/* * PowerNV OPAL high level interfaces * * Copyright 2011 IBM Corp. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #define pr_fmt(fmt) "opal: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "powernv.h" /* /sys/firmware/opal */ struct kobject *opal_kobj; struct opal { u64 base; u64 entry; u64 size; } opal; struct mcheck_recoverable_range { u64 start_addr; u64 end_addr; u64 recover_addr; }; static struct mcheck_recoverable_range *mc_recoverable_range; static int mc_recoverable_range_len; struct device_node *opal_node; static DEFINE_SPINLOCK(opal_write_lock); static struct atomic_notifier_head opal_msg_notifier_head[OPAL_MSG_TYPE_MAX]; static uint32_t opal_heartbeat; static struct task_struct *kopald_tsk; void opal_configure_cores(void) { /* Do the actual re-init, This will clobber all FPRs, VRs, etc... * * It will preserve non volatile GPRs and HSPRG0/1. It will * also restore HIDs and other SPRs to their original value * but it might clobber a bunch. */ #ifdef __BIG_ENDIAN__ opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_BE); #else opal_reinit_cpus(OPAL_REINIT_CPUS_HILE_LE); #endif /* Restore some bits */ if (cur_cpu_spec->cpu_restore) cur_cpu_spec->cpu_restore(); } int __init early_init_dt_scan_opal(unsigned long node, const char *uname, int depth, void *data) { const void *basep, *entryp, *sizep; int basesz, entrysz, runtimesz; if (depth != 1 || strcmp(uname, "ibm,opal") != 0) return 0; basep = of_get_flat_dt_prop(node, "opal-base-address", &basesz); entryp = of_get_flat_dt_prop(node, "opal-entry-address", &entrysz); sizep = of_get_flat_dt_prop(node, "opal-runtime-size", &runtimesz); if (!basep || !entryp || !sizep) return 1; opal.base = of_read_number(basep, basesz/4); opal.entry = of_read_number(entryp, entrysz/4); opal.size = of_read_number(sizep, runtimesz/4); pr_debug("OPAL Base = 0x%llx (basep=%p basesz=%d)\n", opal.base, basep, basesz); pr_debug("OPAL Entry = 0x%llx (entryp=%p basesz=%d)\n", opal.entry, entryp, entrysz); pr_debug("OPAL Entry = 0x%llx (sizep=%p runtimesz=%d)\n", opal.size, sizep, runtimesz); if (of_flat_dt_is_compatible(node, "ibm,opal-v3")) { powerpc_firmware_features |= FW_FEATURE_OPAL; pr_info("OPAL detected !\n"); } else { panic("OPAL != V3 detected, no longer supported.\n"); } return 1; } int __init early_init_dt_scan_recoverable_ranges(unsigned long node, const char *uname, int depth, void *data) { int i, psize, size; const __be32 *prop; if (depth != 1 || strcmp(uname, "ibm,opal") != 0) return 0; prop = of_get_flat_dt_prop(node, "mcheck-recoverable-ranges", &psize); if (!prop) return 1; pr_debug("Found machine check recoverable ranges.\n"); /* * Calculate number of available entries. * * Each recoverable address range entry is (start address, len, * recovery address), 2 cells each for start and recovery address, * 1 cell for len, totalling 5 cells per entry. */ mc_recoverable_range_len = psize / (sizeof(*prop) * 5); /* Sanity check */ if (!mc_recoverable_range_len) return 1; /* Size required to hold all the entries. */ size = mc_recoverable_range_len * sizeof(struct mcheck_recoverable_range); /* * Allocate a buffer to hold the MC recoverable ranges. We would be * accessing them in real mode, hence it needs to be within * RMO region. */ mc_recoverable_range =__va(memblock_alloc_base(size, __alignof__(u64), ppc64_rma_size)); memset(mc_recoverable_range, 0, size); for (i = 0; i < mc_recoverable_range_len; i++) { mc_recoverable_range[i].start_addr = of_read_number(prop + (i * 5) + 0, 2); mc_recoverable_range[i].end_addr = mc_recoverable_range[i].start_addr + of_read_number(prop + (i * 5) + 2, 1); mc_recoverable_range[i].recover_addr = of_read_number(prop + (i * 5) + 3, 2); pr_debug("Machine check recoverable range: %llx..%llx: %llx\n", mc_recoverable_range[i].start_addr, mc_recoverable_range[i].end_addr, mc_recoverable_range[i].recover_addr); } return 1; } static int __init opal_register_exception_handlers(void) { #ifdef __BIG_ENDIAN__ u64 glue; if (!(powerpc_firmware_features & FW_FEATURE_OPAL)) return -ENODEV; /* Hookup some exception handlers except machine check. We use the * fwnmi area at 0x7000 to provide the glue space to OPAL */ glue = 0x7000; /* * Check if we are running on newer firmware that exports * OPAL_HANDLE_HMI token. If yes, then don't ask OPAL to patch * the HMI interrupt and we catch it directly in Linux. * * For older firmware (i.e currently released POWER8 System Firmware * as of today <= SV810_087), we fallback to old behavior and let OPAL * patch the HMI vector and handle it inside OPAL firmware. * * For newer firmware (in development/yet to be released) we will * start catching/handling HMI directly in Linux. */ if (!opal_check_token(OPAL_HANDLE_HMI)) { pr_info("Old firmware detected, OPAL handles HMIs.\n"); opal_register_exception_handler( OPAL_HYPERVISOR_MAINTENANCE_HANDLER, 0, glue); glue += 128; } opal_register_exception_handler(OPAL_SOFTPATCH_HANDLER, 0, glue); #endif return 0; } machine_early_initcall(powernv, opal_register_exception_handlers); /* * Opal message notifier based on message type. Allow subscribers to get * notified for specific messgae type. */ int opal_message_notifier_register(enum opal_msg_type msg_type, struct notifier_block *nb) { if (!nb || msg_type >= OPAL_MSG_TYPE_MAX) { pr_warning("%s: Invalid arguments, msg_type:%d\n", __func__, msg_type); return -EINVAL; } return atomic_notifier_chain_register( &opal_msg_notifier_head[msg_type], nb); } EXPORT_SYMBOL_GPL(opal_message_notifier_register); int opal_message_notifier_unregister(enum opal_msg_type msg_type, struct notifier_block *nb) { return atomic_notifier_chain_unregister( &opal_msg_notifier_head[msg_type], nb); } EXPORT_SYMBOL_GPL(opal_message_notifier_unregister); static void opal_message_do_notify(uint32_t msg_type, void *msg) { /* notify subscribers */ atomic_notifier_call_chain(&opal_msg_notifier_head[msg_type], msg_type, msg); } static void opal_handle_message(void) { s64 ret; /* * TODO: pre-allocate a message buffer depending on opal-msg-size * value in /proc/device-tree. */ static struct opal_msg msg; u32 type; ret = opal_get_msg(__pa(&msg), sizeof(msg)); /* No opal message pending. */ if (ret == OPAL_RESOURCE) return; /* check for errors. */ if (ret) { pr_warning("%s: Failed to retrieve opal message, err=%lld\n", __func__, ret); return; } type = be32_to_cpu(msg.msg_type); /* Sanity check */ if (type >= OPAL_MSG_TYPE_MAX) { pr_warn_once("%s: Unknown message type: %u\n", __func__, type); return; } opal_message_do_notify(type, (void *)&msg); } static irqreturn_t opal_message_notify(int irq, void *data) { opal_handle_message(); return IRQ_HANDLED; } static int __init opal_message_init(void) { int ret, i, irq; for (i = 0; i < OPAL_MSG_TYPE_MAX; i++) ATOMIC_INIT_NOTIFIER_HEAD(&opal_msg_notifier_head[i]); irq = opal_event_request(ilog2(OPAL_EVENT_MSG_PENDING)); if (!irq) { pr_err("%s: Can't register OPAL event irq (%d)\n", __func__, irq); return irq; } ret = request_irq(irq, opal_message_notify, IRQ_TYPE_LEVEL_HIGH, "opal-msg", NULL); if (ret) { pr_err("%s: Can't request OPAL event irq (%d)\n", __func__, ret); return ret; } return 0; } int opal_get_chars(uint32_t vtermno, char *buf, int count) { s64 rc; __be64 evt, len; if (!opal.entry) return -ENODEV; opal_poll_events(&evt); if ((be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_INPUT) == 0) return 0; len = cpu_to_be64(count); rc = opal_console_read(vtermno, &len, buf); if (rc == OPAL_SUCCESS) return be64_to_cpu(len); return 0; } int opal_put_chars(uint32_t vtermno, const char *data, int total_len) { int written = 0; __be64 olen; s64 len, rc; unsigned long flags; __be64 evt; if (!opal.entry) return -ENODEV; /* We want put_chars to be atomic to avoid mangling of hvsi * packets. To do that, we first test for room and return * -EAGAIN if there isn't enough. * * Unfortunately, opal_console_write_buffer_space() doesn't * appear to work on opal v1, so we just assume there is * enough room and be done with it */ spin_lock_irqsave(&opal_write_lock, flags); rc = opal_console_write_buffer_space(vtermno, &olen); len = be64_to_cpu(olen); if (rc || len < total_len) { spin_unlock_irqrestore(&opal_write_lock, flags); /* Closed -> drop characters */ if (rc) return total_len; opal_poll_events(NULL); return -EAGAIN; } /* We still try to handle partial completions, though they * should no longer happen. */ rc = OPAL_BUSY; while(total_len > 0 && (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT || rc == OPAL_SUCCESS)) { olen = cpu_to_be64(total_len); rc = opal_console_write(vtermno, &olen, data); len = be64_to_cpu(olen); /* Closed or other error drop */ if (rc != OPAL_SUCCESS && rc != OPAL_BUSY && rc != OPAL_BUSY_EVENT) { written = total_len; break; } if (rc == OPAL_SUCCESS) { total_len -= len; data += len; written += len; } /* This is a bit nasty but we need that for the console to * flush when there aren't any interrupts. We will clean * things a bit later to limit that to synchronous path * such as the kernel console and xmon/udbg */ do opal_poll_events(&evt); while(rc == OPAL_SUCCESS && (be64_to_cpu(evt) & OPAL_EVENT_CONSOLE_OUTPUT)); } spin_unlock_irqrestore(&opal_write_lock, flags); return written; } static int opal_recover_mce(struct pt_regs *regs, struct machine_check_event *evt) { int recovered = 0; if (!(regs->msr & MSR_RI)) { /* If MSR_RI isn't set, we cannot recover */ pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n"); recovered = 0; } else if (evt->disposition == MCE_DISPOSITION_RECOVERED) { /* Platform corrected itself */ recovered = 1; } else if (evt->severity == MCE_SEV_FATAL) { /* Fatal machine check */ pr_err("Machine check interrupt is fatal\n"); recovered = 0; } else if ((evt->severity == MCE_SEV_ERROR_SYNC) && (user_mode(regs) && !is_global_init(current))) { /* * For now, kill the task if we have received exception when * in userspace. * * TODO: Queue up this address for hwpoisioning later. */ _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip); recovered = 1; } return recovered; } int opal_machine_check(struct pt_regs *regs) { struct machine_check_event evt; int ret; if (!get_mce_event(&evt, MCE_EVENT_RELEASE)) return 0; /* Print things out */ if (evt.version != MCE_V1) { pr_err("Machine Check Exception, Unknown event version %d !\n", evt.version); return 0; } machine_check_print_event_info(&evt, user_mode(regs)); if (opal_recover_mce(regs, &evt)) return 1; /* * Unrecovered machine check, we are heading to panic path. * * We may have hit this MCE in very early stage of kernel * initialization even before opal-prd has started running. If * this is the case then this MCE error may go un-noticed or * un-analyzed if we go down panic path. We need to inform * BMC/OCC about this error so that they can collect relevant * data for error analysis before rebooting. * Use opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR) to do so. * This function may not return on BMC based system. */ ret = opal_cec_reboot2(OPAL_REBOOT_PLATFORM_ERROR, "Unrecoverable Machine Check exception"); if (ret == OPAL_UNSUPPORTED) { pr_emerg("Reboot type %d not supported\n", OPAL_REBOOT_PLATFORM_ERROR); } /* * We reached here. There can be three possibilities: * 1. We are running on a firmware level that do not support * opal_cec_reboot2() * 2. We are running on a firmware level that do not support * OPAL_REBOOT_PLATFORM_ERROR reboot type. * 3. We are running on FSP based system that does not need opal * to trigger checkstop explicitly for error analysis. The FSP * PRD component would have already got notified about this * error through other channels. * * If hardware marked this as an unrecoverable MCE, we are * going to panic anyway. Even if it didn't, it's not safe to * continue at this point, so we should explicitly panic. */ panic("PowerNV Unrecovered Machine Check"); return 0; } /* Early hmi handler called in real mode. */ int opal_hmi_exception_early(struct pt_regs *regs) { s64 rc; /* * call opal hmi handler. Pass paca address as token. * The return value OPAL_SUCCESS is an indication that there is * an HMI event generated waiting to pull by Linux. */ rc = opal_handle_hmi(); if (rc == OPAL_SUCCESS) { local_paca->hmi_event_available = 1; return 1; } return 0; } /* HMI exception handler called in virtual mode during check_irq_replay. */ int opal_handle_hmi_exception(struct pt_regs *regs) { s64 rc; __be64 evt = 0; /* * Check if HMI event is available. * if Yes, then call opal_poll_events to pull opal messages and * process them. */ if (!local_paca->hmi_event_available) return 0; local_paca->hmi_event_available = 0; rc = opal_poll_events(&evt); if (rc == OPAL_SUCCESS && evt) opal_handle_events(be64_to_cpu(evt)); return 1; } static uint64_t find_recovery_address(uint64_t nip) { int i; for (i = 0; i < mc_recoverable_range_len; i++) if ((nip >= mc_recoverable_range[i].start_addr) && (nip < mc_recoverable_range[i].end_addr)) return mc_recoverable_range[i].recover_addr; return 0; } bool opal_mce_check_early_recovery(struct pt_regs *regs) { uint64_t recover_addr = 0; if (!opal.base || !opal.size) goto out; if ((regs->nip >= opal.base) && (regs->nip < (opal.base + opal.size))) recover_addr = find_recovery_address(regs->nip); /* * Setup regs->nip to rfi into fixup address. */ if (recover_addr) regs->nip = recover_addr; out: return !!recover_addr; } static int opal_sysfs_init(void) { opal_kobj = kobject_create_and_add("opal", firmware_kobj); if (!opal_kobj) { pr_warn("kobject_create_and_add opal failed\n"); return -ENOMEM; } return 0; } static ssize_t symbol_map_read(struct file *fp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { return memory_read_from_buffer(buf, count, &off, bin_attr->private, bin_attr->size); } static BIN_ATTR_RO(symbol_map, 0); static void opal_export_symmap(void) { const __be64 *syms; unsigned int size; struct device_node *fw; int rc; fw = of_find_node_by_path("/ibm,opal/firmware"); if (!fw) return; syms = of_get_property(fw, "symbol-map", &size); if (!syms || size != 2 * sizeof(__be64)) return; /* Setup attributes */ bin_attr_symbol_map.private = __va(be64_to_cpu(syms[0])); bin_attr_symbol_map.size = be64_to_cpu(syms[1]); rc = sysfs_create_bin_file(opal_kobj, &bin_attr_symbol_map); if (rc) pr_warn("Error %d creating OPAL symbols file\n", rc); } static ssize_t export_attr_read(struct file *fp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { return memory_read_from_buffer(buf, count, &off, bin_attr->private, bin_attr->size); } /* * opal_export_attrs: creates a sysfs node for each property listed in * the device-tree under /ibm,opal/firmware/exports/ * All new sysfs nodes are created under /opal/exports/. * This allows for reserved memory regions (e.g. HDAT) to be read. * The new sysfs nodes are only readable by root. */ static void opal_export_attrs(void) { struct bin_attribute *attr; struct device_node *np; struct property *prop; struct kobject *kobj; u64 vals[2]; int rc; np = of_find_node_by_path("/ibm,opal/firmware/exports"); if (!np) return; /* Create new 'exports' directory - /sys/firmware/opal/exports */ kobj = kobject_create_and_add("exports", opal_kobj); if (!kobj) { pr_warn("kobject_create_and_add() of exports failed\n"); return; } for_each_property_of_node(np, prop) { if (!strcmp(prop->name, "name") || !strcmp(prop->name, "phandle")) continue; if (of_property_read_u64_array(np, prop->name, &vals[0], 2)) continue; attr = kmalloc(sizeof(*attr), GFP_KERNEL); if (attr == NULL) { pr_warn("Failed kmalloc for bin_attribute!"); continue; } attr->attr.name = kstrdup(prop->name, GFP_KERNEL); attr->attr.mode = 0400; attr->read = export_attr_read; attr->private = __va(vals[0]); attr->size = vals[1]; if (attr->attr.name == NULL) { pr_warn("Failed kstrdup for bin_attribute attr.name"); kfree(attr); continue; } rc = sysfs_create_bin_file(kobj, attr); if (rc) { pr_warn("Error %d creating OPAL sysfs exports/%s file\n", rc, prop->name); kfree(attr->attr.name); kfree(attr); } } of_node_put(np); } static void __init opal_dump_region_init(void) { void *addr; uint64_t size; int rc; if (!opal_check_token(OPAL_REGISTER_DUMP_REGION)) return; /* Register kernel log buffer */ addr = log_buf_addr_get(); if (addr == NULL) return; size = log_buf_len_get(); if (size == 0) return; rc = opal_register_dump_region(OPAL_DUMP_REGION_LOG_BUF, __pa(addr), size); /* Don't warn if this is just an older OPAL that doesn't * know about that call */ if (rc && rc != OPAL_UNSUPPORTED) pr_warn("DUMP: Failed to register kernel log buffer. " "rc = %d\n", rc); } static void opal_pdev_init(const char *compatible) { struct device_node *np; for_each_compatible_node(np, NULL, compatible) of_platform_device_create(np, NULL, NULL); } static int kopald(void *unused) { unsigned long timeout = msecs_to_jiffies(opal_heartbeat) + 1; __be64 events; set_freezable(); do { try_to_freeze(); opal_poll_events(&events); opal_handle_events(be64_to_cpu(events)); schedule_timeout_interruptible(timeout); } while (!kthread_should_stop()); return 0; } void opal_wake_poller(void) { if (kopald_tsk) wake_up_process(kopald_tsk); } static void opal_init_heartbeat(void) { /* Old firwmware, we assume the HVC heartbeat is sufficient */ if (of_property_read_u32(opal_node, "ibm,heartbeat-ms", &opal_heartbeat) != 0) opal_heartbeat = 0; if (opal_heartbeat) kopald_tsk = kthread_run(kopald, NULL, "kopald"); } static int __init opal_init(void) { struct device_node *np, *consoles, *leds; int rc; opal_node = of_find_node_by_path("/ibm,opal"); if (!opal_node) { pr_warn("Device node not found\n"); return -ENODEV; } /* Register OPAL consoles if any ports */ consoles = of_find_node_by_path("/ibm,opal/consoles"); if (consoles) { for_each_child_of_node(consoles, np) { if (strcmp(np->name, "serial")) continue; of_platform_device_create(np, NULL, NULL); } of_node_put(consoles); } /* Initialise OPAL messaging system */ opal_message_init(); /* Initialise OPAL asynchronous completion interface */ opal_async_comp_init(); /* Initialise OPAL sensor interface */ opal_sensor_init(); /* Initialise OPAL hypervisor maintainence interrupt handling */ opal_hmi_handler_init(); /* Create i2c platform devices */ opal_pdev_init("ibm,opal-i2c"); /* Setup a heatbeat thread if requested by OPAL */ opal_init_heartbeat(); /* Create leds platform devices */ leds = of_find_node_by_path("/ibm,opal/leds"); if (leds) { of_platform_device_create(leds, "opal_leds", NULL); of_node_put(leds); } /* Initialise OPAL message log interface */ opal_msglog_init(); /* Create "opal" kobject under /sys/firmware */ rc = opal_sysfs_init(); if (rc == 0) { /* Export symbol map to userspace */ opal_export_symmap(); /* Setup dump region interface */ opal_dump_region_init(); /* Setup error log interface */ rc = opal_elog_init(); /* Setup code update interface */ opal_flash_update_init(); /* Setup platform dump extract interface */ opal_platform_dump_init(); /* Setup system parameters interface */ opal_sys_param_init(); /* Setup message log sysfs interface. */ opal_msglog_sysfs_init(); } /* Export all properties */ opal_export_attrs(); /* Initialize platform devices: IPMI backend, PRD & flash interface */ opal_pdev_init("ibm,opal-ipmi"); opal_pdev_init("ibm,opal-flash"); opal_pdev_init("ibm,opal-prd"); /* Initialise platform device: oppanel interface */ opal_pdev_init("ibm,opal-oppanel"); /* Initialise OPAL kmsg dumper for flushing console on panic */ opal_kmsg_init(); return 0; } machine_subsys_initcall(powernv, opal_init); void opal_shutdown(void) { long rc = OPAL_BUSY; opal_event_shutdown(); /* * Then sync with OPAL which ensure anything that can * potentially write to our memory has completed such * as an ongoing dump retrieval */ while (rc == OPAL_BUSY || rc == OPAL_BUSY_EVENT) { rc = opal_sync_host_reboot(); if (rc == OPAL_BUSY) opal_poll_events(NULL); else mdelay(10); } /* Unregister memory dump region */ if (opal_check_token(OPAL_UNREGISTER_DUMP_REGION)) opal_unregister_dump_region(OPAL_DUMP_REGION_LOG_BUF); } /* Export this so that test modules can use it */ EXPORT_SYMBOL_GPL(opal_invalid_call); EXPORT_SYMBOL_GPL(opal_xscom_read); EXPORT_SYMBOL_GPL(opal_xscom_write); EXPORT_SYMBOL_GPL(opal_ipmi_send); EXPORT_SYMBOL_GPL(opal_ipmi_recv); EXPORT_SYMBOL_GPL(opal_flash_read); EXPORT_SYMBOL_GPL(opal_flash_write); EXPORT_SYMBOL_GPL(opal_flash_erase); EXPORT_SYMBOL_GPL(opal_prd_msg); /* Convert a region of vmalloc memory to an opal sg list */ struct opal_sg_list *opal_vmalloc_to_sg_list(void *vmalloc_addr, unsigned long vmalloc_size) { struct opal_sg_list *sg, *first = NULL; unsigned long i = 0; sg = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!sg) goto nomem; first = sg; while (vmalloc_size > 0) { uint64_t data = vmalloc_to_pfn(vmalloc_addr) << PAGE_SHIFT; uint64_t length = min(vmalloc_size, PAGE_SIZE); sg->entry[i].data = cpu_to_be64(data); sg->entry[i].length = cpu_to_be64(length); i++; if (i >= SG_ENTRIES_PER_NODE) { struct opal_sg_list *next; next = kzalloc(PAGE_SIZE, GFP_KERNEL); if (!next) goto nomem; sg->length = cpu_to_be64( i * sizeof(struct opal_sg_entry) + 16); i = 0; sg->next = cpu_to_be64(__pa(next)); sg = next; } vmalloc_addr += length; vmalloc_size -= length; } sg->length = cpu_to_be64(i * sizeof(struct opal_sg_entry) + 16); return first; nomem: pr_err("%s : Failed to allocate memory\n", __func__); opal_free_sg_list(first); return NULL; } void opal_free_sg_list(struct opal_sg_list *sg) { while (sg) { uint64_t next = be64_to_cpu(sg->next); kfree(sg); if (next) sg = __va(next); else sg = NULL; } } int opal_error_code(int rc) { switch (rc) { case OPAL_SUCCESS: return 0; case OPAL_PARAMETER: return -EINVAL; case OPAL_ASYNC_COMPLETION: return -EINPROGRESS; case OPAL_BUSY_EVENT: return -EBUSY; case OPAL_NO_MEM: return -ENOMEM; case OPAL_PERMISSION: return -EPERM; case OPAL_UNSUPPORTED: return -EIO; case OPAL_HARDWARE: return -EIO; case OPAL_INTERNAL_ERROR: return -EIO; default: pr_err("%s: unexpected OPAL error %d\n", __func__, rc); return -EIO; } } void powernv_set_nmmu_ptcr(unsigned long ptcr) { int rc; if (firmware_has_feature(FW_FEATURE_OPAL)) { rc = opal_nmmu_set_ptcr(-1UL, ptcr); if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED) pr_warn("%s: Unable to set nest mmu ptcr\n", __func__); } } EXPORT_SYMBOL_GPL(opal_poll_events); EXPORT_SYMBOL_GPL(opal_rtc_read); EXPORT_SYMBOL_GPL(opal_rtc_write); EXPORT_SYMBOL_GPL(opal_tpo_read); EXPORT_SYMBOL_GPL(opal_tpo_write); EXPORT_SYMBOL_GPL(opal_i2c_request); /* Export these symbols for PowerNV LED class driver */ EXPORT_SYMBOL_GPL(opal_leds_get_ind); EXPORT_SYMBOL_GPL(opal_leds_set_ind); /* Export this symbol for PowerNV Operator Panel class driver */ EXPORT_SYMBOL_GPL(opal_write_oppanel_async); /* Export this for KVM */ EXPORT_SYMBOL_GPL(opal_int_set_mfrr);