/* * Copyright 2006 Dave Airlie * Copyright © 2006-2007 Intel Corporation * Jesse Barnes * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Authors: * Eric Anholt */ #include #include #include #include "drmP.h" #include "drm.h" #include "drm_crtc.h" #include "intel_drv.h" #include "drm_edid.h" #include "i915_drm.h" #include "i915_drv.h" #include "intel_sdvo_regs.h" #define SDVO_TMDS_MASK (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1) #define SDVO_RGB_MASK (SDVO_OUTPUT_RGB0 | SDVO_OUTPUT_RGB1) #define SDVO_LVDS_MASK (SDVO_OUTPUT_LVDS0 | SDVO_OUTPUT_LVDS1) #define SDVO_TV_MASK (SDVO_OUTPUT_CVBS0 | SDVO_OUTPUT_SVID0) #define SDVO_OUTPUT_MASK (SDVO_TMDS_MASK | SDVO_RGB_MASK | SDVO_LVDS_MASK |\ SDVO_TV_MASK) #define IS_TV(c) (c->output_flag & SDVO_TV_MASK) #define IS_LVDS(c) (c->output_flag & SDVO_LVDS_MASK) static char *tv_format_names[] = { "NTSC_M" , "NTSC_J" , "NTSC_443", "PAL_B" , "PAL_D" , "PAL_G" , "PAL_H" , "PAL_I" , "PAL_M" , "PAL_N" , "PAL_NC" , "PAL_60" , "SECAM_B" , "SECAM_D" , "SECAM_G" , "SECAM_K" , "SECAM_K1", "SECAM_L" , "SECAM_60" }; #define TV_FORMAT_NUM (sizeof(tv_format_names) / sizeof(*tv_format_names)) struct intel_sdvo_priv { u8 slave_addr; /* Register for the SDVO device: SDVOB or SDVOC */ int sdvo_reg; /* Active outputs controlled by this SDVO output */ uint16_t controlled_output; /* * Capabilities of the SDVO device returned by * i830_sdvo_get_capabilities() */ struct intel_sdvo_caps caps; /* Pixel clock limitations reported by the SDVO device, in kHz */ int pixel_clock_min, pixel_clock_max; /* * For multiple function SDVO device, * this is for current attached outputs. */ uint16_t attached_output; /** * This is set if we're going to treat the device as TV-out. * * While we have these nice friendly flags for output types that ought * to decide this for us, the S-Video output on our HDMI+S-Video card * shows up as RGB1 (VGA). */ bool is_tv; /* This is for current tv format name */ char *tv_format_name; /** * This is set if we treat the device as HDMI, instead of DVI. */ bool is_hdmi; /** * This is set if we detect output of sdvo device as LVDS. */ bool is_lvds; /** * This is sdvo flags for input timing. */ uint8_t sdvo_flags; /** * This is sdvo fixed pannel mode pointer */ struct drm_display_mode *sdvo_lvds_fixed_mode; /* * supported encoding mode, used to determine whether HDMI is * supported */ struct intel_sdvo_encode encode; /* DDC bus used by this SDVO encoder */ uint8_t ddc_bus; /* Mac mini hack -- use the same DDC as the analog connector */ struct i2c_adapter *analog_ddc_bus; }; struct intel_sdvo_connector { /* Mark the type of connector */ uint16_t output_flag; /* This contains all current supported TV format */ char *tv_format_supported[TV_FORMAT_NUM]; int format_supported_num; struct drm_property *tv_format_property; struct drm_property *tv_format_name_property[TV_FORMAT_NUM]; /** * Returned SDTV resolutions allowed for the current format, if the * device reported it. */ struct intel_sdvo_sdtv_resolution_reply sdtv_resolutions; /* add the property for the SDVO-TV */ struct drm_property *left_property; struct drm_property *right_property; struct drm_property *top_property; struct drm_property *bottom_property; struct drm_property *hpos_property; struct drm_property *vpos_property; /* add the property for the SDVO-TV/LVDS */ struct drm_property *brightness_property; struct drm_property *contrast_property; struct drm_property *saturation_property; struct drm_property *hue_property; /* Add variable to record current setting for the above property */ u32 left_margin, right_margin, top_margin, bottom_margin; /* this is to get the range of margin.*/ u32 max_hscan, max_vscan; u32 max_hpos, cur_hpos; u32 max_vpos, cur_vpos; u32 cur_brightness, max_brightness; u32 cur_contrast, max_contrast; u32 cur_saturation, max_saturation; u32 cur_hue, max_hue; }; static bool intel_sdvo_output_setup(struct intel_encoder *intel_encoder, uint16_t flags); static void intel_sdvo_tv_create_property(struct drm_connector *connector, int type); static void intel_sdvo_create_enhance_property(struct drm_connector *connector); /** * Writes the SDVOB or SDVOC with the given value, but always writes both * SDVOB and SDVOC to work around apparent hardware issues (according to * comments in the BIOS). */ static void intel_sdvo_write_sdvox(struct intel_encoder *intel_encoder, u32 val) { struct drm_device *dev = intel_encoder->enc.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; u32 bval = val, cval = val; int i; if (sdvo_priv->sdvo_reg == PCH_SDVOB) { I915_WRITE(sdvo_priv->sdvo_reg, val); I915_READ(sdvo_priv->sdvo_reg); return; } if (sdvo_priv->sdvo_reg == SDVOB) { cval = I915_READ(SDVOC); } else { bval = I915_READ(SDVOB); } /* * Write the registers twice for luck. Sometimes, * writing them only once doesn't appear to 'stick'. * The BIOS does this too. Yay, magic */ for (i = 0; i < 2; i++) { I915_WRITE(SDVOB, bval); I915_READ(SDVOB); I915_WRITE(SDVOC, cval); I915_READ(SDVOC); } } static bool intel_sdvo_read_byte(struct intel_encoder *intel_encoder, u8 addr, u8 *ch) { struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; u8 out_buf[2]; u8 buf[2]; int ret; struct i2c_msg msgs[] = { { .addr = sdvo_priv->slave_addr >> 1, .flags = 0, .len = 1, .buf = out_buf, }, { .addr = sdvo_priv->slave_addr >> 1, .flags = I2C_M_RD, .len = 1, .buf = buf, } }; out_buf[0] = addr; out_buf[1] = 0; if ((ret = i2c_transfer(intel_encoder->i2c_bus, msgs, 2)) == 2) { *ch = buf[0]; return true; } DRM_DEBUG_KMS("i2c transfer returned %d\n", ret); return false; } static bool intel_sdvo_write_byte(struct intel_encoder *intel_encoder, int addr, u8 ch) { struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; u8 out_buf[2]; struct i2c_msg msgs[] = { { .addr = sdvo_priv->slave_addr >> 1, .flags = 0, .len = 2, .buf = out_buf, } }; out_buf[0] = addr; out_buf[1] = ch; if (i2c_transfer(intel_encoder->i2c_bus, msgs, 1) == 1) { return true; } return false; } #define SDVO_CMD_NAME_ENTRY(cmd) {cmd, #cmd} /** Mapping of command numbers to names, for debug output */ static const struct _sdvo_cmd_name { u8 cmd; char *name; } sdvo_cmd_names[] = { SDVO_CMD_NAME_ENTRY(SDVO_CMD_RESET), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_DEVICE_CAPS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_FIRMWARE_REV), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TRAINED_INPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_OUTPUTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_IN_OUT_MAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ATTACHED_DISPLAYS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HOT_PLUG_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ACTIVE_HOT_PLUG), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INTERRUPT_EVENT_SOURCE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_INPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TARGET_OUTPUT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_INPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_TIMINGS_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OUTPUT_PIXEL_CLOCK_RANGE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_CLOCK_RATE_MULTS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CLOCK_RATE_MULT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_TV_FORMATS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_TV_FORMAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_POWER_STATES), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODER_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_DISPLAY_POWER_STATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTROL_BUS_SWITCH), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SCALED_HDTV_RESOLUTION_SUPPORT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS), /* Add the op code for SDVO enhancements */ SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_POSITION_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POSITION_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_POSITION_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_POSITION_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_POSITION_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_POSITION_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_SATURATION), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HUE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_CONTRAST), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_BRIGHTNESS), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_H), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_MAX_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_OVERSCAN_V), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_OVERSCAN_V), /* HDMI op code */ SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_SUPP_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_ENCODE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_PIXEL_REPLI), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_PIXEL_REPLI), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY_CAP), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_COLORIMETRY), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_COLORIMETRY), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_ENCRYPT_PREFER), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_AUDIO_STAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_AUDIO_STAT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INDEX), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_INDEX), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_INFO), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_AV_SPLIT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_AV_SPLIT), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_TXRATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_TXRATE), SDVO_CMD_NAME_ENTRY(SDVO_CMD_SET_HBUF_DATA), SDVO_CMD_NAME_ENTRY(SDVO_CMD_GET_HBUF_DATA), }; #define IS_SDVOB(reg) (reg == SDVOB || reg == PCH_SDVOB) #define SDVO_NAME(dev_priv) (IS_SDVOB((dev_priv)->sdvo_reg) ? "SDVOB" : "SDVOC") #define SDVO_PRIV(encoder) ((struct intel_sdvo_priv *) (encoder)->dev_priv) static void intel_sdvo_debug_write(struct intel_encoder *intel_encoder, u8 cmd, void *args, int args_len) { struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; int i; DRM_DEBUG_KMS("%s: W: %02X ", SDVO_NAME(sdvo_priv), cmd); for (i = 0; i < args_len; i++) DRM_LOG_KMS("%02X ", ((u8 *)args)[i]); for (; i < 8; i++) DRM_LOG_KMS(" "); for (i = 0; i < sizeof(sdvo_cmd_names) / sizeof(sdvo_cmd_names[0]); i++) { if (cmd == sdvo_cmd_names[i].cmd) { DRM_LOG_KMS("(%s)", sdvo_cmd_names[i].name); break; } } if (i == sizeof(sdvo_cmd_names)/ sizeof(sdvo_cmd_names[0])) DRM_LOG_KMS("(%02X)", cmd); DRM_LOG_KMS("\n"); } static void intel_sdvo_write_cmd(struct intel_encoder *intel_encoder, u8 cmd, void *args, int args_len) { int i; intel_sdvo_debug_write(intel_encoder, cmd, args, args_len); for (i = 0; i < args_len; i++) { intel_sdvo_write_byte(intel_encoder, SDVO_I2C_ARG_0 - i, ((u8*)args)[i]); } intel_sdvo_write_byte(intel_encoder, SDVO_I2C_OPCODE, cmd); } static const char *cmd_status_names[] = { "Power on", "Success", "Not supported", "Invalid arg", "Pending", "Target not specified", "Scaling not supported" }; static void intel_sdvo_debug_response(struct intel_encoder *intel_encoder, void *response, int response_len, u8 status) { struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; int i; DRM_DEBUG_KMS("%s: R: ", SDVO_NAME(sdvo_priv)); for (i = 0; i < response_len; i++) DRM_LOG_KMS("%02X ", ((u8 *)response)[i]); for (; i < 8; i++) DRM_LOG_KMS(" "); if (status <= SDVO_CMD_STATUS_SCALING_NOT_SUPP) DRM_LOG_KMS("(%s)", cmd_status_names[status]); else DRM_LOG_KMS("(??? %d)", status); DRM_LOG_KMS("\n"); } static u8 intel_sdvo_read_response(struct intel_encoder *intel_encoder, void *response, int response_len) { int i; u8 status; u8 retry = 50; while (retry--) { /* Read the command response */ for (i = 0; i < response_len; i++) { intel_sdvo_read_byte(intel_encoder, SDVO_I2C_RETURN_0 + i, &((u8 *)response)[i]); } /* read the return status */ intel_sdvo_read_byte(intel_encoder, SDVO_I2C_CMD_STATUS, &status); intel_sdvo_debug_response(intel_encoder, response, response_len, status); if (status != SDVO_CMD_STATUS_PENDING) return status; mdelay(50); } return status; } static int intel_sdvo_get_pixel_multiplier(struct drm_display_mode *mode) { if (mode->clock >= 100000) return 1; else if (mode->clock >= 50000) return 2; else return 4; } /** * Try to read the response after issuie the DDC switch command. But it * is noted that we must do the action of reading response and issuing DDC * switch command in one I2C transaction. Otherwise when we try to start * another I2C transaction after issuing the DDC bus switch, it will be * switched to the internal SDVO register. */ static void intel_sdvo_set_control_bus_switch(struct intel_encoder *intel_encoder, u8 target) { struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; u8 out_buf[2], cmd_buf[2], ret_value[2], ret; struct i2c_msg msgs[] = { { .addr = sdvo_priv->slave_addr >> 1, .flags = 0, .len = 2, .buf = out_buf, }, /* the following two are to read the response */ { .addr = sdvo_priv->slave_addr >> 1, .flags = 0, .len = 1, .buf = cmd_buf, }, { .addr = sdvo_priv->slave_addr >> 1, .flags = I2C_M_RD, .len = 1, .buf = ret_value, }, }; intel_sdvo_debug_write(intel_encoder, SDVO_CMD_SET_CONTROL_BUS_SWITCH, &target, 1); /* write the DDC switch command argument */ intel_sdvo_write_byte(intel_encoder, SDVO_I2C_ARG_0, target); out_buf[0] = SDVO_I2C_OPCODE; out_buf[1] = SDVO_CMD_SET_CONTROL_BUS_SWITCH; cmd_buf[0] = SDVO_I2C_CMD_STATUS; cmd_buf[1] = 0; ret_value[0] = 0; ret_value[1] = 0; ret = i2c_transfer(intel_encoder->i2c_bus, msgs, 3); if (ret != 3) { /* failure in I2C transfer */ DRM_DEBUG_KMS("I2c transfer returned %d\n", ret); return; } if (ret_value[0] != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("DDC switch command returns response %d\n", ret_value[0]); return; } return; } static bool intel_sdvo_set_target_input(struct intel_encoder *intel_encoder, bool target_0, bool target_1) { struct intel_sdvo_set_target_input_args targets = {0}; u8 status; if (target_0 && target_1) return SDVO_CMD_STATUS_NOTSUPP; if (target_1) targets.target_1 = 1; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_TARGET_INPUT, &targets, sizeof(targets)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } /** * Return whether each input is trained. * * This function is making an assumption about the layout of the response, * which should be checked against the docs. */ static bool intel_sdvo_get_trained_inputs(struct intel_encoder *intel_encoder, bool *input_1, bool *input_2) { struct intel_sdvo_get_trained_inputs_response response; u8 status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_TRAINED_INPUTS, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, sizeof(response)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; *input_1 = response.input0_trained; *input_2 = response.input1_trained; return true; } static bool intel_sdvo_set_active_outputs(struct intel_encoder *intel_encoder, u16 outputs) { u8 status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_ACTIVE_OUTPUTS, &outputs, sizeof(outputs)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_set_encoder_power_state(struct intel_encoder *intel_encoder, int mode) { u8 status, state = SDVO_ENCODER_STATE_ON; switch (mode) { case DRM_MODE_DPMS_ON: state = SDVO_ENCODER_STATE_ON; break; case DRM_MODE_DPMS_STANDBY: state = SDVO_ENCODER_STATE_STANDBY; break; case DRM_MODE_DPMS_SUSPEND: state = SDVO_ENCODER_STATE_SUSPEND; break; case DRM_MODE_DPMS_OFF: state = SDVO_ENCODER_STATE_OFF; break; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_ENCODER_POWER_STATE, &state, sizeof(state)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_get_input_pixel_clock_range(struct intel_encoder *intel_encoder, int *clock_min, int *clock_max) { struct intel_sdvo_pixel_clock_range clocks; u8 status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_INPUT_PIXEL_CLOCK_RANGE, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &clocks, sizeof(clocks)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; /* Convert the values from units of 10 kHz to kHz. */ *clock_min = clocks.min * 10; *clock_max = clocks.max * 10; return true; } static bool intel_sdvo_set_target_output(struct intel_encoder *intel_encoder, u16 outputs) { u8 status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_TARGET_OUTPUT, &outputs, sizeof(outputs)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_set_timing(struct intel_encoder *intel_encoder, u8 cmd, struct intel_sdvo_dtd *dtd) { u8 status; intel_sdvo_write_cmd(intel_encoder, cmd, &dtd->part1, sizeof(dtd->part1)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) return false; intel_sdvo_write_cmd(intel_encoder, cmd + 1, &dtd->part2, sizeof(dtd->part2)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } static bool intel_sdvo_set_input_timing(struct intel_encoder *intel_encoder, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_encoder, SDVO_CMD_SET_INPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_set_output_timing(struct intel_encoder *intel_encoder, struct intel_sdvo_dtd *dtd) { return intel_sdvo_set_timing(intel_encoder, SDVO_CMD_SET_OUTPUT_TIMINGS_PART1, dtd); } static bool intel_sdvo_create_preferred_input_timing(struct intel_encoder *intel_encoder, uint16_t clock, uint16_t width, uint16_t height) { struct intel_sdvo_preferred_input_timing_args args; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; uint8_t status; memset(&args, 0, sizeof(args)); args.clock = clock; args.width = width; args.height = height; args.interlace = 0; if (sdvo_priv->is_lvds && (sdvo_priv->sdvo_lvds_fixed_mode->hdisplay != width || sdvo_priv->sdvo_lvds_fixed_mode->vdisplay != height)) args.scaled = 1; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_CREATE_PREFERRED_INPUT_TIMING, &args, sizeof(args)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } static bool intel_sdvo_get_preferred_input_timing(struct intel_encoder *intel_encoder, struct intel_sdvo_dtd *dtd) { bool status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART1, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &dtd->part1, sizeof(dtd->part1)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_PREFERRED_INPUT_TIMING_PART2, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &dtd->part2, sizeof(dtd->part2)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return false; } static bool intel_sdvo_set_clock_rate_mult(struct intel_encoder *intel_encoder, u8 val) { u8 status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_CLOCK_RATE_MULT, &val, 1); status = intel_sdvo_read_response(intel_encoder, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } static void intel_sdvo_get_dtd_from_mode(struct intel_sdvo_dtd *dtd, struct drm_display_mode *mode) { uint16_t width, height; uint16_t h_blank_len, h_sync_len, v_blank_len, v_sync_len; uint16_t h_sync_offset, v_sync_offset; width = mode->crtc_hdisplay; height = mode->crtc_vdisplay; /* do some mode translations */ h_blank_len = mode->crtc_hblank_end - mode->crtc_hblank_start; h_sync_len = mode->crtc_hsync_end - mode->crtc_hsync_start; v_blank_len = mode->crtc_vblank_end - mode->crtc_vblank_start; v_sync_len = mode->crtc_vsync_end - mode->crtc_vsync_start; h_sync_offset = mode->crtc_hsync_start - mode->crtc_hblank_start; v_sync_offset = mode->crtc_vsync_start - mode->crtc_vblank_start; dtd->part1.clock = mode->clock / 10; dtd->part1.h_active = width & 0xff; dtd->part1.h_blank = h_blank_len & 0xff; dtd->part1.h_high = (((width >> 8) & 0xf) << 4) | ((h_blank_len >> 8) & 0xf); dtd->part1.v_active = height & 0xff; dtd->part1.v_blank = v_blank_len & 0xff; dtd->part1.v_high = (((height >> 8) & 0xf) << 4) | ((v_blank_len >> 8) & 0xf); dtd->part2.h_sync_off = h_sync_offset & 0xff; dtd->part2.h_sync_width = h_sync_len & 0xff; dtd->part2.v_sync_off_width = (v_sync_offset & 0xf) << 4 | (v_sync_len & 0xf); dtd->part2.sync_off_width_high = ((h_sync_offset & 0x300) >> 2) | ((h_sync_len & 0x300) >> 4) | ((v_sync_offset & 0x30) >> 2) | ((v_sync_len & 0x30) >> 4); dtd->part2.dtd_flags = 0x18; if (mode->flags & DRM_MODE_FLAG_PHSYNC) dtd->part2.dtd_flags |= 0x2; if (mode->flags & DRM_MODE_FLAG_PVSYNC) dtd->part2.dtd_flags |= 0x4; dtd->part2.sdvo_flags = 0; dtd->part2.v_sync_off_high = v_sync_offset & 0xc0; dtd->part2.reserved = 0; } static void intel_sdvo_get_mode_from_dtd(struct drm_display_mode * mode, struct intel_sdvo_dtd *dtd) { mode->hdisplay = dtd->part1.h_active; mode->hdisplay += ((dtd->part1.h_high >> 4) & 0x0f) << 8; mode->hsync_start = mode->hdisplay + dtd->part2.h_sync_off; mode->hsync_start += (dtd->part2.sync_off_width_high & 0xc0) << 2; mode->hsync_end = mode->hsync_start + dtd->part2.h_sync_width; mode->hsync_end += (dtd->part2.sync_off_width_high & 0x30) << 4; mode->htotal = mode->hdisplay + dtd->part1.h_blank; mode->htotal += (dtd->part1.h_high & 0xf) << 8; mode->vdisplay = dtd->part1.v_active; mode->vdisplay += ((dtd->part1.v_high >> 4) & 0x0f) << 8; mode->vsync_start = mode->vdisplay; mode->vsync_start += (dtd->part2.v_sync_off_width >> 4) & 0xf; mode->vsync_start += (dtd->part2.sync_off_width_high & 0x0c) << 2; mode->vsync_start += dtd->part2.v_sync_off_high & 0xc0; mode->vsync_end = mode->vsync_start + (dtd->part2.v_sync_off_width & 0xf); mode->vsync_end += (dtd->part2.sync_off_width_high & 0x3) << 4; mode->vtotal = mode->vdisplay + dtd->part1.v_blank; mode->vtotal += (dtd->part1.v_high & 0xf) << 8; mode->clock = dtd->part1.clock * 10; mode->flags &= ~(DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC); if (dtd->part2.dtd_flags & 0x2) mode->flags |= DRM_MODE_FLAG_PHSYNC; if (dtd->part2.dtd_flags & 0x4) mode->flags |= DRM_MODE_FLAG_PVSYNC; } static bool intel_sdvo_get_supp_encode(struct intel_encoder *intel_encoder, struct intel_sdvo_encode *encode) { uint8_t status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_SUPP_ENCODE, NULL, 0); status = intel_sdvo_read_response(intel_encoder, encode, sizeof(*encode)); if (status != SDVO_CMD_STATUS_SUCCESS) { /* non-support means DVI */ memset(encode, 0, sizeof(*encode)); return false; } return true; } static bool intel_sdvo_set_encode(struct intel_encoder *intel_encoder, uint8_t mode) { uint8_t status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_ENCODE, &mode, 1); status = intel_sdvo_read_response(intel_encoder, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } static bool intel_sdvo_set_colorimetry(struct intel_encoder *intel_encoder, uint8_t mode) { uint8_t status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_COLORIMETRY, &mode, 1); status = intel_sdvo_read_response(intel_encoder, NULL, 0); return (status == SDVO_CMD_STATUS_SUCCESS); } #if 0 static void intel_sdvo_dump_hdmi_buf(struct intel_encoder *intel_encoder) { int i, j; uint8_t set_buf_index[2]; uint8_t av_split; uint8_t buf_size; uint8_t buf[48]; uint8_t *pos; intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_AV_SPLIT, NULL, 0); intel_sdvo_read_response(encoder, &av_split, 1); for (i = 0; i <= av_split; i++) { set_buf_index[0] = i; set_buf_index[1] = 0; intel_sdvo_write_cmd(encoder, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2); intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_INFO, NULL, 0); intel_sdvo_read_response(encoder, &buf_size, 1); pos = buf; for (j = 0; j <= buf_size; j += 8) { intel_sdvo_write_cmd(encoder, SDVO_CMD_GET_HBUF_DATA, NULL, 0); intel_sdvo_read_response(encoder, pos, 8); pos += 8; } } } #endif static void intel_sdvo_set_hdmi_buf(struct intel_encoder *intel_encoder, int index, uint8_t *data, int8_t size, uint8_t tx_rate) { uint8_t set_buf_index[2]; set_buf_index[0] = index; set_buf_index[1] = 0; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_HBUF_INDEX, set_buf_index, 2); for (; size > 0; size -= 8) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_HBUF_DATA, data, 8); data += 8; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_HBUF_TXRATE, &tx_rate, 1); } static uint8_t intel_sdvo_calc_hbuf_csum(uint8_t *data, uint8_t size) { uint8_t csum = 0; int i; for (i = 0; i < size; i++) csum += data[i]; return 0x100 - csum; } #define DIP_TYPE_AVI 0x82 #define DIP_VERSION_AVI 0x2 #define DIP_LEN_AVI 13 struct dip_infoframe { uint8_t type; uint8_t version; uint8_t len; uint8_t checksum; union { struct { /* Packet Byte #1 */ uint8_t S:2; uint8_t B:2; uint8_t A:1; uint8_t Y:2; uint8_t rsvd1:1; /* Packet Byte #2 */ uint8_t R:4; uint8_t M:2; uint8_t C:2; /* Packet Byte #3 */ uint8_t SC:2; uint8_t Q:2; uint8_t EC:3; uint8_t ITC:1; /* Packet Byte #4 */ uint8_t VIC:7; uint8_t rsvd2:1; /* Packet Byte #5 */ uint8_t PR:4; uint8_t rsvd3:4; /* Packet Byte #6~13 */ uint16_t top_bar_end; uint16_t bottom_bar_start; uint16_t left_bar_end; uint16_t right_bar_start; } avi; struct { /* Packet Byte #1 */ uint8_t channel_count:3; uint8_t rsvd1:1; uint8_t coding_type:4; /* Packet Byte #2 */ uint8_t sample_size:2; /* SS0, SS1 */ uint8_t sample_frequency:3; uint8_t rsvd2:3; /* Packet Byte #3 */ uint8_t coding_type_private:5; uint8_t rsvd3:3; /* Packet Byte #4 */ uint8_t channel_allocation; /* Packet Byte #5 */ uint8_t rsvd4:3; uint8_t level_shift:4; uint8_t downmix_inhibit:1; } audio; uint8_t payload[28]; } __attribute__ ((packed)) u; } __attribute__((packed)); static void intel_sdvo_set_avi_infoframe(struct intel_encoder *intel_encoder, struct drm_display_mode * mode) { struct dip_infoframe avi_if = { .type = DIP_TYPE_AVI, .version = DIP_VERSION_AVI, .len = DIP_LEN_AVI, }; avi_if.checksum = intel_sdvo_calc_hbuf_csum((uint8_t *)&avi_if, 4 + avi_if.len); intel_sdvo_set_hdmi_buf(intel_encoder, 1, (uint8_t *)&avi_if, 4 + avi_if.len, SDVO_HBUF_TX_VSYNC); } static void intel_sdvo_set_tv_format(struct intel_encoder *intel_encoder) { struct intel_sdvo_tv_format format; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; uint32_t format_map, i; uint8_t status; for (i = 0; i < TV_FORMAT_NUM; i++) if (tv_format_names[i] == sdvo_priv->tv_format_name) break; format_map = 1 << i; memset(&format, 0, sizeof(format)); memcpy(&format, &format_map, sizeof(format_map) > sizeof(format) ? sizeof(format) : sizeof(format_map)); intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_TV_FORMAT, &format, sizeof(format)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) DRM_DEBUG_KMS("%s: Failed to set TV format\n", SDVO_NAME(sdvo_priv)); } static bool intel_sdvo_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *dev_priv = intel_encoder->dev_priv; if (dev_priv->is_tv) { struct intel_sdvo_dtd output_dtd; bool success; /* We need to construct preferred input timings based on our * output timings. To do that, we have to set the output * timings, even though this isn't really the right place in * the sequence to do it. Oh well. */ /* Set output timings */ intel_sdvo_get_dtd_from_mode(&output_dtd, mode); intel_sdvo_set_target_output(intel_encoder, dev_priv->attached_output); intel_sdvo_set_output_timing(intel_encoder, &output_dtd); /* Set the input timing to the screen. Assume always input 0. */ intel_sdvo_set_target_input(intel_encoder, true, false); success = intel_sdvo_create_preferred_input_timing(intel_encoder, mode->clock / 10, mode->hdisplay, mode->vdisplay); if (success) { struct intel_sdvo_dtd input_dtd; intel_sdvo_get_preferred_input_timing(intel_encoder, &input_dtd); intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd); dev_priv->sdvo_flags = input_dtd.part2.sdvo_flags; drm_mode_set_crtcinfo(adjusted_mode, 0); mode->clock = adjusted_mode->clock; adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode); } else { return false; } } else if (dev_priv->is_lvds) { struct intel_sdvo_dtd output_dtd; bool success; drm_mode_set_crtcinfo(dev_priv->sdvo_lvds_fixed_mode, 0); /* Set output timings */ intel_sdvo_get_dtd_from_mode(&output_dtd, dev_priv->sdvo_lvds_fixed_mode); intel_sdvo_set_target_output(intel_encoder, dev_priv->attached_output); intel_sdvo_set_output_timing(intel_encoder, &output_dtd); /* Set the input timing to the screen. Assume always input 0. */ intel_sdvo_set_target_input(intel_encoder, true, false); success = intel_sdvo_create_preferred_input_timing( intel_encoder, mode->clock / 10, mode->hdisplay, mode->vdisplay); if (success) { struct intel_sdvo_dtd input_dtd; intel_sdvo_get_preferred_input_timing(intel_encoder, &input_dtd); intel_sdvo_get_mode_from_dtd(adjusted_mode, &input_dtd); dev_priv->sdvo_flags = input_dtd.part2.sdvo_flags; drm_mode_set_crtcinfo(adjusted_mode, 0); mode->clock = adjusted_mode->clock; adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode); } else { return false; } } else { /* Make the CRTC code factor in the SDVO pixel multiplier. The * SDVO device will be told of the multiplier during mode_set. */ adjusted_mode->clock *= intel_sdvo_get_pixel_multiplier(mode); } return true; } static void intel_sdvo_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_crtc *crtc = encoder->crtc; struct intel_crtc *intel_crtc = to_intel_crtc(crtc); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; u32 sdvox = 0; int sdvo_pixel_multiply; struct intel_sdvo_in_out_map in_out; struct intel_sdvo_dtd input_dtd; u8 status; if (!mode) return; /* First, set the input mapping for the first input to our controlled * output. This is only correct if we're a single-input device, in * which case the first input is the output from the appropriate SDVO * channel on the motherboard. In a two-input device, the first input * will be SDVOB and the second SDVOC. */ in_out.in0 = sdvo_priv->attached_output; in_out.in1 = 0; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_IN_OUT_MAP, &in_out, sizeof(in_out)); status = intel_sdvo_read_response(intel_encoder, NULL, 0); if (sdvo_priv->is_hdmi) { intel_sdvo_set_avi_infoframe(intel_encoder, mode); sdvox |= SDVO_AUDIO_ENABLE; } /* We have tried to get input timing in mode_fixup, and filled into adjusted_mode */ if (sdvo_priv->is_tv || sdvo_priv->is_lvds) { intel_sdvo_get_dtd_from_mode(&input_dtd, adjusted_mode); input_dtd.part2.sdvo_flags = sdvo_priv->sdvo_flags; } else intel_sdvo_get_dtd_from_mode(&input_dtd, mode); /* If it's a TV, we already set the output timing in mode_fixup. * Otherwise, the output timing is equal to the input timing. */ if (!sdvo_priv->is_tv && !sdvo_priv->is_lvds) { /* Set the output timing to the screen */ intel_sdvo_set_target_output(intel_encoder, sdvo_priv->attached_output); intel_sdvo_set_output_timing(intel_encoder, &input_dtd); } /* Set the input timing to the screen. Assume always input 0. */ intel_sdvo_set_target_input(intel_encoder, true, false); if (sdvo_priv->is_tv) intel_sdvo_set_tv_format(intel_encoder); /* We would like to use intel_sdvo_create_preferred_input_timing() to * provide the device with a timing it can support, if it supports that * feature. However, presumably we would need to adjust the CRTC to * output the preferred timing, and we don't support that currently. */ #if 0 success = intel_sdvo_create_preferred_input_timing(encoder, clock, width, height); if (success) { struct intel_sdvo_dtd *input_dtd; intel_sdvo_get_preferred_input_timing(encoder, &input_dtd); intel_sdvo_set_input_timing(encoder, &input_dtd); } #else intel_sdvo_set_input_timing(intel_encoder, &input_dtd); #endif switch (intel_sdvo_get_pixel_multiplier(mode)) { case 1: intel_sdvo_set_clock_rate_mult(intel_encoder, SDVO_CLOCK_RATE_MULT_1X); break; case 2: intel_sdvo_set_clock_rate_mult(intel_encoder, SDVO_CLOCK_RATE_MULT_2X); break; case 4: intel_sdvo_set_clock_rate_mult(intel_encoder, SDVO_CLOCK_RATE_MULT_4X); break; } /* Set the SDVO control regs. */ if (IS_I965G(dev)) { sdvox |= SDVO_BORDER_ENABLE | SDVO_VSYNC_ACTIVE_HIGH | SDVO_HSYNC_ACTIVE_HIGH; } else { sdvox |= I915_READ(sdvo_priv->sdvo_reg); switch (sdvo_priv->sdvo_reg) { case SDVOB: sdvox &= SDVOB_PRESERVE_MASK; break; case SDVOC: sdvox &= SDVOC_PRESERVE_MASK; break; } sdvox |= (9 << 19) | SDVO_BORDER_ENABLE; } if (intel_crtc->pipe == 1) sdvox |= SDVO_PIPE_B_SELECT; sdvo_pixel_multiply = intel_sdvo_get_pixel_multiplier(mode); if (IS_I965G(dev)) { /* done in crtc_mode_set as the dpll_md reg must be written early */ } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) { /* done in crtc_mode_set as it lives inside the dpll register */ } else { sdvox |= (sdvo_pixel_multiply - 1) << SDVO_PORT_MULTIPLY_SHIFT; } if (sdvo_priv->sdvo_flags & SDVO_NEED_TO_STALL) sdvox |= SDVO_STALL_SELECT; intel_sdvo_write_sdvox(intel_encoder, sdvox); } static void intel_sdvo_dpms(struct drm_encoder *encoder, int mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; u32 temp; if (mode != DRM_MODE_DPMS_ON) { intel_sdvo_set_active_outputs(intel_encoder, 0); if (0) intel_sdvo_set_encoder_power_state(intel_encoder, mode); if (mode == DRM_MODE_DPMS_OFF) { temp = I915_READ(sdvo_priv->sdvo_reg); if ((temp & SDVO_ENABLE) != 0) { intel_sdvo_write_sdvox(intel_encoder, temp & ~SDVO_ENABLE); } } } else { bool input1, input2; int i; u8 status; temp = I915_READ(sdvo_priv->sdvo_reg); if ((temp & SDVO_ENABLE) == 0) intel_sdvo_write_sdvox(intel_encoder, temp | SDVO_ENABLE); for (i = 0; i < 2; i++) intel_wait_for_vblank(dev); status = intel_sdvo_get_trained_inputs(intel_encoder, &input1, &input2); /* Warn if the device reported failure to sync. * A lot of SDVO devices fail to notify of sync, but it's * a given it the status is a success, we succeeded. */ if (status == SDVO_CMD_STATUS_SUCCESS && !input1) { DRM_DEBUG_KMS("First %s output reported failure to " "sync\n", SDVO_NAME(sdvo_priv)); } if (0) intel_sdvo_set_encoder_power_state(intel_encoder, mode); intel_sdvo_set_active_outputs(intel_encoder, sdvo_priv->attached_output); } return; } static int intel_sdvo_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; if (mode->flags & DRM_MODE_FLAG_DBLSCAN) return MODE_NO_DBLESCAN; if (sdvo_priv->pixel_clock_min > mode->clock) return MODE_CLOCK_LOW; if (sdvo_priv->pixel_clock_max < mode->clock) return MODE_CLOCK_HIGH; if (sdvo_priv->is_lvds == true) { if (sdvo_priv->sdvo_lvds_fixed_mode == NULL) return MODE_PANEL; if (mode->hdisplay > sdvo_priv->sdvo_lvds_fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > sdvo_priv->sdvo_lvds_fixed_mode->vdisplay) return MODE_PANEL; } return MODE_OK; } static bool intel_sdvo_get_capabilities(struct intel_encoder *intel_encoder, struct intel_sdvo_caps *caps) { u8 status; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_DEVICE_CAPS, NULL, 0); status = intel_sdvo_read_response(intel_encoder, caps, sizeof(*caps)); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } /* No use! */ #if 0 struct drm_connector* intel_sdvo_find(struct drm_device *dev, int sdvoB) { struct drm_connector *connector = NULL; struct intel_encoder *iout = NULL; struct intel_sdvo_priv *sdvo; /* find the sdvo connector */ list_for_each_entry(connector, &dev->mode_config.connector_list, head) { iout = to_intel_encoder(connector); if (iout->type != INTEL_OUTPUT_SDVO) continue; sdvo = iout->dev_priv; if (sdvo->sdvo_reg == SDVOB && sdvoB) return connector; if (sdvo->sdvo_reg == SDVOC && !sdvoB) return connector; } return NULL; } int intel_sdvo_supports_hotplug(struct drm_connector *connector) { u8 response[2]; u8 status; struct intel_encoder *intel_encoder; DRM_DEBUG_KMS("\n"); if (!connector) return 0; intel_encoder = to_intel_encoder(connector); intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (response[0] !=0) return 1; return 0; } void intel_sdvo_set_hotplug(struct drm_connector *connector, int on) { u8 response[2]; u8 status; struct intel_encoder *intel_encoder = to_intel_encoder(connector); intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0); intel_sdvo_read_response(intel_encoder, &response, 2); if (on) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_HOT_PLUG_SUPPORT, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2); } else { response[0] = 0; response[1] = 0; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_SET_ACTIVE_HOT_PLUG, &response, 2); } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_ACTIVE_HOT_PLUG, NULL, 0); intel_sdvo_read_response(intel_encoder, &response, 2); } #endif static bool intel_sdvo_multifunc_encoder(struct intel_encoder *intel_encoder) { struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; int caps = 0; if (sdvo_priv->caps.output_flags & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)) caps++; if (sdvo_priv->caps.output_flags & (SDVO_OUTPUT_RGB0 | SDVO_OUTPUT_RGB1)) caps++; if (sdvo_priv->caps.output_flags & (SDVO_OUTPUT_SVID0 | SDVO_OUTPUT_SVID1)) caps++; if (sdvo_priv->caps.output_flags & (SDVO_OUTPUT_CVBS0 | SDVO_OUTPUT_CVBS1)) caps++; if (sdvo_priv->caps.output_flags & (SDVO_OUTPUT_YPRPB0 | SDVO_OUTPUT_YPRPB1)) caps++; if (sdvo_priv->caps.output_flags & (SDVO_OUTPUT_SCART0 | SDVO_OUTPUT_SCART1)) caps++; if (sdvo_priv->caps.output_flags & (SDVO_OUTPUT_LVDS0 | SDVO_OUTPUT_LVDS1)) caps++; return (caps > 1); } static struct drm_connector * intel_find_analog_connector(struct drm_device *dev) { struct drm_connector *connector; struct drm_encoder *encoder; struct intel_encoder *intel_encoder; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { intel_encoder = enc_to_intel_encoder(encoder); if (intel_encoder->type == INTEL_OUTPUT_ANALOG) { list_for_each_entry(connector, &dev->mode_config.connector_list, head) { if (connector && encoder == intel_attached_encoder(connector)) return connector; } } } return NULL; } static int intel_analog_is_connected(struct drm_device *dev) { struct drm_connector *analog_connector; analog_connector = intel_find_analog_connector(dev); if (!analog_connector) return false; if (analog_connector->funcs->detect(analog_connector) == connector_status_disconnected) return false; return true; } enum drm_connector_status intel_sdvo_hdmi_sink_detect(struct drm_connector *connector, u16 response) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; enum drm_connector_status status = connector_status_connected; struct edid *edid = NULL; edid = drm_get_edid(connector, intel_encoder->ddc_bus); /* This is only applied to SDVO cards with multiple outputs */ if (edid == NULL && intel_sdvo_multifunc_encoder(intel_encoder)) { uint8_t saved_ddc, temp_ddc; saved_ddc = sdvo_priv->ddc_bus; temp_ddc = sdvo_priv->ddc_bus >> 1; /* * Don't use the 1 as the argument of DDC bus switch to get * the EDID. It is used for SDVO SPD ROM. */ while(temp_ddc > 1) { sdvo_priv->ddc_bus = temp_ddc; edid = drm_get_edid(connector, intel_encoder->ddc_bus); if (edid) { /* * When we can get the EDID, maybe it is the * correct DDC bus. Update it. */ sdvo_priv->ddc_bus = temp_ddc; break; } temp_ddc >>= 1; } if (edid == NULL) sdvo_priv->ddc_bus = saved_ddc; } /* when there is no edid and no monitor is connected with VGA * port, try to use the CRT ddc to read the EDID for DVI-connector */ if (edid == NULL && sdvo_priv->analog_ddc_bus && !intel_analog_is_connected(connector->dev)) edid = drm_get_edid(connector, sdvo_priv->analog_ddc_bus); if (edid != NULL) { /* Don't report the output as connected if it's a DVI-I * connector with a non-digital EDID coming out. */ if (response & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)) { if (edid->input & DRM_EDID_INPUT_DIGITAL) sdvo_priv->is_hdmi = drm_detect_hdmi_monitor(edid); else status = connector_status_disconnected; } kfree(edid); connector->display_info.raw_edid = NULL; } else if (response & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)) status = connector_status_disconnected; return status; } static enum drm_connector_status intel_sdvo_detect(struct drm_connector *connector) { uint16_t response; u8 status; struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct intel_sdvo_connector *sdvo_connector = intel_connector->dev_priv; enum drm_connector_status ret; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_ATTACHED_DISPLAYS, NULL, 0); if (sdvo_priv->is_tv) { /* add 30ms delay when the output type is SDVO-TV */ mdelay(30); } status = intel_sdvo_read_response(intel_encoder, &response, 2); DRM_DEBUG_KMS("SDVO response %d %d\n", response & 0xff, response >> 8); if (status != SDVO_CMD_STATUS_SUCCESS) return connector_status_unknown; if (response == 0) return connector_status_disconnected; sdvo_priv->attached_output = response; if ((sdvo_connector->output_flag & response) == 0) ret = connector_status_disconnected; else if (response & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_TMDS1)) ret = intel_sdvo_hdmi_sink_detect(connector, response); else ret = connector_status_connected; /* May update encoder flag for like clock for SDVO TV, etc.*/ if (ret == connector_status_connected) { sdvo_priv->is_tv = false; sdvo_priv->is_lvds = false; intel_encoder->needs_tv_clock = false; if (response & SDVO_TV_MASK) { sdvo_priv->is_tv = true; intel_encoder->needs_tv_clock = true; } if (response & SDVO_LVDS_MASK) sdvo_priv->is_lvds = true; } return ret; } static void intel_sdvo_get_ddc_modes(struct drm_connector *connector) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; int num_modes; /* set the bus switch and get the modes */ num_modes = intel_ddc_get_modes(connector, intel_encoder->ddc_bus); /* * Mac mini hack. On this device, the DVI-I connector shares one DDC * link between analog and digital outputs. So, if the regular SDVO * DDC fails, check to see if the analog output is disconnected, in * which case we'll look there for the digital DDC data. */ if (num_modes == 0 && sdvo_priv->analog_ddc_bus && !intel_analog_is_connected(connector->dev)) { /* Switch to the analog ddc bus and try that */ (void) intel_ddc_get_modes(connector, sdvo_priv->analog_ddc_bus); } } /* * Set of SDVO TV modes. * Note! This is in reply order (see loop in get_tv_modes). * XXX: all 60Hz refresh? */ struct drm_display_mode sdvo_tv_modes[] = { { DRM_MODE("320x200", DRM_MODE_TYPE_DRIVER, 5815, 320, 321, 384, 416, 0, 200, 201, 232, 233, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("320x240", DRM_MODE_TYPE_DRIVER, 6814, 320, 321, 384, 416, 0, 240, 241, 272, 273, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("400x300", DRM_MODE_TYPE_DRIVER, 9910, 400, 401, 464, 496, 0, 300, 301, 332, 333, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 16913, 640, 641, 704, 736, 0, 350, 351, 382, 383, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 19121, 640, 641, 704, 736, 0, 400, 401, 432, 433, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 22654, 640, 641, 704, 736, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("704x480", DRM_MODE_TYPE_DRIVER, 24624, 704, 705, 768, 800, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("704x576", DRM_MODE_TYPE_DRIVER, 29232, 704, 705, 768, 800, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x350", DRM_MODE_TYPE_DRIVER, 18751, 720, 721, 784, 816, 0, 350, 351, 382, 383, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 21199, 720, 721, 784, 816, 0, 400, 401, 432, 433, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 25116, 720, 721, 784, 816, 0, 480, 481, 512, 513, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x540", DRM_MODE_TYPE_DRIVER, 28054, 720, 721, 784, 816, 0, 540, 541, 572, 573, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 29816, 720, 721, 784, 816, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("768x576", DRM_MODE_TYPE_DRIVER, 31570, 768, 769, 832, 864, 0, 576, 577, 608, 609, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 34030, 800, 801, 864, 896, 0, 600, 601, 632, 633, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 36581, 832, 833, 896, 928, 0, 624, 625, 656, 657, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("920x766", DRM_MODE_TYPE_DRIVER, 48707, 920, 921, 984, 1016, 0, 766, 767, 798, 799, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 53827, 1024, 1025, 1088, 1120, 0, 768, 769, 800, 801, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 87265, 1280, 1281, 1344, 1376, 0, 1024, 1025, 1056, 1057, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, }; static void intel_sdvo_get_tv_modes(struct drm_connector *connector) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct intel_sdvo_sdtv_resolution_request tv_res; uint32_t reply = 0, format_map = 0; int i; uint8_t status; /* Read the list of supported input resolutions for the selected TV * format. */ for (i = 0; i < TV_FORMAT_NUM; i++) if (tv_format_names[i] == sdvo_priv->tv_format_name) break; format_map = (1 << i); memcpy(&tv_res, &format_map, sizeof(struct intel_sdvo_sdtv_resolution_request) > sizeof(format_map) ? sizeof(format_map) : sizeof(struct intel_sdvo_sdtv_resolution_request)); intel_sdvo_set_target_output(intel_encoder, sdvo_priv->attached_output); intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_SDTV_RESOLUTION_SUPPORT, &tv_res, sizeof(tv_res)); status = intel_sdvo_read_response(intel_encoder, &reply, 3); if (status != SDVO_CMD_STATUS_SUCCESS) return; for (i = 0; i < ARRAY_SIZE(sdvo_tv_modes); i++) if (reply & (1 << i)) { struct drm_display_mode *nmode; nmode = drm_mode_duplicate(connector->dev, &sdvo_tv_modes[i]); if (nmode) drm_mode_probed_add(connector, nmode); } } static void intel_sdvo_get_lvds_modes(struct drm_connector *connector) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct drm_i915_private *dev_priv = connector->dev->dev_private; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct drm_display_mode *newmode; /* * Attempt to get the mode list from DDC. * Assume that the preferred modes are * arranged in priority order. */ intel_ddc_get_modes(connector, intel_encoder->ddc_bus); if (list_empty(&connector->probed_modes) == false) goto end; /* Fetch modes from VBT */ if (dev_priv->sdvo_lvds_vbt_mode != NULL) { newmode = drm_mode_duplicate(connector->dev, dev_priv->sdvo_lvds_vbt_mode); if (newmode != NULL) { /* Guarantee the mode is preferred */ newmode->type = (DRM_MODE_TYPE_PREFERRED | DRM_MODE_TYPE_DRIVER); drm_mode_probed_add(connector, newmode); } } end: list_for_each_entry(newmode, &connector->probed_modes, head) { if (newmode->type & DRM_MODE_TYPE_PREFERRED) { sdvo_priv->sdvo_lvds_fixed_mode = drm_mode_duplicate(connector->dev, newmode); break; } } } static int intel_sdvo_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_sdvo_connector *sdvo_connector = intel_connector->dev_priv; if (IS_TV(sdvo_connector)) intel_sdvo_get_tv_modes(connector); else if (IS_LVDS(sdvo_connector)) intel_sdvo_get_lvds_modes(connector); else intel_sdvo_get_ddc_modes(connector); if (list_empty(&connector->probed_modes)) return 0; return 1; } static void intel_sdvo_destroy_enhance_property(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_sdvo_connector *sdvo_priv = intel_connector->dev_priv; struct drm_device *dev = connector->dev; if (IS_TV(sdvo_priv)) { if (sdvo_priv->left_property) drm_property_destroy(dev, sdvo_priv->left_property); if (sdvo_priv->right_property) drm_property_destroy(dev, sdvo_priv->right_property); if (sdvo_priv->top_property) drm_property_destroy(dev, sdvo_priv->top_property); if (sdvo_priv->bottom_property) drm_property_destroy(dev, sdvo_priv->bottom_property); if (sdvo_priv->hpos_property) drm_property_destroy(dev, sdvo_priv->hpos_property); if (sdvo_priv->vpos_property) drm_property_destroy(dev, sdvo_priv->vpos_property); if (sdvo_priv->saturation_property) drm_property_destroy(dev, sdvo_priv->saturation_property); if (sdvo_priv->contrast_property) drm_property_destroy(dev, sdvo_priv->contrast_property); if (sdvo_priv->hue_property) drm_property_destroy(dev, sdvo_priv->hue_property); } if (IS_TV(sdvo_priv) || IS_LVDS(sdvo_priv)) { if (sdvo_priv->brightness_property) drm_property_destroy(dev, sdvo_priv->brightness_property); } return; } static void intel_sdvo_destroy(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_sdvo_connector *sdvo_connector = intel_connector->dev_priv; if (sdvo_connector->tv_format_property) drm_property_destroy(connector->dev, sdvo_connector->tv_format_property); intel_sdvo_destroy_enhance_property(connector); drm_sysfs_connector_remove(connector); drm_connector_cleanup(connector); kfree(connector); } static int intel_sdvo_set_property(struct drm_connector *connector, struct drm_property *property, uint64_t val) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_sdvo_connector *sdvo_connector = intel_connector->dev_priv; struct drm_crtc *crtc = encoder->crtc; int ret = 0; bool changed = false; uint8_t cmd, status; uint16_t temp_value; ret = drm_connector_property_set_value(connector, property, val); if (ret < 0) goto out; if (property == sdvo_connector->tv_format_property) { if (val >= TV_FORMAT_NUM) { ret = -EINVAL; goto out; } if (sdvo_priv->tv_format_name == sdvo_connector->tv_format_supported[val]) goto out; sdvo_priv->tv_format_name = sdvo_connector->tv_format_supported[val]; changed = true; } if (IS_TV(sdvo_connector) || IS_LVDS(sdvo_connector)) { cmd = 0; temp_value = val; if (sdvo_connector->left_property == property) { drm_connector_property_set_value(connector, sdvo_connector->right_property, val); if (sdvo_connector->left_margin == temp_value) goto out; sdvo_connector->left_margin = temp_value; sdvo_connector->right_margin = temp_value; temp_value = sdvo_connector->max_hscan - sdvo_connector->left_margin; cmd = SDVO_CMD_SET_OVERSCAN_H; } else if (sdvo_connector->right_property == property) { drm_connector_property_set_value(connector, sdvo_connector->left_property, val); if (sdvo_connector->right_margin == temp_value) goto out; sdvo_connector->left_margin = temp_value; sdvo_connector->right_margin = temp_value; temp_value = sdvo_connector->max_hscan - sdvo_connector->left_margin; cmd = SDVO_CMD_SET_OVERSCAN_H; } else if (sdvo_connector->top_property == property) { drm_connector_property_set_value(connector, sdvo_connector->bottom_property, val); if (sdvo_connector->top_margin == temp_value) goto out; sdvo_connector->top_margin = temp_value; sdvo_connector->bottom_margin = temp_value; temp_value = sdvo_connector->max_vscan - sdvo_connector->top_margin; cmd = SDVO_CMD_SET_OVERSCAN_V; } else if (sdvo_connector->bottom_property == property) { drm_connector_property_set_value(connector, sdvo_connector->top_property, val); if (sdvo_connector->bottom_margin == temp_value) goto out; sdvo_connector->top_margin = temp_value; sdvo_connector->bottom_margin = temp_value; temp_value = sdvo_connector->max_vscan - sdvo_connector->top_margin; cmd = SDVO_CMD_SET_OVERSCAN_V; } else if (sdvo_connector->hpos_property == property) { if (sdvo_connector->cur_hpos == temp_value) goto out; cmd = SDVO_CMD_SET_POSITION_H; sdvo_connector->cur_hpos = temp_value; } else if (sdvo_connector->vpos_property == property) { if (sdvo_connector->cur_vpos == temp_value) goto out; cmd = SDVO_CMD_SET_POSITION_V; sdvo_connector->cur_vpos = temp_value; } else if (sdvo_connector->saturation_property == property) { if (sdvo_connector->cur_saturation == temp_value) goto out; cmd = SDVO_CMD_SET_SATURATION; sdvo_connector->cur_saturation = temp_value; } else if (sdvo_connector->contrast_property == property) { if (sdvo_connector->cur_contrast == temp_value) goto out; cmd = SDVO_CMD_SET_CONTRAST; sdvo_connector->cur_contrast = temp_value; } else if (sdvo_connector->hue_property == property) { if (sdvo_connector->cur_hue == temp_value) goto out; cmd = SDVO_CMD_SET_HUE; sdvo_connector->cur_hue = temp_value; } else if (sdvo_connector->brightness_property == property) { if (sdvo_connector->cur_brightness == temp_value) goto out; cmd = SDVO_CMD_SET_BRIGHTNESS; sdvo_connector->cur_brightness = temp_value; } if (cmd) { intel_sdvo_write_cmd(intel_encoder, cmd, &temp_value, 2); status = intel_sdvo_read_response(intel_encoder, NULL, 0); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO command \n"); return -EINVAL; } changed = true; } } if (changed && crtc) drm_crtc_helper_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb); out: return ret; } static const struct drm_encoder_helper_funcs intel_sdvo_helper_funcs = { .dpms = intel_sdvo_dpms, .mode_fixup = intel_sdvo_mode_fixup, .prepare = intel_encoder_prepare, .mode_set = intel_sdvo_mode_set, .commit = intel_encoder_commit, }; static const struct drm_connector_funcs intel_sdvo_connector_funcs = { .dpms = drm_helper_connector_dpms, .detect = intel_sdvo_detect, .fill_modes = drm_helper_probe_single_connector_modes, .set_property = intel_sdvo_set_property, .destroy = intel_sdvo_destroy, }; static const struct drm_connector_helper_funcs intel_sdvo_connector_helper_funcs = { .get_modes = intel_sdvo_get_modes, .mode_valid = intel_sdvo_mode_valid, .best_encoder = intel_attached_encoder, }; static void intel_sdvo_enc_destroy(struct drm_encoder *encoder) { struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; if (intel_encoder->i2c_bus) intel_i2c_destroy(intel_encoder->i2c_bus); if (intel_encoder->ddc_bus) intel_i2c_destroy(intel_encoder->ddc_bus); if (sdvo_priv->analog_ddc_bus) intel_i2c_destroy(sdvo_priv->analog_ddc_bus); if (sdvo_priv->sdvo_lvds_fixed_mode != NULL) drm_mode_destroy(encoder->dev, sdvo_priv->sdvo_lvds_fixed_mode); drm_encoder_cleanup(encoder); kfree(intel_encoder); } static const struct drm_encoder_funcs intel_sdvo_enc_funcs = { .destroy = intel_sdvo_enc_destroy, }; /** * Choose the appropriate DDC bus for control bus switch command for this * SDVO output based on the controlled output. * * DDC bus number assignment is in a priority order of RGB outputs, then TMDS * outputs, then LVDS outputs. */ static void intel_sdvo_select_ddc_bus(struct drm_i915_private *dev_priv, struct intel_sdvo_priv *sdvo, u32 reg) { struct sdvo_device_mapping *mapping; if (IS_SDVOB(reg)) mapping = &(dev_priv->sdvo_mappings[0]); else mapping = &(dev_priv->sdvo_mappings[1]); sdvo->ddc_bus = 1 << ((mapping->ddc_pin & 0xf0) >> 4); } static bool intel_sdvo_get_digital_encoding_mode(struct intel_encoder *output, int device) { struct intel_sdvo_priv *sdvo_priv = output->dev_priv; uint8_t status; if (device == 0) intel_sdvo_set_target_output(output, SDVO_OUTPUT_TMDS0); else intel_sdvo_set_target_output(output, SDVO_OUTPUT_TMDS1); intel_sdvo_write_cmd(output, SDVO_CMD_GET_ENCODE, NULL, 0); status = intel_sdvo_read_response(output, &sdvo_priv->is_hdmi, 1); if (status != SDVO_CMD_STATUS_SUCCESS) return false; return true; } static struct intel_encoder * intel_sdvo_chan_to_intel_encoder(struct intel_i2c_chan *chan) { struct drm_device *dev = chan->drm_dev; struct drm_encoder *encoder; struct intel_encoder *intel_encoder = NULL; list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) { intel_encoder = enc_to_intel_encoder(encoder); if (intel_encoder->ddc_bus == &chan->adapter) break; } return intel_encoder; } static int intel_sdvo_master_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msgs[], int num) { struct intel_encoder *intel_encoder; struct intel_sdvo_priv *sdvo_priv; struct i2c_algo_bit_data *algo_data; const struct i2c_algorithm *algo; algo_data = (struct i2c_algo_bit_data *)i2c_adap->algo_data; intel_encoder = intel_sdvo_chan_to_intel_encoder( (struct intel_i2c_chan *)(algo_data->data)); if (intel_encoder == NULL) return -EINVAL; sdvo_priv = intel_encoder->dev_priv; algo = intel_encoder->i2c_bus->algo; intel_sdvo_set_control_bus_switch(intel_encoder, sdvo_priv->ddc_bus); return algo->master_xfer(i2c_adap, msgs, num); } static struct i2c_algorithm intel_sdvo_i2c_bit_algo = { .master_xfer = intel_sdvo_master_xfer, }; static u8 intel_sdvo_get_slave_addr(struct drm_device *dev, int sdvo_reg) { struct drm_i915_private *dev_priv = dev->dev_private; struct sdvo_device_mapping *my_mapping, *other_mapping; if (IS_SDVOB(sdvo_reg)) { my_mapping = &dev_priv->sdvo_mappings[0]; other_mapping = &dev_priv->sdvo_mappings[1]; } else { my_mapping = &dev_priv->sdvo_mappings[1]; other_mapping = &dev_priv->sdvo_mappings[0]; } /* If the BIOS described our SDVO device, take advantage of it. */ if (my_mapping->slave_addr) return my_mapping->slave_addr; /* If the BIOS only described a different SDVO device, use the * address that it isn't using. */ if (other_mapping->slave_addr) { if (other_mapping->slave_addr == 0x70) return 0x72; else return 0x70; } /* No SDVO device info is found for another DVO port, * so use mapping assumption we had before BIOS parsing. */ if (IS_SDVOB(sdvo_reg)) return 0x70; else return 0x72; } static bool intel_sdvo_connector_alloc (struct intel_connector **ret) { struct intel_connector *intel_connector; struct intel_sdvo_connector *sdvo_connector; *ret = kzalloc(sizeof(*intel_connector) + sizeof(*sdvo_connector), GFP_KERNEL); if (!*ret) return false; intel_connector = *ret; sdvo_connector = (struct intel_sdvo_connector *)(intel_connector + 1); intel_connector->dev_priv = sdvo_connector; return true; } static void intel_sdvo_connector_create (struct drm_encoder *encoder, struct drm_connector *connector) { drm_connector_init(encoder->dev, connector, &intel_sdvo_connector_funcs, connector->connector_type); drm_connector_helper_add(connector, &intel_sdvo_connector_helper_funcs); connector->interlace_allowed = 0; connector->doublescan_allowed = 0; connector->display_info.subpixel_order = SubPixelHorizontalRGB; drm_mode_connector_attach_encoder(connector, encoder); drm_sysfs_connector_add(connector); } static bool intel_sdvo_dvi_init(struct intel_encoder *intel_encoder, int device) { struct drm_encoder *encoder = &intel_encoder->enc; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *sdvo_connector; if (!intel_sdvo_connector_alloc(&intel_connector)) return false; sdvo_connector = intel_connector->dev_priv; if (device == 0) { sdvo_priv->controlled_output |= SDVO_OUTPUT_TMDS0; sdvo_connector->output_flag = SDVO_OUTPUT_TMDS0; } else if (device == 1) { sdvo_priv->controlled_output |= SDVO_OUTPUT_TMDS1; sdvo_connector->output_flag = SDVO_OUTPUT_TMDS1; } connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_TMDS; connector->connector_type = DRM_MODE_CONNECTOR_DVID; if (intel_sdvo_get_supp_encode(intel_encoder, &sdvo_priv->encode) && intel_sdvo_get_digital_encoding_mode(intel_encoder, device) && sdvo_priv->is_hdmi) { /* enable hdmi encoding mode if supported */ intel_sdvo_set_encode(intel_encoder, SDVO_ENCODE_HDMI); intel_sdvo_set_colorimetry(intel_encoder, SDVO_COLORIMETRY_RGB256); connector->connector_type = DRM_MODE_CONNECTOR_HDMIA; } intel_encoder->clone_mask = (1 << INTEL_SDVO_NON_TV_CLONE_BIT) | (1 << INTEL_ANALOG_CLONE_BIT); intel_sdvo_connector_create(encoder, connector); return true; } static bool intel_sdvo_tv_init(struct intel_encoder *intel_encoder, int type) { struct drm_encoder *encoder = &intel_encoder->enc; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *sdvo_connector; if (!intel_sdvo_connector_alloc(&intel_connector)) return false; connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_TVDAC; connector->connector_type = DRM_MODE_CONNECTOR_SVIDEO; sdvo_connector = intel_connector->dev_priv; sdvo_priv->controlled_output |= type; sdvo_connector->output_flag = type; sdvo_priv->is_tv = true; intel_encoder->needs_tv_clock = true; intel_encoder->clone_mask = 1 << INTEL_SDVO_TV_CLONE_BIT; intel_sdvo_connector_create(encoder, connector); intel_sdvo_tv_create_property(connector, type); intel_sdvo_create_enhance_property(connector); return true; } static bool intel_sdvo_analog_init(struct intel_encoder *intel_encoder, int device) { struct drm_encoder *encoder = &intel_encoder->enc; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *sdvo_connector; if (!intel_sdvo_connector_alloc(&intel_connector)) return false; connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_DAC; connector->connector_type = DRM_MODE_CONNECTOR_VGA; sdvo_connector = intel_connector->dev_priv; if (device == 0) { sdvo_priv->controlled_output |= SDVO_OUTPUT_RGB0; sdvo_connector->output_flag = SDVO_OUTPUT_RGB0; } else if (device == 1) { sdvo_priv->controlled_output |= SDVO_OUTPUT_RGB1; sdvo_connector->output_flag = SDVO_OUTPUT_RGB1; } intel_encoder->clone_mask = (1 << INTEL_SDVO_NON_TV_CLONE_BIT) | (1 << INTEL_ANALOG_CLONE_BIT); intel_sdvo_connector_create(encoder, connector); return true; } static bool intel_sdvo_lvds_init(struct intel_encoder *intel_encoder, int device) { struct drm_encoder *encoder = &intel_encoder->enc; struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct drm_connector *connector; struct intel_connector *intel_connector; struct intel_sdvo_connector *sdvo_connector; if (!intel_sdvo_connector_alloc(&intel_connector)) return false; connector = &intel_connector->base; encoder->encoder_type = DRM_MODE_ENCODER_LVDS; connector->connector_type = DRM_MODE_CONNECTOR_LVDS; sdvo_connector = intel_connector->dev_priv; sdvo_priv->is_lvds = true; if (device == 0) { sdvo_priv->controlled_output |= SDVO_OUTPUT_LVDS0; sdvo_connector->output_flag = SDVO_OUTPUT_LVDS0; } else if (device == 1) { sdvo_priv->controlled_output |= SDVO_OUTPUT_LVDS1; sdvo_connector->output_flag = SDVO_OUTPUT_LVDS1; } intel_encoder->clone_mask = (1 << INTEL_ANALOG_CLONE_BIT) | (1 << INTEL_SDVO_LVDS_CLONE_BIT); intel_sdvo_connector_create(encoder, connector); intel_sdvo_create_enhance_property(connector); return true; } static bool intel_sdvo_output_setup(struct intel_encoder *intel_encoder, uint16_t flags) { struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; sdvo_priv->is_tv = false; intel_encoder->needs_tv_clock = false; sdvo_priv->is_lvds = false; /* SDVO requires XXX1 function may not exist unless it has XXX0 function.*/ if (flags & SDVO_OUTPUT_TMDS0) if (!intel_sdvo_dvi_init(intel_encoder, 0)) return false; if ((flags & SDVO_TMDS_MASK) == SDVO_TMDS_MASK) if (!intel_sdvo_dvi_init(intel_encoder, 1)) return false; /* TV has no XXX1 function block */ if (flags & SDVO_OUTPUT_SVID0) if (!intel_sdvo_tv_init(intel_encoder, SDVO_OUTPUT_SVID0)) return false; if (flags & SDVO_OUTPUT_CVBS0) if (!intel_sdvo_tv_init(intel_encoder, SDVO_OUTPUT_CVBS0)) return false; if (flags & SDVO_OUTPUT_RGB0) if (!intel_sdvo_analog_init(intel_encoder, 0)) return false; if ((flags & SDVO_RGB_MASK) == SDVO_RGB_MASK) if (!intel_sdvo_analog_init(intel_encoder, 1)) return false; if (flags & SDVO_OUTPUT_LVDS0) if (!intel_sdvo_lvds_init(intel_encoder, 0)) return false; if ((flags & SDVO_LVDS_MASK) == SDVO_LVDS_MASK) if (!intel_sdvo_lvds_init(intel_encoder, 1)) return false; if ((flags & SDVO_OUTPUT_MASK) == 0) { unsigned char bytes[2]; sdvo_priv->controlled_output = 0; memcpy(bytes, &sdvo_priv->caps.output_flags, 2); DRM_DEBUG_KMS("%s: Unknown SDVO output type (0x%02x%02x)\n", SDVO_NAME(sdvo_priv), bytes[0], bytes[1]); return false; } intel_encoder->crtc_mask = (1 << 0) | (1 << 1); return true; } static void intel_sdvo_tv_create_property(struct drm_connector *connector, int type) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_sdvo_priv *sdvo_priv = intel_encoder->dev_priv; struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_sdvo_connector *sdvo_connector = intel_connector->dev_priv; struct intel_sdvo_tv_format format; uint32_t format_map, i; uint8_t status; intel_sdvo_set_target_output(intel_encoder, type); intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_SUPPORTED_TV_FORMATS, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &format, sizeof(format)); if (status != SDVO_CMD_STATUS_SUCCESS) return; memcpy(&format_map, &format, sizeof(format) > sizeof(format_map) ? sizeof(format_map) : sizeof(format)); if (format_map == 0) return; sdvo_connector->format_supported_num = 0; for (i = 0 ; i < TV_FORMAT_NUM; i++) if (format_map & (1 << i)) { sdvo_connector->tv_format_supported [sdvo_connector->format_supported_num++] = tv_format_names[i]; } sdvo_connector->tv_format_property = drm_property_create( connector->dev, DRM_MODE_PROP_ENUM, "mode", sdvo_connector->format_supported_num); for (i = 0; i < sdvo_connector->format_supported_num; i++) drm_property_add_enum( sdvo_connector->tv_format_property, i, i, sdvo_connector->tv_format_supported[i]); sdvo_priv->tv_format_name = sdvo_connector->tv_format_supported[0]; drm_connector_attach_property( connector, sdvo_connector->tv_format_property, 0); } static void intel_sdvo_create_enhance_property(struct drm_connector *connector) { struct drm_encoder *encoder = intel_attached_encoder(connector); struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder); struct intel_connector *intel_connector = to_intel_connector(connector); struct intel_sdvo_connector *sdvo_priv = intel_connector->dev_priv; struct intel_sdvo_enhancements_reply sdvo_data; struct drm_device *dev = connector->dev; uint8_t status; uint16_t response, data_value[2]; intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_SUPPORTED_ENHANCEMENTS, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &sdvo_data, sizeof(sdvo_data)); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS(" incorrect response is returned\n"); return; } response = *((uint16_t *)&sdvo_data); if (!response) { DRM_DEBUG_KMS("No enhancement is supported\n"); return; } if (IS_TV(sdvo_priv)) { /* when horizontal overscan is supported, Add the left/right * property */ if (sdvo_data.overscan_h) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_OVERSCAN_H, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO max " "h_overscan\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_OVERSCAN_H, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO h_overscan\n"); return; } sdvo_priv->max_hscan = data_value[0]; sdvo_priv->left_margin = data_value[0] - response; sdvo_priv->right_margin = sdvo_priv->left_margin; sdvo_priv->left_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "left_margin", 2); sdvo_priv->left_property->values[0] = 0; sdvo_priv->left_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->left_property, sdvo_priv->left_margin); sdvo_priv->right_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "right_margin", 2); sdvo_priv->right_property->values[0] = 0; sdvo_priv->right_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->right_property, sdvo_priv->right_margin); DRM_DEBUG_KMS("h_overscan: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (sdvo_data.overscan_v) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_OVERSCAN_V, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO max " "v_overscan\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_OVERSCAN_V, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO v_overscan\n"); return; } sdvo_priv->max_vscan = data_value[0]; sdvo_priv->top_margin = data_value[0] - response; sdvo_priv->bottom_margin = sdvo_priv->top_margin; sdvo_priv->top_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "top_margin", 2); sdvo_priv->top_property->values[0] = 0; sdvo_priv->top_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->top_property, sdvo_priv->top_margin); sdvo_priv->bottom_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "bottom_margin", 2); sdvo_priv->bottom_property->values[0] = 0; sdvo_priv->bottom_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->bottom_property, sdvo_priv->bottom_margin); DRM_DEBUG_KMS("v_overscan: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (sdvo_data.position_h) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_POSITION_H, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO Max h_pos\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_POSITION_H, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO get h_postion\n"); return; } sdvo_priv->max_hpos = data_value[0]; sdvo_priv->cur_hpos = response; sdvo_priv->hpos_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "hpos", 2); sdvo_priv->hpos_property->values[0] = 0; sdvo_priv->hpos_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->hpos_property, sdvo_priv->cur_hpos); DRM_DEBUG_KMS("h_position: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (sdvo_data.position_v) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_POSITION_V, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO Max v_pos\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_POSITION_V, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO get v_postion\n"); return; } sdvo_priv->max_vpos = data_value[0]; sdvo_priv->cur_vpos = response; sdvo_priv->vpos_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "vpos", 2); sdvo_priv->vpos_property->values[0] = 0; sdvo_priv->vpos_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->vpos_property, sdvo_priv->cur_vpos); DRM_DEBUG_KMS("v_position: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (sdvo_data.saturation) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_SATURATION, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO Max sat\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_SATURATION, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO get sat\n"); return; } sdvo_priv->max_saturation = data_value[0]; sdvo_priv->cur_saturation = response; sdvo_priv->saturation_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "saturation", 2); sdvo_priv->saturation_property->values[0] = 0; sdvo_priv->saturation_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->saturation_property, sdvo_priv->cur_saturation); DRM_DEBUG_KMS("saturation: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (sdvo_data.contrast) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_CONTRAST, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO Max contrast\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_CONTRAST, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO get contrast\n"); return; } sdvo_priv->max_contrast = data_value[0]; sdvo_priv->cur_contrast = response; sdvo_priv->contrast_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "contrast", 2); sdvo_priv->contrast_property->values[0] = 0; sdvo_priv->contrast_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->contrast_property, sdvo_priv->cur_contrast); DRM_DEBUG_KMS("contrast: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } if (sdvo_data.hue) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_HUE, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO Max hue\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_HUE, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO get hue\n"); return; } sdvo_priv->max_hue = data_value[0]; sdvo_priv->cur_hue = response; sdvo_priv->hue_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "hue", 2); sdvo_priv->hue_property->values[0] = 0; sdvo_priv->hue_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->hue_property, sdvo_priv->cur_hue); DRM_DEBUG_KMS("hue: max %d, default %d, current %d\n", data_value[0], data_value[1], response); } } if (IS_TV(sdvo_priv) || IS_LVDS(sdvo_priv)) { if (sdvo_data.brightness) { intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_MAX_BRIGHTNESS, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &data_value, 4); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO Max bright\n"); return; } intel_sdvo_write_cmd(intel_encoder, SDVO_CMD_GET_BRIGHTNESS, NULL, 0); status = intel_sdvo_read_response(intel_encoder, &response, 2); if (status != SDVO_CMD_STATUS_SUCCESS) { DRM_DEBUG_KMS("Incorrect SDVO get brigh\n"); return; } sdvo_priv->max_brightness = data_value[0]; sdvo_priv->cur_brightness = response; sdvo_priv->brightness_property = drm_property_create(dev, DRM_MODE_PROP_RANGE, "brightness", 2); sdvo_priv->brightness_property->values[0] = 0; sdvo_priv->brightness_property->values[1] = data_value[0]; drm_connector_attach_property(connector, sdvo_priv->brightness_property, sdvo_priv->cur_brightness); DRM_DEBUG_KMS("brightness: max %d, " "default %d, current %d\n", data_value[0], data_value[1], response); } } return; } bool intel_sdvo_init(struct drm_device *dev, int sdvo_reg) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_encoder *intel_encoder; struct intel_sdvo_priv *sdvo_priv; u8 ch[0x40]; int i; u32 i2c_reg, ddc_reg, analog_ddc_reg; intel_encoder = kcalloc(sizeof(struct intel_encoder)+sizeof(struct intel_sdvo_priv), 1, GFP_KERNEL); if (!intel_encoder) { return false; } sdvo_priv = (struct intel_sdvo_priv *)(intel_encoder + 1); sdvo_priv->sdvo_reg = sdvo_reg; intel_encoder->dev_priv = sdvo_priv; intel_encoder->type = INTEL_OUTPUT_SDVO; if (HAS_PCH_SPLIT(dev)) { i2c_reg = PCH_GPIOE; ddc_reg = PCH_GPIOE; analog_ddc_reg = PCH_GPIOA; } else { i2c_reg = GPIOE; ddc_reg = GPIOE; analog_ddc_reg = GPIOA; } /* setup the DDC bus. */ if (IS_SDVOB(sdvo_reg)) intel_encoder->i2c_bus = intel_i2c_create(dev, i2c_reg, "SDVOCTRL_E for SDVOB"); else intel_encoder->i2c_bus = intel_i2c_create(dev, i2c_reg, "SDVOCTRL_E for SDVOC"); if (!intel_encoder->i2c_bus) goto err_inteloutput; sdvo_priv->slave_addr = intel_sdvo_get_slave_addr(dev, sdvo_reg); /* Save the bit-banging i2c functionality for use by the DDC wrapper */ intel_sdvo_i2c_bit_algo.functionality = intel_encoder->i2c_bus->algo->functionality; /* Read the regs to test if we can talk to the device */ for (i = 0; i < 0x40; i++) { if (!intel_sdvo_read_byte(intel_encoder, i, &ch[i])) { DRM_DEBUG_KMS("No SDVO device found on SDVO%c\n", IS_SDVOB(sdvo_reg) ? 'B' : 'C'); goto err_i2c; } } /* setup the DDC bus. */ if (IS_SDVOB(sdvo_reg)) { intel_encoder->ddc_bus = intel_i2c_create(dev, ddc_reg, "SDVOB DDC BUS"); sdvo_priv->analog_ddc_bus = intel_i2c_create(dev, analog_ddc_reg, "SDVOB/VGA DDC BUS"); dev_priv->hotplug_supported_mask |= SDVOB_HOTPLUG_INT_STATUS; } else { intel_encoder->ddc_bus = intel_i2c_create(dev, ddc_reg, "SDVOC DDC BUS"); sdvo_priv->analog_ddc_bus = intel_i2c_create(dev, analog_ddc_reg, "SDVOC/VGA DDC BUS"); dev_priv->hotplug_supported_mask |= SDVOC_HOTPLUG_INT_STATUS; } if (intel_encoder->ddc_bus == NULL) goto err_i2c; /* Wrap with our custom algo which switches to DDC mode */ intel_encoder->ddc_bus->algo = &intel_sdvo_i2c_bit_algo; /* encoder type will be decided later */ drm_encoder_init(dev, &intel_encoder->enc, &intel_sdvo_enc_funcs, 0); drm_encoder_helper_add(&intel_encoder->enc, &intel_sdvo_helper_funcs); /* In default case sdvo lvds is false */ intel_sdvo_get_capabilities(intel_encoder, &sdvo_priv->caps); if (intel_sdvo_output_setup(intel_encoder, sdvo_priv->caps.output_flags) != true) { DRM_DEBUG_KMS("SDVO output failed to setup on SDVO%c\n", IS_SDVOB(sdvo_reg) ? 'B' : 'C'); goto err_i2c; } intel_sdvo_select_ddc_bus(dev_priv, sdvo_priv, sdvo_reg); /* Set the input timing to the screen. Assume always input 0. */ intel_sdvo_set_target_input(intel_encoder, true, false); intel_sdvo_get_input_pixel_clock_range(intel_encoder, &sdvo_priv->pixel_clock_min, &sdvo_priv->pixel_clock_max); DRM_DEBUG_KMS("%s device VID/DID: %02X:%02X.%02X, " "clock range %dMHz - %dMHz, " "input 1: %c, input 2: %c, " "output 1: %c, output 2: %c\n", SDVO_NAME(sdvo_priv), sdvo_priv->caps.vendor_id, sdvo_priv->caps.device_id, sdvo_priv->caps.device_rev_id, sdvo_priv->pixel_clock_min / 1000, sdvo_priv->pixel_clock_max / 1000, (sdvo_priv->caps.sdvo_inputs_mask & 0x1) ? 'Y' : 'N', (sdvo_priv->caps.sdvo_inputs_mask & 0x2) ? 'Y' : 'N', /* check currently supported outputs */ sdvo_priv->caps.output_flags & (SDVO_OUTPUT_TMDS0 | SDVO_OUTPUT_RGB0) ? 'Y' : 'N', sdvo_priv->caps.output_flags & (SDVO_OUTPUT_TMDS1 | SDVO_OUTPUT_RGB1) ? 'Y' : 'N'); return true; err_i2c: if (sdvo_priv->analog_ddc_bus != NULL) intel_i2c_destroy(sdvo_priv->analog_ddc_bus); if (intel_encoder->ddc_bus != NULL) intel_i2c_destroy(intel_encoder->ddc_bus); if (intel_encoder->i2c_bus != NULL) intel_i2c_destroy(intel_encoder->i2c_bus); err_inteloutput: kfree(intel_encoder); return false; }