/****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2013 - 2014 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * *****************************************************************************/ #include "mvm.h" #include "iwl-config.h" #include "iwl-io.h" #include "iwl-csr.h" #include "iwl-prph.h" #define OTP_DTS_DIODE_DEVIATION 96 /*in words*/ /* VBG - Voltage Band Gap error data (temperature offset) */ #define OTP_WP_DTS_VBG (OTP_DTS_DIODE_DEVIATION + 2) #define MEAS_VBG_MIN_VAL 2300 #define MEAS_VBG_MAX_VAL 3000 #define MEAS_VBG_DEFAULT_VAL 2700 #define DTS_DIODE_VALID(flags) (flags & DTS_DIODE_REG_FLAGS_PASS_ONCE) #define MIN_TEMPERATURE 0 #define MAX_TEMPERATURE 125 #define TEMPERATURE_ERROR (MAX_TEMPERATURE + 1) #define PTAT_DIGITAL_VALUE_MIN_VALUE 0 #define PTAT_DIGITAL_VALUE_MAX_VALUE 0xFF #define DTS_VREFS_NUM 5 static inline u32 DTS_DIODE_GET_VREFS_ID(u32 flags) { return (flags & DTS_DIODE_REG_FLAGS_VREFS_ID) >> DTS_DIODE_REG_FLAGS_VREFS_ID_POS; } #define CALC_VREFS_MIN_DIFF 43 #define CALC_VREFS_MAX_DIFF 51 #define CALC_LUT_SIZE (1 + CALC_VREFS_MAX_DIFF - CALC_VREFS_MIN_DIFF) #define CALC_LUT_INDEX_OFFSET CALC_VREFS_MIN_DIFF #define CALC_TEMPERATURE_RESULT_SHIFT_OFFSET 23 /* * @digital_value: The diode's digital-value sampled (temperature/voltage) * @vref_low: The lower voltage-reference (the vref just below the diode's * sampled digital-value) * @vref_high: The higher voltage-reference (the vref just above the diode's * sampled digital-value) * @flags: bits[1:0]: The ID of the Vrefs pair (lowVref,highVref) * bits[6:2]: Reserved. * bits[7:7]: Indicates completion of at least 1 successful sample * since last DTS reset. */ struct iwl_mvm_dts_diode_bits { u8 digital_value; u8 vref_low; u8 vref_high; u8 flags; } __packed; union dts_diode_results { u32 reg_value; struct iwl_mvm_dts_diode_bits bits; } __packed; static s16 iwl_mvm_dts_get_volt_band_gap(struct iwl_mvm *mvm) { struct iwl_nvm_section calib_sec; const __le16 *calib; u16 vbg; /* TODO: move parsing to NVM code */ calib_sec = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION]; calib = (__le16 *)calib_sec.data; vbg = le16_to_cpu(calib[OTP_WP_DTS_VBG]); if (vbg < MEAS_VBG_MIN_VAL || vbg > MEAS_VBG_MAX_VAL) vbg = MEAS_VBG_DEFAULT_VAL; return vbg; } static u16 iwl_mvm_dts_get_ptat_deviation_offset(struct iwl_mvm *mvm) { const u8 *calib; u8 ptat, pa1, pa2, median; /* TODO: move parsing to NVM code */ calib = mvm->nvm_sections[NVM_SECTION_TYPE_CALIBRATION].data; ptat = calib[OTP_DTS_DIODE_DEVIATION * 2]; pa1 = calib[OTP_DTS_DIODE_DEVIATION * 2 + 1]; pa2 = calib[OTP_DTS_DIODE_DEVIATION * 2 + 2]; /* get the median: */ if (ptat > pa1) { if (ptat > pa2) median = (pa1 > pa2) ? pa1 : pa2; else median = ptat; } else { if (pa1 > pa2) median = (ptat > pa2) ? ptat : pa2; else median = pa1; } return ptat - median; } static u8 iwl_mvm_dts_calibrate_ptat_deviation(struct iwl_mvm *mvm, u8 value) { /* Calibrate the PTAT digital value, based on PTAT deviation data: */ s16 new_val = value - iwl_mvm_dts_get_ptat_deviation_offset(mvm); if (new_val > PTAT_DIGITAL_VALUE_MAX_VALUE) new_val = PTAT_DIGITAL_VALUE_MAX_VALUE; else if (new_val < PTAT_DIGITAL_VALUE_MIN_VALUE) new_val = PTAT_DIGITAL_VALUE_MIN_VALUE; return new_val; } static bool dts_get_adjacent_vrefs(struct iwl_mvm *mvm, union dts_diode_results *avg_ptat) { u8 vrefs_results[DTS_VREFS_NUM]; u8 low_vref_index = 0, flags; u32 reg; reg = iwl_read_prph(mvm->trans, DTSC_VREF_AVG); memcpy(vrefs_results, ®, sizeof(reg)); reg = iwl_read_prph(mvm->trans, DTSC_VREF5_AVG); vrefs_results[4] = reg & 0xff; if (avg_ptat->bits.digital_value < vrefs_results[0] || avg_ptat->bits.digital_value > vrefs_results[4]) return false; if (avg_ptat->bits.digital_value > vrefs_results[3]) low_vref_index = 3; else if (avg_ptat->bits.digital_value > vrefs_results[2]) low_vref_index = 2; else if (avg_ptat->bits.digital_value > vrefs_results[1]) low_vref_index = 1; avg_ptat->bits.vref_low = vrefs_results[low_vref_index]; avg_ptat->bits.vref_high = vrefs_results[low_vref_index + 1]; flags = avg_ptat->bits.flags; avg_ptat->bits.flags = (flags & ~DTS_DIODE_REG_FLAGS_VREFS_ID) | (low_vref_index & DTS_DIODE_REG_FLAGS_VREFS_ID); return true; } /* * return true it the results are valid, and false otherwise. */ static bool dts_read_ptat_avg_results(struct iwl_mvm *mvm, union dts_diode_results *avg_ptat) { u32 reg; u8 tmp; /* fill the diode value and pass_once with avg-reg results */ reg = iwl_read_prph(mvm->trans, DTSC_PTAT_AVG); reg &= DTS_DIODE_REG_DIG_VAL | DTS_DIODE_REG_PASS_ONCE; avg_ptat->reg_value = reg; /* calibrate the PTAT digital value */ tmp = avg_ptat->bits.digital_value; tmp = iwl_mvm_dts_calibrate_ptat_deviation(mvm, tmp); avg_ptat->bits.digital_value = tmp; /* * fill vrefs fields, based on the avgVrefs results * and the diode value */ return dts_get_adjacent_vrefs(mvm, avg_ptat) && DTS_DIODE_VALID(avg_ptat->bits.flags); } static s32 calculate_nic_temperature(union dts_diode_results avg_ptat, u16 volt_band_gap) { u32 tmp_result; u8 vrefs_diff; /* * For temperature calculation (at the end, shift right by 23) * LUT[(D2-D1)] = ROUND{ 2^23 / ((D2-D1)*9*10) } * (D2-D1) == 43 44 45 46 47 48 49 50 51 */ static const u16 calc_lut[CALC_LUT_SIZE] = { 2168, 2118, 2071, 2026, 1983, 1942, 1902, 1864, 1828, }; /* * The diff between the high and low voltage-references is assumed * to be strictly be in range of [60,68] */ vrefs_diff = avg_ptat.bits.vref_high - avg_ptat.bits.vref_low; if (vrefs_diff < CALC_VREFS_MIN_DIFF || vrefs_diff > CALC_VREFS_MAX_DIFF) return TEMPERATURE_ERROR; /* calculate the result: */ tmp_result = vrefs_diff * (DTS_DIODE_GET_VREFS_ID(avg_ptat.bits.flags) + 9); tmp_result += avg_ptat.bits.digital_value; tmp_result -= avg_ptat.bits.vref_high; /* multiply by the LUT value (based on the diff) */ tmp_result *= calc_lut[vrefs_diff - CALC_LUT_INDEX_OFFSET]; /* * Get the BandGap (the voltage refereces source) error data * (temperature offset) */ tmp_result *= volt_band_gap; /* * here, tmp_result value can be up to 32-bits. We want to right-shift * it *without* sign-extend. */ tmp_result = tmp_result >> CALC_TEMPERATURE_RESULT_SHIFT_OFFSET; /* * at this point, tmp_result should be in the range: * 200 <= tmp_result <= 365 */ return (s16)tmp_result - 240; } static s32 check_nic_temperature(struct iwl_mvm *mvm) { u16 volt_band_gap; union dts_diode_results avg_ptat; volt_band_gap = iwl_mvm_dts_get_volt_band_gap(mvm); /* disable DTS */ iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0); /* SV initialization */ iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 1); iwl_write_prph(mvm->trans, DTSC_CFG_MODE, DTSC_CFG_MODE_PERIODIC); /* wait for results */ msleep(100); if (!dts_read_ptat_avg_results(mvm, &avg_ptat)) return TEMPERATURE_ERROR; /* disable DTS */ iwl_write_prph(mvm->trans, SHR_MISC_WFM_DTS_EN, 0); return calculate_nic_temperature(avg_ptat, volt_band_gap); } static void iwl_mvm_enter_ctkill(struct iwl_mvm *mvm) { u32 duration = mvm->thermal_throttle.params->ct_kill_duration; if (test_bit(IWL_MVM_STATUS_HW_CTKILL, &mvm->status)) return; IWL_ERR(mvm, "Enter CT Kill\n"); iwl_mvm_set_hw_ctkill_state(mvm, true); schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit, round_jiffies_relative(duration * HZ)); } static void iwl_mvm_exit_ctkill(struct iwl_mvm *mvm) { if (!test_bit(IWL_MVM_STATUS_HW_CTKILL, &mvm->status)) return; IWL_ERR(mvm, "Exit CT Kill\n"); iwl_mvm_set_hw_ctkill_state(mvm, false); } static void check_exit_ctkill(struct work_struct *work) { struct iwl_mvm_tt_mgmt *tt; struct iwl_mvm *mvm; u32 duration; s32 temp; tt = container_of(work, struct iwl_mvm_tt_mgmt, ct_kill_exit.work); mvm = container_of(tt, struct iwl_mvm, thermal_throttle); duration = tt->params->ct_kill_duration; /* make sure the device is available for direct read/writes */ if (iwl_mvm_ref_sync(mvm, IWL_MVM_REF_CHECK_CTKILL)) goto reschedule; iwl_trans_start_hw(mvm->trans); temp = check_nic_temperature(mvm); iwl_trans_stop_device(mvm->trans); iwl_mvm_unref(mvm, IWL_MVM_REF_CHECK_CTKILL); if (temp < MIN_TEMPERATURE || temp > MAX_TEMPERATURE) { IWL_DEBUG_TEMP(mvm, "Failed to measure NIC temperature\n"); goto reschedule; } IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", temp); if (temp <= tt->params->ct_kill_exit) { iwl_mvm_exit_ctkill(mvm); return; } reschedule: schedule_delayed_work(&mvm->thermal_throttle.ct_kill_exit, round_jiffies(duration * HZ)); } static void iwl_mvm_tt_smps_iterator(void *_data, u8 *mac, struct ieee80211_vif *vif) { struct iwl_mvm *mvm = _data; enum ieee80211_smps_mode smps_mode; lockdep_assert_held(&mvm->mutex); if (mvm->thermal_throttle.dynamic_smps) smps_mode = IEEE80211_SMPS_DYNAMIC; else smps_mode = IEEE80211_SMPS_AUTOMATIC; if (vif->type != NL80211_IFTYPE_STATION) return; iwl_mvm_update_smps(mvm, vif, IWL_MVM_SMPS_REQ_TT, smps_mode); } static void iwl_mvm_tt_tx_protection(struct iwl_mvm *mvm, bool enable) { struct ieee80211_sta *sta; struct iwl_mvm_sta *mvmsta; int i, err; for (i = 0; i < IWL_MVM_STATION_COUNT; i++) { sta = rcu_dereference_protected(mvm->fw_id_to_mac_id[i], lockdep_is_held(&mvm->mutex)); if (IS_ERR_OR_NULL(sta)) continue; mvmsta = iwl_mvm_sta_from_mac80211(sta); if (enable == mvmsta->tt_tx_protection) continue; err = iwl_mvm_tx_protection(mvm, mvmsta, enable); if (err) { IWL_ERR(mvm, "Failed to %s Tx protection\n", enable ? "enable" : "disable"); } else { IWL_DEBUG_TEMP(mvm, "%s Tx protection\n", enable ? "Enable" : "Disable"); mvmsta->tt_tx_protection = enable; } } } void iwl_mvm_tt_tx_backoff(struct iwl_mvm *mvm, u32 backoff) { struct iwl_host_cmd cmd = { .id = REPLY_THERMAL_MNG_BACKOFF, .len = { sizeof(u32), }, .data = { &backoff, }, }; backoff = max(backoff, mvm->thermal_throttle.min_backoff); if (iwl_mvm_send_cmd(mvm, &cmd) == 0) { IWL_DEBUG_TEMP(mvm, "Set Thermal Tx backoff to: %u\n", backoff); mvm->thermal_throttle.tx_backoff = backoff; } else { IWL_ERR(mvm, "Failed to change Thermal Tx backoff\n"); } } void iwl_mvm_tt_handler(struct iwl_mvm *mvm) { const struct iwl_tt_params *params = mvm->thermal_throttle.params; struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle; s32 temperature = mvm->temperature; bool throttle_enable = false; int i; u32 tx_backoff; IWL_DEBUG_TEMP(mvm, "NIC temperature: %d\n", mvm->temperature); if (params->support_ct_kill && temperature >= params->ct_kill_entry) { iwl_mvm_enter_ctkill(mvm); return; } if (params->support_ct_kill && temperature <= tt->params->ct_kill_exit) { iwl_mvm_exit_ctkill(mvm); return; } if (params->support_dynamic_smps) { if (!tt->dynamic_smps && temperature >= params->dynamic_smps_entry) { IWL_DEBUG_TEMP(mvm, "Enable dynamic SMPS\n"); tt->dynamic_smps = true; ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_tt_smps_iterator, mvm); throttle_enable = true; } else if (tt->dynamic_smps && temperature <= params->dynamic_smps_exit) { IWL_DEBUG_TEMP(mvm, "Disable dynamic SMPS\n"); tt->dynamic_smps = false; ieee80211_iterate_active_interfaces_atomic( mvm->hw, IEEE80211_IFACE_ITER_NORMAL, iwl_mvm_tt_smps_iterator, mvm); } } if (params->support_tx_protection) { if (temperature >= params->tx_protection_entry) { iwl_mvm_tt_tx_protection(mvm, true); throttle_enable = true; } else if (temperature <= params->tx_protection_exit) { iwl_mvm_tt_tx_protection(mvm, false); } } if (params->support_tx_backoff) { tx_backoff = tt->min_backoff; for (i = 0; i < TT_TX_BACKOFF_SIZE; i++) { if (temperature < params->tx_backoff[i].temperature) break; tx_backoff = max(tt->min_backoff, params->tx_backoff[i].backoff); } if (tx_backoff != tt->min_backoff) throttle_enable = true; if (tt->tx_backoff != tx_backoff) iwl_mvm_tt_tx_backoff(mvm, tx_backoff); } if (!tt->throttle && throttle_enable) { IWL_WARN(mvm, "Due to high temperature thermal throttling initiated\n"); tt->throttle = true; } else if (tt->throttle && !tt->dynamic_smps && tt->tx_backoff == tt->min_backoff && temperature <= params->tx_protection_exit) { IWL_WARN(mvm, "Temperature is back to normal thermal throttling stopped\n"); tt->throttle = false; } } static const struct iwl_tt_params iwl7000_tt_params = { .ct_kill_entry = 118, .ct_kill_exit = 96, .ct_kill_duration = 5, .dynamic_smps_entry = 114, .dynamic_smps_exit = 110, .tx_protection_entry = 114, .tx_protection_exit = 108, .tx_backoff = { {.temperature = 112, .backoff = 200}, {.temperature = 113, .backoff = 600}, {.temperature = 114, .backoff = 1200}, {.temperature = 115, .backoff = 2000}, {.temperature = 116, .backoff = 4000}, {.temperature = 117, .backoff = 10000}, }, .support_ct_kill = true, .support_dynamic_smps = true, .support_tx_protection = true, .support_tx_backoff = true, }; static const struct iwl_tt_params iwl7000_high_temp_tt_params = { .ct_kill_entry = 118, .ct_kill_exit = 96, .ct_kill_duration = 5, .dynamic_smps_entry = 114, .dynamic_smps_exit = 110, .tx_protection_entry = 114, .tx_protection_exit = 108, .tx_backoff = { {.temperature = 112, .backoff = 300}, {.temperature = 113, .backoff = 800}, {.temperature = 114, .backoff = 1500}, {.temperature = 115, .backoff = 3000}, {.temperature = 116, .backoff = 5000}, {.temperature = 117, .backoff = 10000}, }, .support_ct_kill = true, .support_dynamic_smps = true, .support_tx_protection = true, .support_tx_backoff = true, }; void iwl_mvm_tt_initialize(struct iwl_mvm *mvm, u32 min_backoff) { struct iwl_mvm_tt_mgmt *tt = &mvm->thermal_throttle; IWL_DEBUG_TEMP(mvm, "Initialize Thermal Throttling\n"); if (mvm->cfg->high_temp) tt->params = &iwl7000_high_temp_tt_params; else tt->params = &iwl7000_tt_params; tt->throttle = false; tt->min_backoff = min_backoff; INIT_DELAYED_WORK(&tt->ct_kill_exit, check_exit_ctkill); } void iwl_mvm_tt_exit(struct iwl_mvm *mvm) { cancel_delayed_work_sync(&mvm->thermal_throttle.ct_kill_exit); IWL_DEBUG_TEMP(mvm, "Exit Thermal Throttling\n"); }