/* * CXL Flash Device Driver * * Written by: Manoj N. Kumar , IBM Corporation * Matthew R. Ochs , IBM Corporation * * Copyright (C) 2015 IBM Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include "main.h" #include "sislite.h" #include "common.h" MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME); MODULE_AUTHOR("Manoj N. Kumar "); MODULE_AUTHOR("Matthew R. Ochs "); MODULE_LICENSE("GPL"); /** * cmd_checkout() - checks out an AFU command * @afu: AFU to checkout from. * * Commands are checked out in a round-robin fashion. Note that since * the command pool is larger than the hardware queue, the majority of * times we will only loop once or twice before getting a command. The * buffer and CDB within the command are initialized (zeroed) prior to * returning. * * Return: The checked out command or NULL when command pool is empty. */ static struct afu_cmd *cmd_checkout(struct afu *afu) { int k, dec = CXLFLASH_NUM_CMDS; struct afu_cmd *cmd; while (dec--) { k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1)); cmd = &afu->cmd[k]; if (!atomic_dec_if_positive(&cmd->free)) { pr_devel("%s: returning found index=%d cmd=%p\n", __func__, cmd->slot, cmd); memset(cmd->buf, 0, CMD_BUFSIZE); memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); return cmd; } } return NULL; } /** * cmd_checkin() - checks in an AFU command * @cmd: AFU command to checkin. * * Safe to pass commands that have already been checked in. Several * internal tracking fields are reset as part of the checkin. Note * that these are intentionally reset prior to toggling the free bit * to avoid clobbering values in the event that the command is checked * out right away. */ static void cmd_checkin(struct afu_cmd *cmd) { cmd->rcb.scp = NULL; cmd->rcb.timeout = 0; cmd->sa.ioasc = 0; cmd->cmd_tmf = false; cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */ if (unlikely(atomic_inc_return(&cmd->free) != 1)) { pr_err("%s: Freeing cmd (%d) that is not in use!\n", __func__, cmd->slot); return; } pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot); } /** * process_cmd_err() - command error handler * @cmd: AFU command that experienced the error. * @scp: SCSI command associated with the AFU command in error. * * Translates error bits from AFU command to SCSI command results. */ static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp) { struct sisl_ioarcb *ioarcb; struct sisl_ioasa *ioasa; u32 resid; if (unlikely(!cmd)) return; ioarcb = &(cmd->rcb); ioasa = &(cmd->sa); if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) { resid = ioasa->resid; scsi_set_resid(scp, resid); pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n", __func__, cmd, scp, resid); } if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) { pr_debug("%s: cmd underrun cmd = %p scp = %p\n", __func__, cmd, scp); scp->result = (DID_ERROR << 16); } pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d " "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n", __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra); if (ioasa->rc.scsi_rc) { /* We have a SCSI status */ if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) { memcpy(scp->sense_buffer, ioasa->sense_data, SISL_SENSE_DATA_LEN); scp->result = ioasa->rc.scsi_rc; } else scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16); } /* * We encountered an error. Set scp->result based on nature * of error. */ if (ioasa->rc.fc_rc) { /* We have an FC status */ switch (ioasa->rc.fc_rc) { case SISL_FC_RC_LINKDOWN: scp->result = (DID_REQUEUE << 16); break; case SISL_FC_RC_RESID: /* This indicates an FCP resid underrun */ if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) { /* If the SISL_RC_FLAGS_OVERRUN flag was set, * then we will handle this error else where. * If not then we must handle it here. * This is probably an AFU bug. */ scp->result = (DID_ERROR << 16); } break; case SISL_FC_RC_RESIDERR: /* Resid mismatch between adapter and device */ case SISL_FC_RC_TGTABORT: case SISL_FC_RC_ABORTOK: case SISL_FC_RC_ABORTFAIL: case SISL_FC_RC_NOLOGI: case SISL_FC_RC_ABORTPEND: case SISL_FC_RC_WRABORTPEND: case SISL_FC_RC_NOEXP: case SISL_FC_RC_INUSE: scp->result = (DID_ERROR << 16); break; } } if (ioasa->rc.afu_rc) { /* We have an AFU error */ switch (ioasa->rc.afu_rc) { case SISL_AFU_RC_NO_CHANNELS: scp->result = (DID_NO_CONNECT << 16); break; case SISL_AFU_RC_DATA_DMA_ERR: switch (ioasa->afu_extra) { case SISL_AFU_DMA_ERR_PAGE_IN: /* Retry */ scp->result = (DID_IMM_RETRY << 16); break; case SISL_AFU_DMA_ERR_INVALID_EA: default: scp->result = (DID_ERROR << 16); } break; case SISL_AFU_RC_OUT_OF_DATA_BUFS: /* Retry */ scp->result = (DID_ALLOC_FAILURE << 16); break; default: scp->result = (DID_ERROR << 16); } } } /** * cmd_complete() - command completion handler * @cmd: AFU command that has completed. * * Prepares and submits command that has either completed or timed out to * the SCSI stack. Checks AFU command back into command pool for non-internal * (rcb.scp populated) commands. */ static void cmd_complete(struct afu_cmd *cmd) { struct scsi_cmnd *scp; ulong lock_flags; struct afu *afu = cmd->parent; struct cxlflash_cfg *cfg = afu->parent; bool cmd_is_tmf; spin_lock_irqsave(&cmd->slock, lock_flags); cmd->sa.host_use_b[0] |= B_DONE; spin_unlock_irqrestore(&cmd->slock, lock_flags); if (cmd->rcb.scp) { scp = cmd->rcb.scp; if (unlikely(cmd->sa.ioasc)) process_cmd_err(cmd, scp); else scp->result = (DID_OK << 16); cmd_is_tmf = cmd->cmd_tmf; cmd_checkin(cmd); /* Don't use cmd after here */ pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X " "ioasc=%d\n", __func__, scp, scp->result, cmd->sa.ioasc); scsi_dma_unmap(scp); scp->scsi_done(scp); if (cmd_is_tmf) { spin_lock_irqsave(&cfg->tmf_slock, lock_flags); cfg->tmf_active = false; wake_up_all_locked(&cfg->tmf_waitq); spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); } } else complete(&cmd->cevent); } /** * context_reset() - timeout handler for AFU commands * @cmd: AFU command that timed out. * * Sends a reset to the AFU. */ static void context_reset(struct afu_cmd *cmd) { int nretry = 0; u64 rrin = 0x1; u64 room = 0; struct afu *afu = cmd->parent; ulong lock_flags; pr_debug("%s: cmd=%p\n", __func__, cmd); spin_lock_irqsave(&cmd->slock, lock_flags); /* Already completed? */ if (cmd->sa.host_use_b[0] & B_DONE) { spin_unlock_irqrestore(&cmd->slock, lock_flags); return; } cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT); spin_unlock_irqrestore(&cmd->slock, lock_flags); /* * We really want to send this reset at all costs, so spread * out wait time on successive retries for available room. */ do { room = readq_be(&afu->host_map->cmd_room); atomic64_set(&afu->room, room); if (room) goto write_rrin; udelay(1 << nretry); } while (nretry++ < MC_ROOM_RETRY_CNT); pr_err("%s: no cmd_room to send reset\n", __func__); return; write_rrin: nretry = 0; writeq_be(rrin, &afu->host_map->ioarrin); do { rrin = readq_be(&afu->host_map->ioarrin); if (rrin != 0x1) break; /* Double delay each time */ udelay(1 << nretry); } while (nretry++ < MC_ROOM_RETRY_CNT); } /** * send_cmd() - sends an AFU command * @afu: AFU associated with the host. * @cmd: AFU command to send. * * Return: * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure */ static int send_cmd(struct afu *afu, struct afu_cmd *cmd) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; int nretry = 0; int rc = 0; u64 room; long newval; /* * This routine is used by critical users such an AFU sync and to * send a task management function (TMF). Thus we want to retry a * bit before returning an error. To avoid the performance penalty * of MMIO, we spread the update of 'room' over multiple commands. */ retry: newval = atomic64_dec_if_positive(&afu->room); if (!newval) { do { room = readq_be(&afu->host_map->cmd_room); atomic64_set(&afu->room, room); if (room) goto write_ioarrin; udelay(1 << nretry); } while (nretry++ < MC_ROOM_RETRY_CNT); dev_err(dev, "%s: no cmd_room to send 0x%X\n", __func__, cmd->rcb.cdb[0]); goto no_room; } else if (unlikely(newval < 0)) { /* This should be rare. i.e. Only if two threads race and * decrement before the MMIO read is done. In this case * just benefit from the other thread having updated * afu->room. */ if (nretry++ < MC_ROOM_RETRY_CNT) { udelay(1 << nretry); goto retry; } goto no_room; } write_ioarrin: writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin); out: pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd, cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc); return rc; no_room: afu->read_room = true; kref_get(&cfg->afu->mapcount); schedule_work(&cfg->work_q); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } /** * wait_resp() - polls for a response or timeout to a sent AFU command * @afu: AFU associated with the host. * @cmd: AFU command that was sent. */ static void wait_resp(struct afu *afu, struct afu_cmd *cmd) { ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000); timeout = wait_for_completion_timeout(&cmd->cevent, timeout); if (!timeout) context_reset(cmd); if (unlikely(cmd->sa.ioasc != 0)) pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, " "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0], cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc, cmd->sa.rc.fc_rc); } /** * send_tmf() - sends a Task Management Function (TMF) * @afu: AFU to checkout from. * @scp: SCSI command from stack. * @tmfcmd: TMF command to send. * * Return: * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure */ static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd) { struct afu_cmd *cmd; u32 port_sel = scp->device->channel + 1; short lflag = 0; struct Scsi_Host *host = scp->device->host; struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; struct device *dev = &cfg->dev->dev; ulong lock_flags; int rc = 0; ulong to; cmd = cmd_checkout(afu); if (unlikely(!cmd)) { dev_err(dev, "%s: could not get a free command\n", __func__); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } /* When Task Management Function is active do not send another */ spin_lock_irqsave(&cfg->tmf_slock, lock_flags); if (cfg->tmf_active) wait_event_interruptible_lock_irq(cfg->tmf_waitq, !cfg->tmf_active, cfg->tmf_slock); cfg->tmf_active = true; cmd->cmd_tmf = true; spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); cmd->rcb.ctx_id = afu->ctx_hndl; cmd->rcb.port_sel = port_sel; cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); lflag = SISL_REQ_FLAGS_TMF_CMD; cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); /* Stash the scp in the reserved field, for reuse during interrupt */ cmd->rcb.scp = scp; /* Copy the CDB from the cmd passed in */ memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd)); /* Send the command */ rc = send_cmd(afu, cmd); if (unlikely(rc)) { cmd_checkin(cmd); spin_lock_irqsave(&cfg->tmf_slock, lock_flags); cfg->tmf_active = false; spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); goto out; } spin_lock_irqsave(&cfg->tmf_slock, lock_flags); to = msecs_to_jiffies(5000); to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq, !cfg->tmf_active, cfg->tmf_slock, to); if (!to) { cfg->tmf_active = false; dev_err(dev, "%s: TMF timed out!\n", __func__); rc = -1; } spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); out: return rc; } static void afu_unmap(struct kref *ref) { struct afu *afu = container_of(ref, struct afu, mapcount); if (likely(afu->afu_map)) { cxl_psa_unmap((void __iomem *)afu->afu_map); afu->afu_map = NULL; } } /** * cxlflash_driver_info() - information handler for this host driver * @host: SCSI host associated with device. * * Return: A string describing the device. */ static const char *cxlflash_driver_info(struct Scsi_Host *host) { return CXLFLASH_ADAPTER_NAME; } /** * cxlflash_queuecommand() - sends a mid-layer request * @host: SCSI host associated with device. * @scp: SCSI command to send. * * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure */ static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp) { struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct afu_cmd *cmd; u32 port_sel = scp->device->channel + 1; int nseg, i, ncount; struct scatterlist *sg; ulong lock_flags; short lflag = 0; int rc = 0; int kref_got = 0; dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu " "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, host->host_no, scp->device->channel, scp->device->id, scp->device->lun, get_unaligned_be32(&((u32 *)scp->cmnd)[0]), get_unaligned_be32(&((u32 *)scp->cmnd)[1]), get_unaligned_be32(&((u32 *)scp->cmnd)[2]), get_unaligned_be32(&((u32 *)scp->cmnd)[3])); /* * If a Task Management Function is active, wait for it to complete * before continuing with regular commands. */ spin_lock_irqsave(&cfg->tmf_slock, lock_flags); if (cfg->tmf_active) { spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); switch (cfg->state) { case STATE_RESET: dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; case STATE_FAILTERM: dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__); scp->result = (DID_NO_CONNECT << 16); scp->scsi_done(scp); rc = 0; goto out; default: break; } cmd = cmd_checkout(afu); if (unlikely(!cmd)) { dev_err(dev, "%s: could not get a free command\n", __func__); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } kref_get(&cfg->afu->mapcount); kref_got = 1; cmd->rcb.ctx_id = afu->ctx_hndl; cmd->rcb.port_sel = port_sel; cmd->rcb.lun_id = lun_to_lunid(scp->device->lun); if (scp->sc_data_direction == DMA_TO_DEVICE) lflag = SISL_REQ_FLAGS_HOST_WRITE; else lflag = SISL_REQ_FLAGS_HOST_READ; cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID | SISL_REQ_FLAGS_SUP_UNDERRUN | lflag); /* Stash the scp in the reserved field, for reuse during interrupt */ cmd->rcb.scp = scp; nseg = scsi_dma_map(scp); if (unlikely(nseg < 0)) { dev_err(dev, "%s: Fail DMA map! nseg=%d\n", __func__, nseg); rc = SCSI_MLQUEUE_HOST_BUSY; goto out; } ncount = scsi_sg_count(scp); scsi_for_each_sg(scp, sg, ncount, i) { cmd->rcb.data_len = sg_dma_len(sg); cmd->rcb.data_ea = sg_dma_address(sg); } /* Copy the CDB from the scsi_cmnd passed in */ memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb)); /* Send the command */ rc = send_cmd(afu, cmd); if (unlikely(rc)) { cmd_checkin(cmd); scsi_dma_unmap(scp); } out: if (kref_got) kref_put(&afu->mapcount, afu_unmap); pr_devel("%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe * @cfg: Internal structure associated with the host. */ static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg) { struct pci_dev *pdev = cfg->dev; if (pci_channel_offline(pdev)) wait_event_timeout(cfg->reset_waitq, !pci_channel_offline(pdev), CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT); } /** * free_mem() - free memory associated with the AFU * @cfg: Internal structure associated with the host. */ static void free_mem(struct cxlflash_cfg *cfg) { int i; char *buf = NULL; struct afu *afu = cfg->afu; if (cfg->afu) { for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { buf = afu->cmd[i].buf; if (!((u64)buf & (PAGE_SIZE - 1))) free_page((ulong)buf); } free_pages((ulong)afu, get_order(sizeof(struct afu))); cfg->afu = NULL; } } /** * stop_afu() - stops the AFU command timers and unmaps the MMIO space * @cfg: Internal structure associated with the host. * * Safe to call with AFU in a partially allocated/initialized state. * * Cleans up all state associated with the command queue, and unmaps * the MMIO space. * * - complete() will take care of commands we initiated (they'll be checked * in as part of the cleanup that occurs after the completion) * * - cmd_checkin() will take care of entries that we did not initiate and that * have not (and will not) complete because they are sitting on a [now stale] * hardware queue */ static void stop_afu(struct cxlflash_cfg *cfg) { int i; struct afu *afu = cfg->afu; struct afu_cmd *cmd; if (likely(afu)) { for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { cmd = &afu->cmd[i]; complete(&cmd->cevent); if (!atomic_read(&cmd->free)) cmd_checkin(cmd); } if (likely(afu->afu_map)) { cxl_psa_unmap((void __iomem *)afu->afu_map); afu->afu_map = NULL; } kref_put(&afu->mapcount, afu_unmap); } } /** * term_intr() - disables all AFU interrupts * @cfg: Internal structure associated with the host. * @level: Depth of allocation, where to begin waterfall tear down. * * Safe to call with AFU/MC in partially allocated/initialized state. */ static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; if (!afu || !cfg->mcctx) { dev_err(dev, "%s: returning with NULL afu or MC\n", __func__); return; } switch (level) { case UNMAP_THREE: cxl_unmap_afu_irq(cfg->mcctx, 3, afu); case UNMAP_TWO: cxl_unmap_afu_irq(cfg->mcctx, 2, afu); case UNMAP_ONE: cxl_unmap_afu_irq(cfg->mcctx, 1, afu); case FREE_IRQ: cxl_free_afu_irqs(cfg->mcctx); /* fall through */ case UNDO_NOOP: /* No action required */ break; } } /** * term_mc() - terminates the master context * @cfg: Internal structure associated with the host. * @level: Depth of allocation, where to begin waterfall tear down. * * Safe to call with AFU/MC in partially allocated/initialized state. */ static void term_mc(struct cxlflash_cfg *cfg) { int rc = 0; struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; if (!afu || !cfg->mcctx) { dev_err(dev, "%s: returning with NULL afu or MC\n", __func__); return; } rc = cxl_stop_context(cfg->mcctx); WARN_ON(rc); cfg->mcctx = NULL; } /** * term_afu() - terminates the AFU * @cfg: Internal structure associated with the host. * * Safe to call with AFU/MC in partially allocated/initialized state. */ static void term_afu(struct cxlflash_cfg *cfg) { /* * Tear down is carefully orchestrated to ensure * no interrupts can come in when the problem state * area is unmapped. * * 1) Disable all AFU interrupts * 2) Unmap the problem state area * 3) Stop the master context */ term_intr(cfg, UNMAP_THREE); if (cfg->afu) stop_afu(cfg); term_mc(cfg); pr_debug("%s: returning\n", __func__); } /** * notify_shutdown() - notifies device of pending shutdown * @cfg: Internal structure associated with the host. * @wait: Whether to wait for shutdown processing to complete. * * This function will notify the AFU that the adapter is being shutdown * and will wait for shutdown processing to complete if wait is true. * This notification should flush pending I/Os to the device and halt * further I/Os until the next AFU reset is issued and device restarted. */ static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; struct sisl_global_map __iomem *global; struct dev_dependent_vals *ddv; u64 reg, status; int i, retry_cnt = 0; ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data; if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN)) return; if (!afu || !afu->afu_map) { dev_dbg(dev, "%s: The problem state area is not mapped\n", __func__); return; } global = &afu->afu_map->global; /* Notify AFU */ for (i = 0; i < NUM_FC_PORTS; i++) { reg = readq_be(&global->fc_regs[i][FC_CONFIG2 / 8]); reg |= SISL_FC_SHUTDOWN_NORMAL; writeq_be(reg, &global->fc_regs[i][FC_CONFIG2 / 8]); } if (!wait) return; /* Wait up to 1.5 seconds for shutdown processing to complete */ for (i = 0; i < NUM_FC_PORTS; i++) { retry_cnt = 0; while (true) { status = readq_be(&global->fc_regs[i][FC_STATUS / 8]); if (status & SISL_STATUS_SHUTDOWN_COMPLETE) break; if (++retry_cnt >= MC_RETRY_CNT) { dev_dbg(dev, "%s: port %d shutdown processing " "not yet completed\n", __func__, i); break; } msleep(100 * retry_cnt); } } } /** * cxlflash_shutdown() - shutdown handler * @pdev: PCI device associated with the host. */ static void cxlflash_shutdown(struct pci_dev *pdev) { struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); notify_shutdown(cfg, false); } /** * cxlflash_remove() - PCI entry point to tear down host * @pdev: PCI device associated with the host. * * Safe to use as a cleanup in partially allocated/initialized state. */ static void cxlflash_remove(struct pci_dev *pdev) { struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); ulong lock_flags; /* If a Task Management Function is active, wait for it to complete * before continuing with remove. */ spin_lock_irqsave(&cfg->tmf_slock, lock_flags); if (cfg->tmf_active) wait_event_interruptible_lock_irq(cfg->tmf_waitq, !cfg->tmf_active, cfg->tmf_slock); spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags); /* Notify AFU and wait for shutdown processing to complete */ notify_shutdown(cfg, true); cfg->state = STATE_FAILTERM; cxlflash_stop_term_user_contexts(cfg); switch (cfg->init_state) { case INIT_STATE_SCSI: cxlflash_term_local_luns(cfg); scsi_remove_host(cfg->host); /* fall through */ case INIT_STATE_AFU: cancel_work_sync(&cfg->work_q); term_afu(cfg); case INIT_STATE_PCI: pci_disable_device(pdev); case INIT_STATE_NONE: free_mem(cfg); scsi_host_put(cfg->host); break; } pr_debug("%s: returning\n", __func__); } /** * alloc_mem() - allocates the AFU and its command pool * @cfg: Internal structure associated with the host. * * A partially allocated state remains on failure. * * Return: * 0 on success * -ENOMEM on failure to allocate memory */ static int alloc_mem(struct cxlflash_cfg *cfg) { int rc = 0; int i; char *buf = NULL; struct device *dev = &cfg->dev->dev; /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */ cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, get_order(sizeof(struct afu))); if (unlikely(!cfg->afu)) { dev_err(dev, "%s: cannot get %d free pages\n", __func__, get_order(sizeof(struct afu))); rc = -ENOMEM; goto out; } cfg->afu->parent = cfg; cfg->afu->afu_map = NULL; for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) { if (!((u64)buf & (PAGE_SIZE - 1))) { buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO); if (unlikely(!buf)) { dev_err(dev, "%s: Allocate command buffers fail!\n", __func__); rc = -ENOMEM; free_mem(cfg); goto out; } } cfg->afu->cmd[i].buf = buf; atomic_set(&cfg->afu->cmd[i].free, 1); cfg->afu->cmd[i].slot = i; } out: return rc; } /** * init_pci() - initializes the host as a PCI device * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int init_pci(struct cxlflash_cfg *cfg) { struct pci_dev *pdev = cfg->dev; int rc = 0; rc = pci_enable_device(pdev); if (rc || pci_channel_offline(pdev)) { if (pci_channel_offline(pdev)) { cxlflash_wait_for_pci_err_recovery(cfg); rc = pci_enable_device(pdev); } if (rc) { dev_err(&pdev->dev, "%s: Cannot enable adapter\n", __func__); cxlflash_wait_for_pci_err_recovery(cfg); goto out; } } out: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * init_scsi() - adds the host to the SCSI stack and kicks off host scan * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int init_scsi(struct cxlflash_cfg *cfg) { struct pci_dev *pdev = cfg->dev; int rc = 0; rc = scsi_add_host(cfg->host, &pdev->dev); if (rc) { dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n", __func__, rc); goto out; } scsi_scan_host(cfg->host); out: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * set_port_online() - transitions the specified host FC port to online state * @fc_regs: Top of MMIO region defined for specified port. * * The provided MMIO region must be mapped prior to call. Online state means * that the FC link layer has synced, completed the handshaking process, and * is ready for login to start. */ static void set_port_online(__be64 __iomem *fc_regs) { u64 cmdcfg; cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */ cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */ writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); } /** * set_port_offline() - transitions the specified host FC port to offline state * @fc_regs: Top of MMIO region defined for specified port. * * The provided MMIO region must be mapped prior to call. */ static void set_port_offline(__be64 __iomem *fc_regs) { u64 cmdcfg; cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]); cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */ cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */ writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]); } /** * wait_port_online() - waits for the specified host FC port come online * @fc_regs: Top of MMIO region defined for specified port. * @delay_us: Number of microseconds to delay between reading port status. * @nretry: Number of cycles to retry reading port status. * * The provided MMIO region must be mapped prior to call. This will timeout * when the cable is not plugged in. * * Return: * TRUE (1) when the specified port is online * FALSE (0) when the specified port fails to come online after timeout * -EINVAL when @delay_us is less than 1000 */ static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) { u64 status; if (delay_us < 1000) { pr_err("%s: invalid delay specified %d\n", __func__, delay_us); return -EINVAL; } do { msleep(delay_us / 1000); status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE && nretry--); return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE); } /** * wait_port_offline() - waits for the specified host FC port go offline * @fc_regs: Top of MMIO region defined for specified port. * @delay_us: Number of microseconds to delay between reading port status. * @nretry: Number of cycles to retry reading port status. * * The provided MMIO region must be mapped prior to call. * * Return: * TRUE (1) when the specified port is offline * FALSE (0) when the specified port fails to go offline after timeout * -EINVAL when @delay_us is less than 1000 */ static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry) { u64 status; if (delay_us < 1000) { pr_err("%s: invalid delay specified %d\n", __func__, delay_us); return -EINVAL; } do { msleep(delay_us / 1000); status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE && nretry--); return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE); } /** * afu_set_wwpn() - configures the WWPN for the specified host FC port * @afu: AFU associated with the host that owns the specified FC port. * @port: Port number being configured. * @fc_regs: Top of MMIO region defined for specified port. * @wwpn: The world-wide-port-number previously discovered for port. * * The provided MMIO region must be mapped prior to call. As part of the * sequence to configure the WWPN, the port is toggled offline and then back * online. This toggling action can cause this routine to delay up to a few * seconds. When configured to use the internal LUN feature of the AFU, a * failure to come online is overridden. * * Return: * 0 when the WWPN is successfully written and the port comes back online * -1 when the port fails to go offline or come back up online */ static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs, u64 wwpn) { int rc = 0; set_port_offline(fc_regs); if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) { pr_debug("%s: wait on port %d to go offline timed out\n", __func__, port); rc = -1; /* but continue on to leave the port back online */ } if (rc == 0) writeq_be(wwpn, &fc_regs[FC_PNAME / 8]); /* Always return success after programming WWPN */ rc = 0; set_port_online(fc_regs); if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) { pr_err("%s: wait on port %d to go online timed out\n", __func__, port); } pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * afu_link_reset() - resets the specified host FC port * @afu: AFU associated with the host that owns the specified FC port. * @port: Port number being configured. * @fc_regs: Top of MMIO region defined for specified port. * * The provided MMIO region must be mapped prior to call. The sequence to * reset the port involves toggling it offline and then back online. This * action can cause this routine to delay up to a few seconds. An effort * is made to maintain link with the device by switching to host to use * the alternate port exclusively while the reset takes place. * failure to come online is overridden. */ static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs) { u64 port_sel; /* first switch the AFU to the other links, if any */ port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel); port_sel &= ~(1ULL << port); writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); set_port_offline(fc_regs); if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) pr_err("%s: wait on port %d to go offline timed out\n", __func__, port); set_port_online(fc_regs); if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US, FC_PORT_STATUS_RETRY_CNT)) pr_err("%s: wait on port %d to go online timed out\n", __func__, port); /* switch back to include this port */ port_sel |= (1ULL << port); writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel); cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC); pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel); } /* * Asynchronous interrupt information table */ static const struct asyc_intr_info ainfo[] = { {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET}, {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0}, {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET}, {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET}, {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR}, {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST}, {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0}, {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, 0}, {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET}, {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0}, {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET}, {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET}, {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR}, {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST}, {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0}, {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, 0}, {0x0, "", 0, 0} /* terminator */ }; /** * find_ainfo() - locates and returns asynchronous interrupt information * @status: Status code set by AFU on error. * * Return: The located information or NULL when the status code is invalid. */ static const struct asyc_intr_info *find_ainfo(u64 status) { const struct asyc_intr_info *info; for (info = &ainfo[0]; info->status; info++) if (info->status == status) return info; return NULL; } /** * afu_err_intr_init() - clears and initializes the AFU for error interrupts * @afu: AFU associated with the host. */ static void afu_err_intr_init(struct afu *afu) { int i; u64 reg; /* global async interrupts: AFU clears afu_ctrl on context exit * if async interrupts were sent to that context. This prevents * the AFU form sending further async interrupts when * there is * nobody to receive them. */ /* mask all */ writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask); /* set LISN# to send and point to master context */ reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40); if (afu->internal_lun) reg |= 1; /* Bit 63 indicates local lun */ writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl); /* clear all */ writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); /* unmask bits that are of interest */ /* note: afu can send an interrupt after this step */ writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask); /* clear again in case a bit came on after previous clear but before */ /* unmask */ writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear); /* Clear/Set internal lun bits */ reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); reg &= SISL_FC_INTERNAL_MASK; if (afu->internal_lun) reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT); writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]); /* now clear FC errors */ for (i = 0; i < NUM_FC_PORTS; i++) { writeq_be(0xFFFFFFFFU, &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]); writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]); } /* sync interrupts for master's IOARRIN write */ /* note that unlike asyncs, there can be no pending sync interrupts */ /* at this time (this is a fresh context and master has not written */ /* IOARRIN yet), so there is nothing to clear. */ /* set LISN#, it is always sent to the context that wrote IOARRIN */ writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl); writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask); } /** * cxlflash_sync_err_irq() - interrupt handler for synchronous errors * @irq: Interrupt number. * @data: Private data provided at interrupt registration, the AFU. * * Return: Always return IRQ_HANDLED. */ static irqreturn_t cxlflash_sync_err_irq(int irq, void *data) { struct afu *afu = (struct afu *)data; u64 reg; u64 reg_unmasked; reg = readq_be(&afu->host_map->intr_status); reg_unmasked = (reg & SISL_ISTATUS_UNMASK); if (reg_unmasked == 0UL) { pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n", __func__, (u64)afu, reg); goto cxlflash_sync_err_irq_exit; } pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n", __func__, (u64)afu, reg); writeq_be(reg_unmasked, &afu->host_map->intr_clear); cxlflash_sync_err_irq_exit: pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED); return IRQ_HANDLED; } /** * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path) * @irq: Interrupt number. * @data: Private data provided at interrupt registration, the AFU. * * Return: Always return IRQ_HANDLED. */ static irqreturn_t cxlflash_rrq_irq(int irq, void *data) { struct afu *afu = (struct afu *)data; struct afu_cmd *cmd; bool toggle = afu->toggle; u64 entry, *hrrq_start = afu->hrrq_start, *hrrq_end = afu->hrrq_end, *hrrq_curr = afu->hrrq_curr; /* Process however many RRQ entries that are ready */ while (true) { entry = *hrrq_curr; if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle) break; cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT); cmd_complete(cmd); /* Advance to next entry or wrap and flip the toggle bit */ if (hrrq_curr < hrrq_end) hrrq_curr++; else { hrrq_curr = hrrq_start; toggle ^= SISL_RESP_HANDLE_T_BIT; } } afu->hrrq_curr = hrrq_curr; afu->toggle = toggle; return IRQ_HANDLED; } /** * cxlflash_async_err_irq() - interrupt handler for asynchronous errors * @irq: Interrupt number. * @data: Private data provided at interrupt registration, the AFU. * * Return: Always return IRQ_HANDLED. */ static irqreturn_t cxlflash_async_err_irq(int irq, void *data) { struct afu *afu = (struct afu *)data; struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; u64 reg_unmasked; const struct asyc_intr_info *info; struct sisl_global_map __iomem *global = &afu->afu_map->global; u64 reg; u8 port; int i; reg = readq_be(&global->regs.aintr_status); reg_unmasked = (reg & SISL_ASTATUS_UNMASK); if (reg_unmasked == 0) { dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n", __func__, reg); goto out; } /* FYI, it is 'okay' to clear AFU status before FC_ERROR */ writeq_be(reg_unmasked, &global->regs.aintr_clear); /* Check each bit that is on */ for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) { info = find_ainfo(1ULL << i); if (((reg_unmasked & 0x1) == 0) || !info) continue; port = info->port; dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n", __func__, port, info->desc, readq_be(&global->fc_regs[port][FC_STATUS / 8])); /* * Do link reset first, some OTHER errors will set FC_ERROR * again if cleared before or w/o a reset */ if (info->action & LINK_RESET) { dev_err(dev, "%s: FC Port %d: resetting link\n", __func__, port); cfg->lr_state = LINK_RESET_REQUIRED; cfg->lr_port = port; kref_get(&cfg->afu->mapcount); schedule_work(&cfg->work_q); } if (info->action & CLR_FC_ERROR) { reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]); /* * Since all errors are unmasked, FC_ERROR and FC_ERRCAP * should be the same and tracing one is sufficient. */ dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n", __func__, port, reg); writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]); writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]); } if (info->action & SCAN_HOST) { atomic_inc(&cfg->scan_host_needed); kref_get(&cfg->afu->mapcount); schedule_work(&cfg->work_q); } } out: dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu); return IRQ_HANDLED; } /** * start_context() - starts the master context * @cfg: Internal structure associated with the host. * * Return: A success or failure value from CXL services. */ static int start_context(struct cxlflash_cfg *cfg) { int rc = 0; rc = cxl_start_context(cfg->mcctx, cfg->afu->work.work_element_descriptor, NULL); pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * read_vpd() - obtains the WWPNs from VPD * @cfg: Internal structure associated with the host. * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs * * Return: 0 on success, -errno on failure */ static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[]) { struct pci_dev *dev = cfg->dev; int rc = 0; int ro_start, ro_size, i, j, k; ssize_t vpd_size; char vpd_data[CXLFLASH_VPD_LEN]; char tmp_buf[WWPN_BUF_LEN] = { 0 }; char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" }; /* Get the VPD data from the device */ vpd_size = cxl_read_adapter_vpd(dev, vpd_data, sizeof(vpd_data)); if (unlikely(vpd_size <= 0)) { dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n", __func__, vpd_size); rc = -ENODEV; goto out; } /* Get the read only section offset */ ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); if (unlikely(ro_start < 0)) { dev_err(&dev->dev, "%s: VPD Read-only data not found\n", __func__); rc = -ENODEV; goto out; } /* Get the read only section size, cap when extends beyond read VPD */ ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); j = ro_size; i = ro_start + PCI_VPD_LRDT_TAG_SIZE; if (unlikely((i + j) > vpd_size)) { pr_debug("%s: Might need to read more VPD (%d > %ld)\n", __func__, (i + j), vpd_size); ro_size = vpd_size - i; } /* * Find the offset of the WWPN tag within the read only * VPD data and validate the found field (partials are * no good to us). Convert the ASCII data to an integer * value. Note that we must copy to a temporary buffer * because the conversion service requires that the ASCII * string be terminated. */ for (k = 0; k < NUM_FC_PORTS; k++) { j = ro_size; i = ro_start + PCI_VPD_LRDT_TAG_SIZE; i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]); if (unlikely(i < 0)) { dev_err(&dev->dev, "%s: Port %d WWPN not found " "in VPD\n", __func__, k); rc = -ENODEV; goto out; } j = pci_vpd_info_field_size(&vpd_data[i]); i += PCI_VPD_INFO_FLD_HDR_SIZE; if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) { dev_err(&dev->dev, "%s: Port %d WWPN incomplete or " "VPD corrupt\n", __func__, k); rc = -ENODEV; goto out; } memcpy(tmp_buf, &vpd_data[i], WWPN_LEN); rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]); if (unlikely(rc)) { dev_err(&dev->dev, "%s: Fail to convert port %d WWPN " "to integer\n", __func__, k); rc = -ENODEV; goto out; } } out: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * init_pcr() - initialize the provisioning and control registers * @cfg: Internal structure associated with the host. * * Also sets up fast access to the mapped registers and initializes AFU * command fields that never change. */ static void init_pcr(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct sisl_ctrl_map __iomem *ctrl_map; int i; for (i = 0; i < MAX_CONTEXT; i++) { ctrl_map = &afu->afu_map->ctrls[i].ctrl; /* Disrupt any clients that could be running */ /* e.g. clients that survived a master restart */ writeq_be(0, &ctrl_map->rht_start); writeq_be(0, &ctrl_map->rht_cnt_id); writeq_be(0, &ctrl_map->ctx_cap); } /* Copy frequently used fields into afu */ afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx); afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host; afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl; /* Program the Endian Control for the master context */ writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl); /* Initialize cmd fields that never change */ for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { afu->cmd[i].rcb.ctx_id = afu->ctx_hndl; afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED; afu->cmd[i].rcb.rrq = 0x0; } } /** * init_global() - initialize AFU global registers * @cfg: Internal structure associated with the host. */ static int init_global(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */ int i = 0, num_ports = 0; int rc = 0; u64 reg; rc = read_vpd(cfg, &wwpn[0]); if (rc) { dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc); goto out; } pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]); /* Set up RRQ in AFU for master issued cmds */ writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start); writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end); /* AFU configuration */ reg = readq_be(&afu->afu_map->global.regs.afu_config); reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN; /* enable all auto retry options and control endianness */ /* leave others at default: */ /* CTX_CAP write protected, mbox_r does not clear on read and */ /* checker on if dual afu */ writeq_be(reg, &afu->afu_map->global.regs.afu_config); /* Global port select: select either port */ if (afu->internal_lun) { /* Only use port 0 */ writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel); num_ports = NUM_FC_PORTS - 1; } else { writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel); num_ports = NUM_FC_PORTS; } for (i = 0; i < num_ports; i++) { /* Unmask all errors (but they are still masked at AFU) */ writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]); /* Clear CRC error cnt & set a threshold */ (void)readq_be(&afu->afu_map->global. fc_regs[i][FC_CNT_CRCERR / 8]); writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i] [FC_CRC_THRESH / 8]); /* Set WWPNs. If already programmed, wwpn[i] is 0 */ if (wwpn[i] != 0 && afu_set_wwpn(afu, i, &afu->afu_map->global.fc_regs[i][0], wwpn[i])) { dev_err(dev, "%s: failed to set WWPN on port %d\n", __func__, i); rc = -EIO; goto out; } /* Programming WWPN back to back causes additional * offline/online transitions and a PLOGI */ msleep(100); } /* Set up master's own CTX_CAP to allow real mode, host translation */ /* tables, afu cmds and read/write GSCSI cmds. */ /* First, unlock ctx_cap write by reading mbox */ (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */ writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE | SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD | SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD), &afu->ctrl_map->ctx_cap); /* Initialize heartbeat */ afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb); out: return rc; } /** * start_afu() - initializes and starts the AFU * @cfg: Internal structure associated with the host. */ static int start_afu(struct cxlflash_cfg *cfg) { struct afu *afu = cfg->afu; struct afu_cmd *cmd; int i = 0; int rc = 0; for (i = 0; i < CXLFLASH_NUM_CMDS; i++) { cmd = &afu->cmd[i]; init_completion(&cmd->cevent); spin_lock_init(&cmd->slock); cmd->parent = afu; } init_pcr(cfg); /* After an AFU reset, RRQ entries are stale, clear them */ memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry)); /* Initialize RRQ pointers */ afu->hrrq_start = &afu->rrq_entry[0]; afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1]; afu->hrrq_curr = afu->hrrq_start; afu->toggle = 1; rc = init_global(cfg); pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * init_intr() - setup interrupt handlers for the master context * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static enum undo_level init_intr(struct cxlflash_cfg *cfg, struct cxl_context *ctx) { struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; int rc = 0; enum undo_level level = UNDO_NOOP; rc = cxl_allocate_afu_irqs(ctx, 3); if (unlikely(rc)) { dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n", __func__, rc); level = UNDO_NOOP; goto out; } rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu, "SISL_MSI_SYNC_ERROR"); if (unlikely(rc <= 0)) { dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n", __func__); level = FREE_IRQ; goto out; } rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu, "SISL_MSI_RRQ_UPDATED"); if (unlikely(rc <= 0)) { dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n", __func__); level = UNMAP_ONE; goto out; } rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu, "SISL_MSI_ASYNC_ERROR"); if (unlikely(rc <= 0)) { dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n", __func__); level = UNMAP_TWO; goto out; } out: return level; } /** * init_mc() - create and register as the master context * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int init_mc(struct cxlflash_cfg *cfg) { struct cxl_context *ctx; struct device *dev = &cfg->dev->dev; int rc = 0; enum undo_level level; ctx = cxl_get_context(cfg->dev); if (unlikely(!ctx)) { rc = -ENOMEM; goto ret; } cfg->mcctx = ctx; /* Set it up as a master with the CXL */ cxl_set_master(ctx); /* During initialization reset the AFU to start from a clean slate */ rc = cxl_afu_reset(cfg->mcctx); if (unlikely(rc)) { dev_err(dev, "%s: initial AFU reset failed rc=%d\n", __func__, rc); goto ret; } level = init_intr(cfg, ctx); if (unlikely(level)) { dev_err(dev, "%s: setting up interrupts failed rc=%d\n", __func__, rc); goto out; } /* This performs the equivalent of the CXL_IOCTL_START_WORK. * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process * element (pe) that is embedded in the context (ctx) */ rc = start_context(cfg); if (unlikely(rc)) { dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc); level = UNMAP_THREE; goto out; } ret: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; out: term_intr(cfg, level); goto ret; } /** * init_afu() - setup as master context and start AFU * @cfg: Internal structure associated with the host. * * This routine is a higher level of control for configuring the * AFU on probe and reset paths. * * Return: 0 on success, -errno on failure */ static int init_afu(struct cxlflash_cfg *cfg) { u64 reg; int rc = 0; struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; cxl_perst_reloads_same_image(cfg->cxl_afu, true); rc = init_mc(cfg); if (rc) { dev_err(dev, "%s: call to init_mc failed, rc=%d!\n", __func__, rc); goto out; } /* Map the entire MMIO space of the AFU */ afu->afu_map = cxl_psa_map(cfg->mcctx); if (!afu->afu_map) { dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__); rc = -ENOMEM; goto err1; } kref_init(&afu->mapcount); /* No byte reverse on reading afu_version or string will be backwards */ reg = readq(&afu->afu_map->global.regs.afu_version); memcpy(afu->version, ®, sizeof(reg)); afu->interface_version = readq_be(&afu->afu_map->global.regs.interface_version); if ((afu->interface_version + 1) == 0) { pr_err("Back level AFU, please upgrade. AFU version %s " "interface version 0x%llx\n", afu->version, afu->interface_version); rc = -EINVAL; goto err2; } pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__, afu->version, afu->interface_version); rc = start_afu(cfg); if (rc) { dev_err(dev, "%s: call to start_afu failed, rc=%d!\n", __func__, rc); goto err2; } afu_err_intr_init(cfg->afu); atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); /* Restore the LUN mappings */ cxlflash_restore_luntable(cfg); out: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; err2: kref_put(&afu->mapcount, afu_unmap); err1: term_intr(cfg, UNMAP_THREE); term_mc(cfg); goto out; } /** * cxlflash_afu_sync() - builds and sends an AFU sync command * @afu: AFU associated with the host. * @ctx_hndl_u: Identifies context requesting sync. * @res_hndl_u: Identifies resource requesting sync. * @mode: Type of sync to issue (lightweight, heavyweight, global). * * The AFU can only take 1 sync command at a time. This routine enforces this * limitation by using a mutex to provide exclusive access to the AFU during * the sync. This design point requires calling threads to not be on interrupt * context due to the possibility of sleeping during concurrent sync operations. * * AFU sync operations are only necessary and allowed when the device is * operating normally. When not operating normally, sync requests can occur as * part of cleaning up resources associated with an adapter prior to removal. * In this scenario, these requests are simply ignored (safe due to the AFU * going away). * * Return: * 0 on success * -1 on failure */ int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u, res_hndl_t res_hndl_u, u8 mode) { struct cxlflash_cfg *cfg = afu->parent; struct device *dev = &cfg->dev->dev; struct afu_cmd *cmd = NULL; int rc = 0; int retry_cnt = 0; static DEFINE_MUTEX(sync_active); if (cfg->state != STATE_NORMAL) { pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state); return 0; } mutex_lock(&sync_active); retry: cmd = cmd_checkout(afu); if (unlikely(!cmd)) { retry_cnt++; udelay(1000 * retry_cnt); if (retry_cnt < MC_RETRY_CNT) goto retry; dev_err(dev, "%s: could not get a free command\n", __func__); rc = -1; goto out; } pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u); memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb)); cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD; cmd->rcb.port_sel = 0x0; /* NA */ cmd->rcb.lun_id = 0x0; /* NA */ cmd->rcb.data_len = 0x0; cmd->rcb.data_ea = 0x0; cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT; cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */ cmd->rcb.cdb[1] = mode; /* The cdb is aligned, no unaligned accessors required */ *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u); *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u); rc = send_cmd(afu, cmd); if (unlikely(rc)) goto out; wait_resp(afu, cmd); /* Set on timeout */ if (unlikely((cmd->sa.ioasc != 0) || (cmd->sa.host_use_b[0] & B_ERROR))) rc = -1; out: mutex_unlock(&sync_active); if (cmd) cmd_checkin(cmd); pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * afu_reset() - resets the AFU * @cfg: Internal structure associated with the host. * * Return: 0 on success, -errno on failure */ static int afu_reset(struct cxlflash_cfg *cfg) { int rc = 0; /* Stop the context before the reset. Since the context is * no longer available restart it after the reset is complete */ term_afu(cfg); rc = init_afu(cfg); pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * drain_ioctls() - wait until all currently executing ioctls have completed * @cfg: Internal structure associated with the host. * * Obtain write access to read/write semaphore that wraps ioctl * handling to 'drain' ioctls currently executing. */ static void drain_ioctls(struct cxlflash_cfg *cfg) { down_write(&cfg->ioctl_rwsem); up_write(&cfg->ioctl_rwsem); } /** * cxlflash_eh_device_reset_handler() - reset a single LUN * @scp: SCSI command to send. * * Return: * SUCCESS as defined in scsi/scsi.h * FAILED as defined in scsi/scsi.h */ static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp) { int rc = SUCCESS; struct Scsi_Host *host = scp->device->host; struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; struct afu *afu = cfg->afu; int rcr = 0; pr_debug("%s: (scp=%p) %d/%d/%d/%llu " "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, host->host_no, scp->device->channel, scp->device->id, scp->device->lun, get_unaligned_be32(&((u32 *)scp->cmnd)[0]), get_unaligned_be32(&((u32 *)scp->cmnd)[1]), get_unaligned_be32(&((u32 *)scp->cmnd)[2]), get_unaligned_be32(&((u32 *)scp->cmnd)[3])); retry: switch (cfg->state) { case STATE_NORMAL: rcr = send_tmf(afu, scp, TMF_LUN_RESET); if (unlikely(rcr)) rc = FAILED; break; case STATE_RESET: wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); goto retry; default: rc = FAILED; break; } pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_eh_host_reset_handler() - reset the host adapter * @scp: SCSI command from stack identifying host. * * Return: * SUCCESS as defined in scsi/scsi.h * FAILED as defined in scsi/scsi.h */ static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp) { int rc = SUCCESS; int rcr = 0; struct Scsi_Host *host = scp->device->host; struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata; pr_debug("%s: (scp=%p) %d/%d/%d/%llu " "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp, host->host_no, scp->device->channel, scp->device->id, scp->device->lun, get_unaligned_be32(&((u32 *)scp->cmnd)[0]), get_unaligned_be32(&((u32 *)scp->cmnd)[1]), get_unaligned_be32(&((u32 *)scp->cmnd)[2]), get_unaligned_be32(&((u32 *)scp->cmnd)[3])); switch (cfg->state) { case STATE_NORMAL: cfg->state = STATE_RESET; drain_ioctls(cfg); cxlflash_mark_contexts_error(cfg); rcr = afu_reset(cfg); if (rcr) { rc = FAILED; cfg->state = STATE_FAILTERM; } else cfg->state = STATE_NORMAL; wake_up_all(&cfg->reset_waitq); break; case STATE_RESET: wait_event(cfg->reset_waitq, cfg->state != STATE_RESET); if (cfg->state == STATE_NORMAL) break; /* fall through */ default: rc = FAILED; break; } pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; } /** * cxlflash_change_queue_depth() - change the queue depth for the device * @sdev: SCSI device destined for queue depth change. * @qdepth: Requested queue depth value to set. * * The requested queue depth is capped to the maximum supported value. * * Return: The actual queue depth set. */ static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth) { if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN) qdepth = CXLFLASH_MAX_CMDS_PER_LUN; scsi_change_queue_depth(sdev, qdepth); return sdev->queue_depth; } /** * cxlflash_show_port_status() - queries and presents the current port status * @port: Desired port for status reporting. * @afu: AFU owning the specified port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf) { char *disp_status; u64 status; __be64 __iomem *fc_regs; if (port >= NUM_FC_PORTS) return 0; fc_regs = &afu->afu_map->global.fc_regs[port][0]; status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]); status &= FC_MTIP_STATUS_MASK; if (status == FC_MTIP_STATUS_ONLINE) disp_status = "online"; else if (status == FC_MTIP_STATUS_OFFLINE) disp_status = "offline"; else disp_status = "unknown"; return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status); } /** * port0_show() - queries and presents the current status of port 0 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port0_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; struct afu *afu = cfg->afu; return cxlflash_show_port_status(0, afu, buf); } /** * port1_show() - queries and presents the current status of port 1 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; struct afu *afu = cfg->afu; return cxlflash_show_port_status(1, afu, buf); } /** * lun_mode_show() - presents the current LUN mode of the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the LUN mode. * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t lun_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; struct afu *afu = cfg->afu; return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun); } /** * lun_mode_store() - sets the LUN mode of the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the LUN mode. * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII. * @count: Length of data resizing in @buf. * * The CXL Flash AFU supports a dummy LUN mode where the external * links and storage are not required. Space on the FPGA is used * to create 1 or 2 small LUNs which are presented to the system * as if they were a normal storage device. This feature is useful * during development and also provides manufacturing with a way * to test the AFU without an actual device. * * 0 = external LUN[s] (default) * 1 = internal LUN (1 x 64K, 512B blocks, id 0) * 2 = internal LUN (1 x 64K, 4K blocks, id 0) * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1) * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1) * * Return: The size of the ASCII string returned in @buf. */ static ssize_t lun_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; struct afu *afu = cfg->afu; int rc; u32 lun_mode; rc = kstrtouint(buf, 10, &lun_mode); if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) { afu->internal_lun = lun_mode; /* * When configured for internal LUN, there is only one channel, * channel number 0, else there will be 2 (default). */ if (afu->internal_lun) shost->max_channel = 0; else shost->max_channel = NUM_FC_PORTS - 1; afu_reset(cfg); scsi_scan_host(cfg->host); } return count; } /** * ioctl_version_show() - presents the current ioctl version of the host * @dev: Generic device associated with the host. * @attr: Device attribute representing the ioctl version. * @buf: Buffer of length PAGE_SIZE to report back the ioctl version. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t ioctl_version_show(struct device *dev, struct device_attribute *attr, char *buf) { return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0); } /** * cxlflash_show_port_lun_table() - queries and presents the port LUN table * @port: Desired port for status reporting. * @afu: AFU owning the specified port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t cxlflash_show_port_lun_table(u32 port, struct afu *afu, char *buf) { int i; ssize_t bytes = 0; __be64 __iomem *fc_port; if (port >= NUM_FC_PORTS) return 0; fc_port = &afu->afu_map->global.fc_port[port][0]; for (i = 0; i < CXLFLASH_NUM_VLUNS; i++) bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes, "%03d: %016llX\n", i, readq_be(&fc_port[i])); return bytes; } /** * port0_lun_table_show() - presents the current LUN table of port 0 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port0_lun_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; struct afu *afu = cfg->afu; return cxlflash_show_port_lun_table(0, afu, buf); } /** * port1_lun_table_show() - presents the current LUN table of port 1 * @dev: Generic device associated with the host owning the port. * @attr: Device attribute representing the port. * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t port1_lun_table_show(struct device *dev, struct device_attribute *attr, char *buf) { struct Scsi_Host *shost = class_to_shost(dev); struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata; struct afu *afu = cfg->afu; return cxlflash_show_port_lun_table(1, afu, buf); } /** * mode_show() - presents the current mode of the device * @dev: Generic device associated with the device. * @attr: Device attribute representing the device mode. * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII. * * Return: The size of the ASCII string returned in @buf. */ static ssize_t mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct scsi_device *sdev = to_scsi_device(dev); return scnprintf(buf, PAGE_SIZE, "%s\n", sdev->hostdata ? "superpipe" : "legacy"); } /* * Host attributes */ static DEVICE_ATTR_RO(port0); static DEVICE_ATTR_RO(port1); static DEVICE_ATTR_RW(lun_mode); static DEVICE_ATTR_RO(ioctl_version); static DEVICE_ATTR_RO(port0_lun_table); static DEVICE_ATTR_RO(port1_lun_table); static struct device_attribute *cxlflash_host_attrs[] = { &dev_attr_port0, &dev_attr_port1, &dev_attr_lun_mode, &dev_attr_ioctl_version, &dev_attr_port0_lun_table, &dev_attr_port1_lun_table, NULL }; /* * Device attributes */ static DEVICE_ATTR_RO(mode); static struct device_attribute *cxlflash_dev_attrs[] = { &dev_attr_mode, NULL }; /* * Host template */ static struct scsi_host_template driver_template = { .module = THIS_MODULE, .name = CXLFLASH_ADAPTER_NAME, .info = cxlflash_driver_info, .ioctl = cxlflash_ioctl, .proc_name = CXLFLASH_NAME, .queuecommand = cxlflash_queuecommand, .eh_device_reset_handler = cxlflash_eh_device_reset_handler, .eh_host_reset_handler = cxlflash_eh_host_reset_handler, .change_queue_depth = cxlflash_change_queue_depth, .cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN, .can_queue = CXLFLASH_MAX_CMDS, .this_id = -1, .sg_tablesize = SG_NONE, /* No scatter gather support */ .max_sectors = CXLFLASH_MAX_SECTORS, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = cxlflash_host_attrs, .sdev_attrs = cxlflash_dev_attrs, }; /* * Device dependent values */ static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS, 0ULL }; static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS, CXLFLASH_NOTIFY_SHUTDOWN }; /* * PCI device binding table */ static struct pci_device_id cxlflash_pci_table[] = { {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals}, {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT, PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals}, {} }; MODULE_DEVICE_TABLE(pci, cxlflash_pci_table); /** * cxlflash_worker_thread() - work thread handler for the AFU * @work: Work structure contained within cxlflash associated with host. * * Handles the following events: * - Link reset which cannot be performed on interrupt context due to * blocking up to a few seconds * - Read AFU command room * - Rescan the host */ static void cxlflash_worker_thread(struct work_struct *work) { struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg, work_q); struct afu *afu = cfg->afu; struct device *dev = &cfg->dev->dev; int port; ulong lock_flags; /* Avoid MMIO if the device has failed */ if (cfg->state != STATE_NORMAL) return; spin_lock_irqsave(cfg->host->host_lock, lock_flags); if (cfg->lr_state == LINK_RESET_REQUIRED) { port = cfg->lr_port; if (port < 0) dev_err(dev, "%s: invalid port index %d\n", __func__, port); else { spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); /* The reset can block... */ afu_link_reset(afu, port, &afu->afu_map->global.fc_regs[port][0]); spin_lock_irqsave(cfg->host->host_lock, lock_flags); } cfg->lr_state = LINK_RESET_COMPLETE; } if (afu->read_room) { atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room)); afu->read_room = false; } spin_unlock_irqrestore(cfg->host->host_lock, lock_flags); if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0) scsi_scan_host(cfg->host); kref_put(&afu->mapcount, afu_unmap); } /** * cxlflash_probe() - PCI entry point to add host * @pdev: PCI device associated with the host. * @dev_id: PCI device id associated with device. * * Return: 0 on success, -errno on failure */ static int cxlflash_probe(struct pci_dev *pdev, const struct pci_device_id *dev_id) { struct Scsi_Host *host; struct cxlflash_cfg *cfg = NULL; struct dev_dependent_vals *ddv; int rc = 0; dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n", __func__, pdev->irq); ddv = (struct dev_dependent_vals *)dev_id->driver_data; driver_template.max_sectors = ddv->max_sectors; host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg)); if (!host) { dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n", __func__); rc = -ENOMEM; goto out; } host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS; host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET; host->max_channel = NUM_FC_PORTS - 1; host->unique_id = host->host_no; host->max_cmd_len = CXLFLASH_MAX_CDB_LEN; cfg = (struct cxlflash_cfg *)host->hostdata; cfg->host = host; rc = alloc_mem(cfg); if (rc) { dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n", __func__); rc = -ENOMEM; scsi_host_put(cfg->host); goto out; } cfg->init_state = INIT_STATE_NONE; cfg->dev = pdev; cfg->cxl_fops = cxlflash_cxl_fops; /* * The promoted LUNs move to the top of the LUN table. The rest stay * on the bottom half. The bottom half grows from the end * (index = 255), whereas the top half grows from the beginning * (index = 0). */ cfg->promote_lun_index = 0; cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1; cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1; cfg->dev_id = (struct pci_device_id *)dev_id; init_waitqueue_head(&cfg->tmf_waitq); init_waitqueue_head(&cfg->reset_waitq); INIT_WORK(&cfg->work_q, cxlflash_worker_thread); cfg->lr_state = LINK_RESET_INVALID; cfg->lr_port = -1; spin_lock_init(&cfg->tmf_slock); mutex_init(&cfg->ctx_tbl_list_mutex); mutex_init(&cfg->ctx_recovery_mutex); init_rwsem(&cfg->ioctl_rwsem); INIT_LIST_HEAD(&cfg->ctx_err_recovery); INIT_LIST_HEAD(&cfg->lluns); pci_set_drvdata(pdev, cfg); cfg->cxl_afu = cxl_pci_to_afu(pdev); rc = init_pci(cfg); if (rc) { dev_err(&pdev->dev, "%s: call to init_pci " "failed rc=%d!\n", __func__, rc); goto out_remove; } cfg->init_state = INIT_STATE_PCI; rc = init_afu(cfg); if (rc) { dev_err(&pdev->dev, "%s: call to init_afu " "failed rc=%d!\n", __func__, rc); goto out_remove; } cfg->init_state = INIT_STATE_AFU; rc = init_scsi(cfg); if (rc) { dev_err(&pdev->dev, "%s: call to init_scsi " "failed rc=%d!\n", __func__, rc); goto out_remove; } cfg->init_state = INIT_STATE_SCSI; out: pr_debug("%s: returning rc=%d\n", __func__, rc); return rc; out_remove: cxlflash_remove(pdev); goto out; } /** * cxlflash_pci_error_detected() - called when a PCI error is detected * @pdev: PCI device struct. * @state: PCI channel state. * * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT */ static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { int rc = 0; struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); struct device *dev = &cfg->dev->dev; dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state); switch (state) { case pci_channel_io_frozen: cfg->state = STATE_RESET; scsi_block_requests(cfg->host); drain_ioctls(cfg); rc = cxlflash_mark_contexts_error(cfg); if (unlikely(rc)) dev_err(dev, "%s: Failed to mark user contexts!(%d)\n", __func__, rc); term_afu(cfg); return PCI_ERS_RESULT_NEED_RESET; case pci_channel_io_perm_failure: cfg->state = STATE_FAILTERM; wake_up_all(&cfg->reset_waitq); scsi_unblock_requests(cfg->host); return PCI_ERS_RESULT_DISCONNECT; default: break; } return PCI_ERS_RESULT_NEED_RESET; } /** * cxlflash_pci_slot_reset() - called when PCI slot has been reset * @pdev: PCI device struct. * * This routine is called by the pci error recovery code after the PCI * slot has been reset, just before we should resume normal operations. * * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT */ static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev) { int rc = 0; struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); struct device *dev = &cfg->dev->dev; dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); rc = init_afu(cfg); if (unlikely(rc)) { dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc); return PCI_ERS_RESULT_DISCONNECT; } return PCI_ERS_RESULT_RECOVERED; } /** * cxlflash_pci_resume() - called when normal operation can resume * @pdev: PCI device struct */ static void cxlflash_pci_resume(struct pci_dev *pdev) { struct cxlflash_cfg *cfg = pci_get_drvdata(pdev); struct device *dev = &cfg->dev->dev; dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev); cfg->state = STATE_NORMAL; wake_up_all(&cfg->reset_waitq); scsi_unblock_requests(cfg->host); } static const struct pci_error_handlers cxlflash_err_handler = { .error_detected = cxlflash_pci_error_detected, .slot_reset = cxlflash_pci_slot_reset, .resume = cxlflash_pci_resume, }; /* * PCI device structure */ static struct pci_driver cxlflash_driver = { .name = CXLFLASH_NAME, .id_table = cxlflash_pci_table, .probe = cxlflash_probe, .remove = cxlflash_remove, .shutdown = cxlflash_shutdown, .err_handler = &cxlflash_err_handler, }; /** * init_cxlflash() - module entry point * * Return: 0 on success, -errno on failure */ static int __init init_cxlflash(void) { pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME); cxlflash_list_init(); return pci_register_driver(&cxlflash_driver); } /** * exit_cxlflash() - module exit point */ static void __exit exit_cxlflash(void) { cxlflash_term_global_luns(); cxlflash_free_errpage(); pci_unregister_driver(&cxlflash_driver); } module_init(init_cxlflash); module_exit(exit_cxlflash);