/* * Copyright (c) 2007 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include "mlx4_en.h" enum { MAX_INLINE = 104, /* 128 - 16 - 4 - 4 */ MAX_BF = 256, }; static int inline_thold __read_mostly = MAX_INLINE; module_param_named(inline_thold, inline_thold, int, 0444); MODULE_PARM_DESC(inline_thold, "threshold for using inline data"); int mlx4_en_create_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int qpn, u32 size, u16 stride) { struct mlx4_en_dev *mdev = priv->mdev; int tmp; int err; ring->size = size; ring->size_mask = size - 1; ring->stride = stride; inline_thold = min(inline_thold, MAX_INLINE); tmp = size * sizeof(struct mlx4_en_tx_info); ring->tx_info = vmalloc(tmp); if (!ring->tx_info) return -ENOMEM; en_dbg(DRV, priv, "Allocated tx_info ring at addr:%p size:%d\n", ring->tx_info, tmp); ring->bounce_buf = kmalloc(MAX_DESC_SIZE, GFP_KERNEL); if (!ring->bounce_buf) { err = -ENOMEM; goto err_tx; } ring->buf_size = ALIGN(size * ring->stride, MLX4_EN_PAGE_SIZE); err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size, 2 * PAGE_SIZE); if (err) { en_err(priv, "Failed allocating hwq resources\n"); goto err_bounce; } err = mlx4_en_map_buffer(&ring->wqres.buf); if (err) { en_err(priv, "Failed to map TX buffer\n"); goto err_hwq_res; } ring->buf = ring->wqres.buf.direct.buf; en_dbg(DRV, priv, "Allocated TX ring (addr:%p) - buf:%p size:%d " "buf_size:%d dma:%llx\n", ring, ring->buf, ring->size, ring->buf_size, (unsigned long long) ring->wqres.buf.direct.map); ring->qpn = qpn; err = mlx4_qp_alloc(mdev->dev, ring->qpn, &ring->qp); if (err) { en_err(priv, "Failed allocating qp %d\n", ring->qpn); goto err_map; } ring->qp.event = mlx4_en_sqp_event; err = mlx4_bf_alloc(mdev->dev, &ring->bf); if (err) { en_dbg(DRV, priv, "working without blueflame (%d)", err); ring->bf.uar = &mdev->priv_uar; ring->bf.uar->map = mdev->uar_map; ring->bf_enabled = false; } else ring->bf_enabled = true; ring->hwtstamp_tx_type = priv->hwtstamp_config.tx_type; return 0; err_map: mlx4_en_unmap_buffer(&ring->wqres.buf); err_hwq_res: mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); err_bounce: kfree(ring->bounce_buf); ring->bounce_buf = NULL; err_tx: vfree(ring->tx_info); ring->tx_info = NULL; return err; } void mlx4_en_destroy_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; en_dbg(DRV, priv, "Destroying tx ring, qpn: %d\n", ring->qpn); if (ring->bf_enabled) mlx4_bf_free(mdev->dev, &ring->bf); mlx4_qp_remove(mdev->dev, &ring->qp); mlx4_qp_free(mdev->dev, &ring->qp); mlx4_en_unmap_buffer(&ring->wqres.buf); mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); kfree(ring->bounce_buf); ring->bounce_buf = NULL; vfree(ring->tx_info); ring->tx_info = NULL; } int mlx4_en_activate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int cq, int user_prio) { struct mlx4_en_dev *mdev = priv->mdev; int err; ring->cqn = cq; ring->prod = 0; ring->cons = 0xffffffff; ring->last_nr_txbb = 1; ring->poll_cnt = 0; memset(ring->tx_info, 0, ring->size * sizeof(struct mlx4_en_tx_info)); memset(ring->buf, 0, ring->buf_size); ring->qp_state = MLX4_QP_STATE_RST; ring->doorbell_qpn = ring->qp.qpn << 8; mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 1, 0, ring->qpn, ring->cqn, user_prio, &ring->context); if (ring->bf_enabled) ring->context.usr_page = cpu_to_be32(ring->bf.uar->index); err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, &ring->context, &ring->qp, &ring->qp_state); return err; } void mlx4_en_deactivate_tx_ring(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring) { struct mlx4_en_dev *mdev = priv->mdev; mlx4_qp_modify(mdev->dev, NULL, ring->qp_state, MLX4_QP_STATE_RST, NULL, 0, 0, &ring->qp); } static void mlx4_en_stamp_wqe(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int index, u8 owner) { __be32 stamp = cpu_to_be32(STAMP_VAL | (!!owner << STAMP_SHIFT)); struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; void *end = ring->buf + ring->buf_size; __be32 *ptr = (__be32 *)tx_desc; int i; /* Optimize the common case when there are no wraparounds */ if (likely((void *)tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { /* Stamp the freed descriptor */ for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { *ptr = stamp; ptr += STAMP_DWORDS; } } else { /* Stamp the freed descriptor */ for (i = 0; i < tx_info->nr_txbb * TXBB_SIZE; i += STAMP_STRIDE) { *ptr = stamp; ptr += STAMP_DWORDS; if ((void *)ptr >= end) { ptr = ring->buf; stamp ^= cpu_to_be32(0x80000000); } } } } static u32 mlx4_en_free_tx_desc(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, int index, u8 owner, u64 timestamp) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_info *tx_info = &ring->tx_info[index]; struct mlx4_en_tx_desc *tx_desc = ring->buf + index * TXBB_SIZE; struct mlx4_wqe_data_seg *data = (void *) tx_desc + tx_info->data_offset; struct sk_buff *skb = tx_info->skb; struct skb_frag_struct *frag; void *end = ring->buf + ring->buf_size; int frags = skb_shinfo(skb)->nr_frags; int i; struct skb_shared_hwtstamps hwts; if (timestamp) { mlx4_en_fill_hwtstamps(mdev, &hwts, timestamp); skb_tstamp_tx(skb, &hwts); } /* Optimize the common case when there are no wraparounds */ if (likely((void *) tx_desc + tx_info->nr_txbb * TXBB_SIZE <= end)) { if (!tx_info->inl) { if (tx_info->linear) { dma_unmap_single(priv->ddev, (dma_addr_t) be64_to_cpu(data->addr), be32_to_cpu(data->byte_count), PCI_DMA_TODEVICE); ++data; } for (i = 0; i < frags; i++) { frag = &skb_shinfo(skb)->frags[i]; dma_unmap_page(priv->ddev, (dma_addr_t) be64_to_cpu(data[i].addr), skb_frag_size(frag), PCI_DMA_TODEVICE); } } } else { if (!tx_info->inl) { if ((void *) data >= end) { data = ring->buf + ((void *)data - end); } if (tx_info->linear) { dma_unmap_single(priv->ddev, (dma_addr_t) be64_to_cpu(data->addr), be32_to_cpu(data->byte_count), PCI_DMA_TODEVICE); ++data; } for (i = 0; i < frags; i++) { /* Check for wraparound before unmapping */ if ((void *) data >= end) data = ring->buf; frag = &skb_shinfo(skb)->frags[i]; dma_unmap_page(priv->ddev, (dma_addr_t) be64_to_cpu(data->addr), skb_frag_size(frag), PCI_DMA_TODEVICE); ++data; } } } dev_kfree_skb_any(skb); return tx_info->nr_txbb; } int mlx4_en_free_tx_buf(struct net_device *dev, struct mlx4_en_tx_ring *ring) { struct mlx4_en_priv *priv = netdev_priv(dev); int cnt = 0; /* Skip last polled descriptor */ ring->cons += ring->last_nr_txbb; en_dbg(DRV, priv, "Freeing Tx buf - cons:0x%x prod:0x%x\n", ring->cons, ring->prod); if ((u32) (ring->prod - ring->cons) > ring->size) { if (netif_msg_tx_err(priv)) en_warn(priv, "Tx consumer passed producer!\n"); return 0; } while (ring->cons != ring->prod) { ring->last_nr_txbb = mlx4_en_free_tx_desc(priv, ring, ring->cons & ring->size_mask, !!(ring->cons & ring->size), 0); ring->cons += ring->last_nr_txbb; cnt++; } netdev_tx_reset_queue(ring->tx_queue); if (cnt) en_dbg(DRV, priv, "Freed %d uncompleted tx descriptors\n", cnt); return cnt; } static void mlx4_en_process_tx_cq(struct net_device *dev, struct mlx4_en_cq *cq) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_cq *mcq = &cq->mcq; struct mlx4_en_tx_ring *ring = &priv->tx_ring[cq->ring]; struct mlx4_cqe *cqe; u16 index; u16 new_index, ring_index, stamp_index; u32 txbbs_skipped = 0; u32 txbbs_stamp = 0; u32 cons_index = mcq->cons_index; int size = cq->size; u32 size_mask = ring->size_mask; struct mlx4_cqe *buf = cq->buf; u32 packets = 0; u32 bytes = 0; int factor = priv->cqe_factor; u64 timestamp = 0; if (!priv->port_up) return; index = cons_index & size_mask; cqe = &buf[(index << factor) + factor]; ring_index = ring->cons & size_mask; stamp_index = ring_index; /* Process all completed CQEs */ while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, cons_index & size)) { /* * make sure we read the CQE after we read the * ownership bit */ rmb(); if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == MLX4_CQE_OPCODE_ERROR)) { struct mlx4_err_cqe *cqe_err = (struct mlx4_err_cqe *)cqe; en_err(priv, "CQE error - vendor syndrome: 0x%x syndrome: 0x%x\n", cqe_err->vendor_err_syndrome, cqe_err->syndrome); } /* Skip over last polled CQE */ new_index = be16_to_cpu(cqe->wqe_index) & size_mask; do { txbbs_skipped += ring->last_nr_txbb; ring_index = (ring_index + ring->last_nr_txbb) & size_mask; if (ring->tx_info[ring_index].ts_requested) timestamp = mlx4_en_get_cqe_ts(cqe); /* free next descriptor */ ring->last_nr_txbb = mlx4_en_free_tx_desc( priv, ring, ring_index, !!((ring->cons + txbbs_skipped) & ring->size), timestamp); mlx4_en_stamp_wqe(priv, ring, stamp_index, !!((ring->cons + txbbs_stamp) & ring->size)); stamp_index = ring_index; txbbs_stamp = txbbs_skipped; packets++; bytes += ring->tx_info[ring_index].nr_bytes; } while (ring_index != new_index); ++cons_index; index = cons_index & size_mask; cqe = &buf[(index << factor) + factor]; } /* * To prevent CQ overflow we first update CQ consumer and only then * the ring consumer. */ mcq->cons_index = cons_index; mlx4_cq_set_ci(mcq); wmb(); ring->cons += txbbs_skipped; netdev_tx_completed_queue(ring->tx_queue, packets, bytes); /* * Wakeup Tx queue if this stopped, and at least 1 packet * was completed */ if (netif_tx_queue_stopped(ring->tx_queue) && txbbs_skipped > 0) { netif_tx_wake_queue(ring->tx_queue); priv->port_stats.wake_queue++; } } void mlx4_en_tx_irq(struct mlx4_cq *mcq) { struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); struct mlx4_en_priv *priv = netdev_priv(cq->dev); mlx4_en_process_tx_cq(cq->dev, cq); mlx4_en_arm_cq(priv, cq); } static struct mlx4_en_tx_desc *mlx4_en_bounce_to_desc(struct mlx4_en_priv *priv, struct mlx4_en_tx_ring *ring, u32 index, unsigned int desc_size) { u32 copy = (ring->size - index) * TXBB_SIZE; int i; for (i = desc_size - copy - 4; i >= 0; i -= 4) { if ((i & (TXBB_SIZE - 1)) == 0) wmb(); *((u32 *) (ring->buf + i)) = *((u32 *) (ring->bounce_buf + copy + i)); } for (i = copy - 4; i >= 4 ; i -= 4) { if ((i & (TXBB_SIZE - 1)) == 0) wmb(); *((u32 *) (ring->buf + index * TXBB_SIZE + i)) = *((u32 *) (ring->bounce_buf + i)); } /* Return real descriptor location */ return ring->buf + index * TXBB_SIZE; } static int is_inline(struct sk_buff *skb, void **pfrag) { void *ptr; if (inline_thold && !skb_is_gso(skb) && skb->len <= inline_thold) { if (skb_shinfo(skb)->nr_frags == 1) { ptr = skb_frag_address_safe(&skb_shinfo(skb)->frags[0]); if (unlikely(!ptr)) return 0; if (pfrag) *pfrag = ptr; return 1; } else if (unlikely(skb_shinfo(skb)->nr_frags)) return 0; else return 1; } return 0; } static int inline_size(struct sk_buff *skb) { if (skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg) <= MLX4_INLINE_ALIGN) return ALIGN(skb->len + CTRL_SIZE + sizeof(struct mlx4_wqe_inline_seg), 16); else return ALIGN(skb->len + CTRL_SIZE + 2 * sizeof(struct mlx4_wqe_inline_seg), 16); } static int get_real_size(struct sk_buff *skb, struct net_device *dev, int *lso_header_size) { struct mlx4_en_priv *priv = netdev_priv(dev); int real_size; if (skb_is_gso(skb)) { *lso_header_size = skb_transport_offset(skb) + tcp_hdrlen(skb); real_size = CTRL_SIZE + skb_shinfo(skb)->nr_frags * DS_SIZE + ALIGN(*lso_header_size + 4, DS_SIZE); if (unlikely(*lso_header_size != skb_headlen(skb))) { /* We add a segment for the skb linear buffer only if * it contains data */ if (*lso_header_size < skb_headlen(skb)) real_size += DS_SIZE; else { if (netif_msg_tx_err(priv)) en_warn(priv, "Non-linear headers\n"); return 0; } } } else { *lso_header_size = 0; if (!is_inline(skb, NULL)) real_size = CTRL_SIZE + (skb_shinfo(skb)->nr_frags + 1) * DS_SIZE; else real_size = inline_size(skb); } return real_size; } static void build_inline_wqe(struct mlx4_en_tx_desc *tx_desc, struct sk_buff *skb, int real_size, u16 *vlan_tag, int tx_ind, void *fragptr) { struct mlx4_wqe_inline_seg *inl = &tx_desc->inl; int spc = MLX4_INLINE_ALIGN - CTRL_SIZE - sizeof *inl; if (skb->len <= spc) { inl->byte_count = cpu_to_be32(1 << 31 | skb->len); skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb)); if (skb_shinfo(skb)->nr_frags) memcpy(((void *)(inl + 1)) + skb_headlen(skb), fragptr, skb_frag_size(&skb_shinfo(skb)->frags[0])); } else { inl->byte_count = cpu_to_be32(1 << 31 | spc); if (skb_headlen(skb) <= spc) { skb_copy_from_linear_data(skb, inl + 1, skb_headlen(skb)); if (skb_headlen(skb) < spc) { memcpy(((void *)(inl + 1)) + skb_headlen(skb), fragptr, spc - skb_headlen(skb)); fragptr += spc - skb_headlen(skb); } inl = (void *) (inl + 1) + spc; memcpy(((void *)(inl + 1)), fragptr, skb->len - spc); } else { skb_copy_from_linear_data(skb, inl + 1, spc); inl = (void *) (inl + 1) + spc; skb_copy_from_linear_data_offset(skb, spc, inl + 1, skb_headlen(skb) - spc); if (skb_shinfo(skb)->nr_frags) memcpy(((void *)(inl + 1)) + skb_headlen(skb) - spc, fragptr, skb_frag_size(&skb_shinfo(skb)->frags[0])); } wmb(); inl->byte_count = cpu_to_be32(1 << 31 | (skb->len - spc)); } } u16 mlx4_en_select_queue(struct net_device *dev, struct sk_buff *skb) { struct mlx4_en_priv *priv = netdev_priv(dev); u16 rings_p_up = priv->num_tx_rings_p_up; u8 up = 0; if (dev->num_tc) return skb_tx_hash(dev, skb); if (vlan_tx_tag_present(skb)) up = vlan_tx_tag_get(skb) >> VLAN_PRIO_SHIFT; return __netdev_pick_tx(dev, skb) % rings_p_up + up * rings_p_up; } static void mlx4_bf_copy(void __iomem *dst, unsigned long *src, unsigned bytecnt) { __iowrite64_copy(dst, src, bytecnt / 8); } netdev_tx_t mlx4_en_xmit(struct sk_buff *skb, struct net_device *dev) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_tx_ring *ring; struct mlx4_en_tx_desc *tx_desc; struct mlx4_wqe_data_seg *data; struct skb_frag_struct *frag; struct mlx4_en_tx_info *tx_info; struct ethhdr *ethh; int tx_ind = 0; int nr_txbb; int desc_size; int real_size; dma_addr_t dma; u32 index, bf_index; __be32 op_own; u16 vlan_tag = 0; int i; int lso_header_size; void *fragptr; bool bounce = false; if (!priv->port_up) goto tx_drop; real_size = get_real_size(skb, dev, &lso_header_size); if (unlikely(!real_size)) goto tx_drop; /* Align descriptor to TXBB size */ desc_size = ALIGN(real_size, TXBB_SIZE); nr_txbb = desc_size / TXBB_SIZE; if (unlikely(nr_txbb > MAX_DESC_TXBBS)) { if (netif_msg_tx_err(priv)) en_warn(priv, "Oversized header or SG list\n"); goto tx_drop; } tx_ind = skb->queue_mapping; ring = &priv->tx_ring[tx_ind]; if (vlan_tx_tag_present(skb)) vlan_tag = vlan_tx_tag_get(skb); /* Check available TXBBs And 2K spare for prefetch */ if (unlikely(((int)(ring->prod - ring->cons)) > ring->size - HEADROOM - MAX_DESC_TXBBS)) { /* every full Tx ring stops queue */ netif_tx_stop_queue(ring->tx_queue); priv->port_stats.queue_stopped++; /* If queue was emptied after the if, and before the * stop_queue - need to wake the queue, or else it will remain * stopped forever. * Need a memory barrier to make sure ring->cons was not * updated before queue was stopped. */ wmb(); if (unlikely(((int)(ring->prod - ring->cons)) <= ring->size - HEADROOM - MAX_DESC_TXBBS)) { netif_tx_wake_queue(ring->tx_queue); priv->port_stats.wake_queue++; } else { return NETDEV_TX_BUSY; } } /* Track current inflight packets for performance analysis */ AVG_PERF_COUNTER(priv->pstats.inflight_avg, (u32) (ring->prod - ring->cons - 1)); /* Packet is good - grab an index and transmit it */ index = ring->prod & ring->size_mask; bf_index = ring->prod; /* See if we have enough space for whole descriptor TXBB for setting * SW ownership on next descriptor; if not, use a bounce buffer. */ if (likely(index + nr_txbb <= ring->size)) tx_desc = ring->buf + index * TXBB_SIZE; else { tx_desc = (struct mlx4_en_tx_desc *) ring->bounce_buf; bounce = true; } /* Save skb in tx_info ring */ tx_info = &ring->tx_info[index]; tx_info->skb = skb; tx_info->nr_txbb = nr_txbb; /* * For timestamping add flag to skb_shinfo and * set flag for further reference */ if (ring->hwtstamp_tx_type == HWTSTAMP_TX_ON && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; tx_info->ts_requested = 1; } /* Prepare ctrl segement apart opcode+ownership, which depends on * whether LSO is used */ tx_desc->ctrl.vlan_tag = cpu_to_be16(vlan_tag); tx_desc->ctrl.ins_vlan = MLX4_WQE_CTRL_INS_VLAN * !!vlan_tx_tag_present(skb); tx_desc->ctrl.fence_size = (real_size / 16) & 0x3f; tx_desc->ctrl.srcrb_flags = priv->ctrl_flags; if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { tx_desc->ctrl.srcrb_flags |= cpu_to_be32(MLX4_WQE_CTRL_IP_CSUM | MLX4_WQE_CTRL_TCP_UDP_CSUM); ring->tx_csum++; } if (priv->flags & MLX4_EN_FLAG_ENABLE_HW_LOOPBACK) { /* Copy dst mac address to wqe. This allows loopback in eSwitch, * so that VFs and PF can communicate with each other */ ethh = (struct ethhdr *)skb->data; tx_desc->ctrl.srcrb_flags16[0] = get_unaligned((__be16 *)ethh->h_dest); tx_desc->ctrl.imm = get_unaligned((__be32 *)(ethh->h_dest + 2)); } /* Handle LSO (TSO) packets */ if (lso_header_size) { /* Mark opcode as LSO */ op_own = cpu_to_be32(MLX4_OPCODE_LSO | (1 << 6)) | ((ring->prod & ring->size) ? cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); /* Fill in the LSO prefix */ tx_desc->lso.mss_hdr_size = cpu_to_be32( skb_shinfo(skb)->gso_size << 16 | lso_header_size); /* Copy headers; * note that we already verified that it is linear */ memcpy(tx_desc->lso.header, skb->data, lso_header_size); data = ((void *) &tx_desc->lso + ALIGN(lso_header_size + 4, DS_SIZE)); priv->port_stats.tso_packets++; i = ((skb->len - lso_header_size) / skb_shinfo(skb)->gso_size) + !!((skb->len - lso_header_size) % skb_shinfo(skb)->gso_size); tx_info->nr_bytes = skb->len + (i - 1) * lso_header_size; ring->packets += i; } else { /* Normal (Non LSO) packet */ op_own = cpu_to_be32(MLX4_OPCODE_SEND) | ((ring->prod & ring->size) ? cpu_to_be32(MLX4_EN_BIT_DESC_OWN) : 0); data = &tx_desc->data; tx_info->nr_bytes = max_t(unsigned int, skb->len, ETH_ZLEN); ring->packets++; } ring->bytes += tx_info->nr_bytes; netdev_tx_sent_queue(ring->tx_queue, tx_info->nr_bytes); AVG_PERF_COUNTER(priv->pstats.tx_pktsz_avg, skb->len); /* valid only for none inline segments */ tx_info->data_offset = (void *) data - (void *) tx_desc; tx_info->linear = (lso_header_size < skb_headlen(skb) && !is_inline(skb, NULL)) ? 1 : 0; data += skb_shinfo(skb)->nr_frags + tx_info->linear - 1; if (!is_inline(skb, &fragptr)) { /* Map fragments */ for (i = skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) { frag = &skb_shinfo(skb)->frags[i]; dma = skb_frag_dma_map(priv->ddev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); data->addr = cpu_to_be64(dma); data->lkey = cpu_to_be32(mdev->mr.key); wmb(); data->byte_count = cpu_to_be32(skb_frag_size(frag)); --data; } /* Map linear part */ if (tx_info->linear) { dma = dma_map_single(priv->ddev, skb->data + lso_header_size, skb_headlen(skb) - lso_header_size, PCI_DMA_TODEVICE); data->addr = cpu_to_be64(dma); data->lkey = cpu_to_be32(mdev->mr.key); wmb(); data->byte_count = cpu_to_be32(skb_headlen(skb) - lso_header_size); } tx_info->inl = 0; } else { build_inline_wqe(tx_desc, skb, real_size, &vlan_tag, tx_ind, fragptr); tx_info->inl = 1; } ring->prod += nr_txbb; /* If we used a bounce buffer then copy descriptor back into place */ if (bounce) tx_desc = mlx4_en_bounce_to_desc(priv, ring, index, desc_size); skb_tx_timestamp(skb); if (ring->bf_enabled && desc_size <= MAX_BF && !bounce && !vlan_tx_tag_present(skb)) { *(__be32 *) (&tx_desc->ctrl.vlan_tag) |= cpu_to_be32(ring->doorbell_qpn); op_own |= htonl((bf_index & 0xffff) << 8); /* Ensure new descirptor hits memory * before setting ownership of this descriptor to HW */ wmb(); tx_desc->ctrl.owner_opcode = op_own; wmb(); mlx4_bf_copy(ring->bf.reg + ring->bf.offset, (unsigned long *) &tx_desc->ctrl, desc_size); wmb(); ring->bf.offset ^= ring->bf.buf_size; } else { /* Ensure new descirptor hits memory * before setting ownership of this descriptor to HW */ wmb(); tx_desc->ctrl.owner_opcode = op_own; wmb(); iowrite32be(ring->doorbell_qpn, ring->bf.uar->map + MLX4_SEND_DOORBELL); } return NETDEV_TX_OK; tx_drop: dev_kfree_skb_any(skb); priv->stats.tx_dropped++; return NETDEV_TX_OK; }