftgmac100_check_rx(priv) || ftgmac100_tx_buf_cleanable(priv)) return budget; /* deschedule NAPI */ napi_complete(napi); /* enable all interrupts */ iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER); } return work_done; } static int ftgmac100_init_all(struct ftgmac100 *priv, bool ignore_alloc_err) { int err = 0; /* Re-init descriptors (adjust queue sizes) */ ftgmac100_init_rings(priv); /* Realloc rx descriptors */ err = ftgmac100_alloc_rx_buffers(priv); if (err && !ignore_alloc_err) return err; /* Reinit and restart HW */ ftgmac100_init_hw(priv); ftgmac100_start_hw(priv); /* Re-enable the device */ napi_enable(&priv->napi); netif_start_queue(priv->netdev); /* Enable all interrupts */ iowrite32(FTGMAC100_INT_ALL, priv->base + FTGMAC100_OFFSET_IER); return err; } static void ftgmac100_reset_task(struct work_struct *work) { struct ftgmac100 *priv = container_of(work, struct ftgmac100, reset_task); struct net_device *netdev = priv->netdev; int err; netdev_dbg(netdev, "Resetting NIC...\n"); /* Lock the world */ rtnl_lock(); if (netdev->phydev) mutex_lock(&netdev->phydev->lock); if (priv->mii_bus) mutex_lock(&priv->mii_bus->mdio_lock); /* Check if the interface is still up */ if (!netif_running(netdev)) goto bail; /* Stop the network stack */ netif_trans_update(netdev); napi_disable(&priv->napi); netif_tx_disable(netdev); /* Stop and reset the MAC */ ftgmac100_stop_hw(priv); err = ftgmac100_reset_and_config_mac(priv); if (err) { /* Not much we can do ... it might come back... */ netdev_err(netdev, "attempting to continue...\n"); } /* Free all rx and tx buffers */ ftgmac100_free_buffers(priv); /* Setup everything again and restart chip */ ftgmac100_init_all(priv, true); netdev_dbg(netdev, "Reset done !\n"); bail: if (priv->mii_bus) mutex_unlock(&priv->mii_bus->mdio_lock); if (netdev->phydev) mutex_unlock(&netdev->phydev->lock); rtnl_unlock(); } static int ftgmac100_open(struct net_device *netdev) { struct ftgmac100 *priv = netdev_priv(netdev); int err; /* Allocate ring buffers */ err = ftgmac100_alloc_rings(priv); if (err) { netdev_err(netdev, "Failed to allocate descriptors\n"); return err; } /* When using NC-SI we force the speed to 100Mbit/s full duplex, * * Otherwise we leave it set to 0 (no link), the link * message from the PHY layer will handle setting it up to * something else if needed. */ if (priv->use_ncsi) { priv->cur_duplex = DUPLEX_FULL; priv->cur_speed = SPEED_100; } else { priv->cur_duplex = 0; priv->cur_speed = 0; } /* Reset the hardware */ err = ftgmac100_reset_and_config_mac(priv); if (err) goto err_hw; /* Initialize NAPI */ netif_napi_add(netdev, &priv->napi, ftgmac100_poll, 64); /* Grab our interrupt */ err = request_irq(netdev->irq, ftgmac100_interrupt, 0, netdev->name, netdev); if (err) { netdev_err(netdev, "failed to request irq %d\n", netdev->irq); goto err_irq; } /* Start things up */ err = ftgmac100_init_all(priv, false); if (err) { netdev_err(netdev, "Failed to allocate packet buffers\n"); goto err_alloc; } if (netdev->phydev) { /* If we have a PHY, start polling */ phy_start(netdev->phydev); } else if (priv->use_ncsi) { /* If using NC-SI, set our carrier on and start the stack */ netif_carrier_on(netdev); /* Start the NCSI device */ err = ncsi_start_dev(priv->ndev); if (err) goto err_ncsi; } return 0; err_ncsi: napi_disable(&priv->napi); netif_stop_queue(netdev); err_alloc: ftgmac100_free_buffers(priv); free_irq(netdev->irq, netdev); err_irq: netif_napi_del(&priv->napi); err_hw: iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); ftgmac100_free_rings(priv); return err; } static int ftgmac100_stop(struct net_device *netdev) { struct ftgmac100 *priv = netdev_priv(netdev); /* Note about the reset task: We are called with the rtnl lock * held, so we are synchronized against the core of the reset * task. We must not try to synchronously cancel it otherwise * we can deadlock. But since it will test for netif_running() * which has already been cleared by the net core, we don't * anything special to do. */ /* disable all interrupts */ iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); netif_stop_queue(netdev); napi_disable(&priv->napi); netif_napi_del(&priv->napi); if (netdev->phydev) phy_stop(netdev->phydev); else if (priv->use_ncsi) ncsi_stop_dev(priv->ndev); ftgmac100_stop_hw(priv); free_irq(netdev->irq, netdev); ftgmac100_free_buffers(priv); ftgmac100_free_rings(priv); return 0; } /* optional */ static int ftgmac100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { if (!netdev->phydev) return -ENXIO; return phy_mii_ioctl(netdev->phydev, ifr, cmd); } static void ftgmac100_tx_timeout(struct net_device *netdev) { struct ftgmac100 *priv = netdev_priv(netdev); /* Disable all interrupts */ iowrite32(0, priv->base + FTGMAC100_OFFSET_IER); /* Do the reset outside of interrupt context */ schedule_work(&priv->reset_task); } static const struct net_device_ops ftgmac100_netdev_ops = { .ndo_open = ftgmac100_open, .ndo_stop = ftgmac100_stop, .ndo_start_xmit = ftgmac100_hard_start_xmit, .ndo_set_mac_address = ftgmac100_set_mac_addr, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = ftgmac100_do_ioctl, .ndo_tx_timeout = ftgmac100_tx_timeout, }; static int ftgmac100_setup_mdio(struct net_device *netdev) { struct ftgmac100 *priv = netdev_priv(netdev); struct platform_device *pdev = to_platform_device(priv->dev); int i, err = 0; u32 reg; /* initialize mdio bus */ priv->mii_bus = mdiobus_alloc(); if (!priv->mii_bus) return -EIO; if (priv->is_aspeed) { /* This driver supports the old MDIO interface */ reg = ioread32(priv->base + FTGMAC100_OFFSET_REVR); reg &= ~FTGMAC100_REVR_NEW_MDIO_INTERFACE; iowrite32(reg, priv->base + FTGMAC100_OFFSET_REVR); }; priv->mii_bus->name = "ftgmac100_mdio"; snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%d", pdev->name, pdev->id); priv->mii_bus->priv = priv->netdev; priv->mii_bus->read = ftgmac100_mdiobus_read; priv->mii_bus->write = ftgmac100_mdiobus_write; for (i = 0; i < PHY_MAX_ADDR; i++) priv->mii_bus->irq[i] = PHY_POLL; err = mdiobus_register(priv->mii_bus); if (err) { dev_err(priv->dev, "Cannot register MDIO bus!\n"); goto err_register_mdiobus; } err = ftgmac100_mii_probe(priv); if (err) { dev_err(priv->dev, "MII Probe failed!\n"); goto err_mii_probe; } return 0; err_mii_probe: mdiobus_unregister(priv->mii_bus); err_register_mdiobus: mdiobus_free(priv->mii_bus); return err; } static void ftgmac100_destroy_mdio(struct net_device *netdev) { struct ftgmac100 *priv = netdev_priv(netdev); if (!netdev->phydev) return; phy_disconnect(netdev->phydev); mdiobus_unregister(priv->mii_bus); mdiobus_free(priv->mii_bus); } static void ftgmac100_ncsi_handler(struct ncsi_dev *nd) { if (unlikely(nd->state != ncsi_dev_state_functional)) return; netdev_info(nd->dev, "NCSI interface %s\n", nd->link_up ? "up" : "down"); } static int ftgmac100_probe(struct platform_device *pdev) { struct resource *res; int irq; struct net_device *netdev; struct ftgmac100 *priv; struct device_node *np; int err = 0; if (!pdev) return -ENODEV; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENXIO; irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; /* setup net_device */ netdev = alloc_etherdev(sizeof(*priv)); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_NETDEV_DEV(netdev, &pdev->dev); netdev->ethtool_ops = &ftgmac100_ethtool_ops; netdev->netdev_ops = &ftgmac100_netdev_ops; netdev->watchdog_timeo = 5 * HZ; platform_set_drvdata(pdev, netdev); /* setup private data */ priv = netdev_priv(netdev); priv->netdev = netdev; priv->dev = &pdev->dev; INIT_WORK(&priv->reset_task, ftgmac100_reset_task); /* map io memory */ priv->res = request_mem_region(res->start, resource_size(res), dev_name(&pdev->dev)); if (!priv->res) { dev_err(&pdev->dev, "Could not reserve memory region\n"); err = -ENOMEM; goto err_req_mem; } priv->base = ioremap(res->start, resource_size(res)); if (!priv->base) { dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n"); err = -EIO; goto err_ioremap; } netdev->irq = irq; /* MAC address from chip or random one */ ftgmac100_initial_mac(priv); np = pdev->dev.of_node; if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac") || of_device_is_compatible(np, "aspeed,ast2500-mac"))) { priv->rxdes0_edorr_mask = BIT(30); priv->txdes0_edotr_mask = BIT(30); priv->is_aspeed = true; } else { priv->rxdes0_edorr_mask = BIT(15); priv->txdes0_edotr_mask = BIT(15); } if (np && of_get_property(np, "use-ncsi", NULL)) { if (!IS_ENABLED(CONFIG_NET_NCSI)) { dev_err(&pdev->dev, "NCSI stack not enabled\n"); goto err_ncsi_dev; } dev_info(&pdev->dev, "Using NCSI interface\n"); priv->use_ncsi = true; priv->ndev = ncsi_register_dev(netdev, ftgmac100_ncsi_handler); if (!priv->ndev) goto err_ncsi_dev; } else { priv->use_ncsi = false; err = ftgmac100_setup_mdio(netdev); if (err) goto err_setup_mdio; } /* Default ring sizes */ priv->rx_q_entries = priv->new_rx_q_entries = DEF_RX_QUEUE_ENTRIES; priv->tx_q_entries = priv->new_tx_q_entries = DEF_TX_QUEUE_ENTRIES; /* Base feature set */ netdev->hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_GRO | NETIF_F_SG; /* AST2400 doesn't have working HW checksum generation */ if (np && (of_device_is_compatible(np, "aspeed,ast2400-mac"))) netdev->hw_features &= ~NETIF_F_HW_CSUM; if (np && of_get_property(np, "no-hw-checksum", NULL)) netdev->hw_features &= ~(NETIF_F_HW_CSUM | NETIF_F_RXCSUM); netdev->features |= netdev->hw_features; /* register network device */ err = register_netdev(netdev); if (err) { dev_err(&pdev->dev, "Failed to register netdev\n"); goto err_register_netdev; } netdev_info(netdev, "irq %d, mapped at %p\n", netdev->irq, priv->base); return 0; err_ncsi_dev: err_register_netdev: ftgmac100_destroy_mdio(netdev); err_setup_mdio: iounmap(priv->base); err_ioremap: release_resource(priv->res); err_req_mem: netif_napi_del(&priv->napi); free_netdev(netdev); err_alloc_etherdev: return err; } static int ftgmac100_remove(struct platform_device *pdev) { struct net_device *netdev; struct ftgmac100 *priv; netdev = platform_get_drvdata(pdev); priv = netdev_priv(netdev); unregister_netdev(netdev); /* There's a small chance the reset task will have been re-queued, * during stop, make sure it's gone before we free the structure. */ cancel_work_sync(&priv->reset_task); ftgmac100_destroy_mdio(netdev); iounmap(priv->base); release_resource(priv->res); netif_napi_del(&priv->napi); free_netdev(netdev); return 0; } static const struct of_device_id ftgmac100_of_match[] = { { .compatible = "faraday,ftgmac100" }, { } }; MODULE_DEVICE_TABLE(of, ftgmac100_of_match); static struct platform_driver ftgmac100_driver = { .probe = ftgmac100_probe, .remove = ftgmac100_remove, .driver = { .name = DRV_NAME, .of_match_table = ftgmac100_of_match, }, }; module_platform_driver(ftgmac100_driver); MODULE_AUTHOR("Po-Yu Chuang "); MODULE_DESCRIPTION("FTGMAC100 driver"); MODULE_LICENSE("GPL");