/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * Keith Packard * */ #include #include #include #include #include #include #include "intel_drv.h" #include "intel_ringbuffer.h" #include #include "i915_drv.h" #define DRM_I915_RING_DEBUG 1 #if defined(CONFIG_DEBUG_FS) enum { ACTIVE_LIST, INACTIVE_LIST, PINNED_LIST, }; static const char *yesno(int v) { return v ? "yes" : "no"; } static int i915_capabilities(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; const struct intel_device_info *info = INTEL_INFO(dev); seq_printf(m, "gen: %d\n", info->gen); seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev)); #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x)) #define SEP_SEMICOLON ; DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON); #undef PRINT_FLAG #undef SEP_SEMICOLON return 0; } static const char *get_pin_flag(struct drm_i915_gem_object *obj) { if (obj->user_pin_count > 0) return "P"; else if (obj->pin_count > 0) return "p"; else return " "; } static const char *get_tiling_flag(struct drm_i915_gem_object *obj) { switch (obj->tiling_mode) { default: case I915_TILING_NONE: return " "; case I915_TILING_X: return "X"; case I915_TILING_Y: return "Y"; } } static const char *cache_level_str(int type) { switch (type) { case I915_CACHE_NONE: return " uncached"; case I915_CACHE_LLC: return " snooped (LLC)"; case I915_CACHE_LLC_MLC: return " snooped (LLC+MLC)"; default: return ""; } } static void describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj) { seq_printf(m, "%pK: %s%s %8zdKiB %02x %02x %d %d %d%s%s%s", &obj->base, get_pin_flag(obj), get_tiling_flag(obj), obj->base.size / 1024, obj->base.read_domains, obj->base.write_domain, obj->last_read_seqno, obj->last_write_seqno, obj->last_fenced_seqno, cache_level_str(obj->cache_level), obj->dirty ? " dirty" : "", obj->madv == I915_MADV_DONTNEED ? " purgeable" : ""); if (obj->base.name) seq_printf(m, " (name: %d)", obj->base.name); if (obj->pin_count) seq_printf(m, " (pinned x %d)", obj->pin_count); if (obj->fence_reg != I915_FENCE_REG_NONE) seq_printf(m, " (fence: %d)", obj->fence_reg); if (obj->gtt_space != NULL) seq_printf(m, " (gtt offset: %08x, size: %08x)", obj->gtt_offset, (unsigned int)obj->gtt_space->size); if (obj->stolen) seq_printf(m, " (stolen: %08lx)", obj->stolen->start); if (obj->pin_mappable || obj->fault_mappable) { char s[3], *t = s; if (obj->pin_mappable) *t++ = 'p'; if (obj->fault_mappable) *t++ = 'f'; *t = '\0'; seq_printf(m, " (%s mappable)", s); } if (obj->ring != NULL) seq_printf(m, " (%s)", obj->ring->name); } static int i915_gem_object_list_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; uintptr_t list = (uintptr_t) node->info_ent->data; struct list_head *head; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; switch (list) { case ACTIVE_LIST: seq_printf(m, "Active:\n"); head = &dev_priv->mm.active_list; break; case INACTIVE_LIST: seq_printf(m, "Inactive:\n"); head = &dev_priv->mm.inactive_list; break; default: mutex_unlock(&dev->struct_mutex); return -EINVAL; } total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, head, mm_list) { seq_printf(m, " "); describe_obj(m, obj); seq_printf(m, "\n"); total_obj_size += obj->base.size; total_gtt_size += obj->gtt_space->size; count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } #define count_objects(list, member) do { \ list_for_each_entry(obj, list, member) { \ size += obj->gtt_space->size; \ ++count; \ if (obj->map_and_fenceable) { \ mappable_size += obj->gtt_space->size; \ ++mappable_count; \ } \ } \ } while (0) static int i915_gem_object_info(struct seq_file *m, void* data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 count, mappable_count, purgeable_count; size_t size, mappable_size, purgeable_size; struct drm_i915_gem_object *obj; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "%u objects, %zu bytes\n", dev_priv->mm.object_count, dev_priv->mm.object_memory); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.bound_list, gtt_list); seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.active_list, mm_list); seq_printf(m, " %u [%u] active objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = mappable_size = mappable_count = 0; count_objects(&dev_priv->mm.inactive_list, mm_list); seq_printf(m, " %u [%u] inactive objects, %zu [%zu] bytes\n", count, mappable_count, size, mappable_size); size = count = purgeable_size = purgeable_count = 0; list_for_each_entry(obj, &dev_priv->mm.unbound_list, gtt_list) { size += obj->base.size, ++count; if (obj->madv == I915_MADV_DONTNEED) purgeable_size += obj->base.size, ++purgeable_count; } seq_printf(m, "%u unbound objects, %zu bytes\n", count, size); size = count = mappable_size = mappable_count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) { if (obj->fault_mappable) { size += obj->gtt_space->size; ++count; } if (obj->pin_mappable) { mappable_size += obj->gtt_space->size; ++mappable_count; } if (obj->madv == I915_MADV_DONTNEED) { purgeable_size += obj->base.size; ++purgeable_count; } } seq_printf(m, "%u purgeable objects, %zu bytes\n", purgeable_count, purgeable_size); seq_printf(m, "%u pinned mappable objects, %zu bytes\n", mappable_count, mappable_size); seq_printf(m, "%u fault mappable objects, %zu bytes\n", count, size); seq_printf(m, "%zu [%lu] gtt total\n", dev_priv->gtt.total, dev_priv->gtt.mappable_end - dev_priv->gtt.start); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_gtt_info(struct seq_file *m, void* data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; uintptr_t list = (uintptr_t) node->info_ent->data; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; size_t total_obj_size, total_gtt_size; int count, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; total_obj_size = total_gtt_size = count = 0; list_for_each_entry(obj, &dev_priv->mm.bound_list, gtt_list) { if (list == PINNED_LIST && obj->pin_count == 0) continue; seq_printf(m, " "); describe_obj(m, obj); seq_printf(m, "\n"); total_obj_size += obj->base.size; total_gtt_size += obj->gtt_space->size; count++; } mutex_unlock(&dev->struct_mutex); seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n", count, total_obj_size, total_gtt_size); return 0; } static int i915_gem_pageflip_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; unsigned long flags; struct intel_crtc *crtc; list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) { const char pipe = pipe_name(crtc->pipe); const char plane = plane_name(crtc->plane); struct intel_unpin_work *work; spin_lock_irqsave(&dev->event_lock, flags); work = crtc->unpin_work; if (work == NULL) { seq_printf(m, "No flip due on pipe %c (plane %c)\n", pipe, plane); } else { if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) { seq_printf(m, "Flip queued on pipe %c (plane %c)\n", pipe, plane); } else { seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n", pipe, plane); } if (work->enable_stall_check) seq_printf(m, "Stall check enabled, "); else seq_printf(m, "Stall check waiting for page flip ioctl, "); seq_printf(m, "%d prepares\n", atomic_read(&work->pending)); if (work->old_fb_obj) { struct drm_i915_gem_object *obj = work->old_fb_obj; if (obj) seq_printf(m, "Old framebuffer gtt_offset 0x%08x\n", obj->gtt_offset); } if (work->pending_flip_obj) { struct drm_i915_gem_object *obj = work->pending_flip_obj; if (obj) seq_printf(m, "New framebuffer gtt_offset 0x%08x\n", obj->gtt_offset); } } spin_unlock_irqrestore(&dev->event_lock, flags); } return 0; } static int i915_gem_request_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; struct drm_i915_gem_request *gem_request; int ret, count, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; count = 0; for_each_ring(ring, dev_priv, i) { if (list_empty(&ring->request_list)) continue; seq_printf(m, "%s requests:\n", ring->name); list_for_each_entry(gem_request, &ring->request_list, list) { seq_printf(m, " %d @ %d\n", gem_request->seqno, (int) (jiffies - gem_request->emitted_jiffies)); } count++; } mutex_unlock(&dev->struct_mutex); if (count == 0) seq_printf(m, "No requests\n"); return 0; } static void i915_ring_seqno_info(struct seq_file *m, struct intel_ring_buffer *ring) { if (ring->get_seqno) { seq_printf(m, "Current sequence (%s): %u\n", ring->name, ring->get_seqno(ring, false)); } } static int i915_gem_seqno_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int ret, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; for_each_ring(ring, dev_priv, i) i915_ring_seqno_info(m, ring); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_interrupt_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int ret, i, pipe; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (IS_VALLEYVIEW(dev)) { seq_printf(m, "Display IER:\t%08x\n", I915_READ(VLV_IER)); seq_printf(m, "Display IIR:\t%08x\n", I915_READ(VLV_IIR)); seq_printf(m, "Display IIR_RW:\t%08x\n", I915_READ(VLV_IIR_RW)); seq_printf(m, "Display IMR:\t%08x\n", I915_READ(VLV_IMR)); for_each_pipe(pipe) seq_printf(m, "Pipe %c stat:\t%08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); seq_printf(m, "Master IER:\t%08x\n", I915_READ(VLV_MASTER_IER)); seq_printf(m, "Render IER:\t%08x\n", I915_READ(GTIER)); seq_printf(m, "Render IIR:\t%08x\n", I915_READ(GTIIR)); seq_printf(m, "Render IMR:\t%08x\n", I915_READ(GTIMR)); seq_printf(m, "PM IER:\t\t%08x\n", I915_READ(GEN6_PMIER)); seq_printf(m, "PM IIR:\t\t%08x\n", I915_READ(GEN6_PMIIR)); seq_printf(m, "PM IMR:\t\t%08x\n", I915_READ(GEN6_PMIMR)); seq_printf(m, "Port hotplug:\t%08x\n", I915_READ(PORT_HOTPLUG_EN)); seq_printf(m, "DPFLIPSTAT:\t%08x\n", I915_READ(VLV_DPFLIPSTAT)); seq_printf(m, "DPINVGTT:\t%08x\n", I915_READ(DPINVGTT)); } else if (!HAS_PCH_SPLIT(dev)) { seq_printf(m, "Interrupt enable: %08x\n", I915_READ(IER)); seq_printf(m, "Interrupt identity: %08x\n", I915_READ(IIR)); seq_printf(m, "Interrupt mask: %08x\n", I915_READ(IMR)); for_each_pipe(pipe) seq_printf(m, "Pipe %c stat: %08x\n", pipe_name(pipe), I915_READ(PIPESTAT(pipe))); } else { seq_printf(m, "North Display Interrupt enable: %08x\n", I915_READ(DEIER)); seq_printf(m, "North Display Interrupt identity: %08x\n", I915_READ(DEIIR)); seq_printf(m, "North Display Interrupt mask: %08x\n", I915_READ(DEIMR)); seq_printf(m, "South Display Interrupt enable: %08x\n", I915_READ(SDEIER)); seq_printf(m, "South Display Interrupt identity: %08x\n", I915_READ(SDEIIR)); seq_printf(m, "South Display Interrupt mask: %08x\n", I915_READ(SDEIMR)); seq_printf(m, "Graphics Interrupt enable: %08x\n", I915_READ(GTIER)); seq_printf(m, "Graphics Interrupt identity: %08x\n", I915_READ(GTIIR)); seq_printf(m, "Graphics Interrupt mask: %08x\n", I915_READ(GTIMR)); } seq_printf(m, "Interrupts received: %d\n", atomic_read(&dev_priv->irq_received)); for_each_ring(ring, dev_priv, i) { if (IS_GEN6(dev) || IS_GEN7(dev)) { seq_printf(m, "Graphics Interrupt mask (%s): %08x\n", ring->name, I915_READ_IMR(ring)); } i915_ring_seqno_info(m, ring); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_gem_fence_regs_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int i, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start); seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs); for (i = 0; i < dev_priv->num_fence_regs; i++) { struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj; seq_printf(m, "Fence %d, pin count = %d, object = ", i, dev_priv->fence_regs[i].pin_count); if (obj == NULL) seq_printf(m, "unused"); else describe_obj(m, obj); seq_printf(m, "\n"); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_hws_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; const u32 *hws; int i; ring = &dev_priv->ring[(uintptr_t)node->info_ent->data]; hws = ring->status_page.page_addr; if (hws == NULL) return 0; for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) { seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", i * 4, hws[i], hws[i + 1], hws[i + 2], hws[i + 3]); } return 0; } static const char *ring_str(int ring) { switch (ring) { case RCS: return "render"; case VCS: return "bsd"; case BCS: return "blt"; default: return ""; } } static const char *pin_flag(int pinned) { if (pinned > 0) return " P"; else if (pinned < 0) return " p"; else return ""; } static const char *tiling_flag(int tiling) { switch (tiling) { default: case I915_TILING_NONE: return ""; case I915_TILING_X: return " X"; case I915_TILING_Y: return " Y"; } } static const char *dirty_flag(int dirty) { return dirty ? " dirty" : ""; } static const char *purgeable_flag(int purgeable) { return purgeable ? " purgeable" : ""; } static void i915_error_vprintf(struct drm_i915_error_state_buf *e, const char *f, va_list args) { unsigned len; if (!e->err && WARN(e->bytes > (e->size - 1), "overflow")) { e->err = -ENOSPC; return; } if (e->bytes == e->size - 1 || e->err) return; /* Seek the first printf which is hits start position */ if (e->pos < e->start) { len = vsnprintf(NULL, 0, f, args); if (e->pos + len <= e->start) { e->pos += len; return; } /* First vsnprintf needs to fit in full for memmove*/ if (len >= e->size) { e->err = -EIO; return; } } len = vsnprintf(e->buf + e->bytes, e->size - e->bytes, f, args); if (len >= e->size - e->bytes) len = e->size - e->bytes - 1; /* If this is first printf in this window, adjust it so that * start position matches start of the buffer */ if (e->pos < e->start) { const size_t off = e->start - e->pos; /* Should not happen but be paranoid */ if (off > len || e->bytes) { e->err = -EIO; return; } memmove(e->buf, e->buf + off, len - off); e->bytes = len - off; e->pos = e->start; return; } e->bytes += len; e->pos += len; } void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...) { va_list args; va_start(args, f); i915_error_vprintf(e, f, args); va_end(args); } #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__) static void print_error_buffers(struct drm_i915_error_state_buf *m, const char *name, struct drm_i915_error_buffer *err, int count) { err_printf(m, "%s [%d]:\n", name, count); while (count--) { err_printf(m, " %08x %8u %02x %02x %x %x%s%s%s%s%s%s%s", err->gtt_offset, err->size, err->read_domains, err->write_domain, err->rseqno, err->wseqno, pin_flag(err->pinned), tiling_flag(err->tiling), dirty_flag(err->dirty), purgeable_flag(err->purgeable), err->ring != -1 ? " " : "", ring_str(err->ring), cache_level_str(err->cache_level)); if (err->name) err_printf(m, " (name: %d)", err->name); if (err->fence_reg != I915_FENCE_REG_NONE) err_printf(m, " (fence: %d)", err->fence_reg); err_printf(m, "\n"); err++; } } static void i915_ring_error_state(struct drm_i915_error_state_buf *m, struct drm_device *dev, struct drm_i915_error_state *error, unsigned ring) { BUG_ON(ring >= I915_NUM_RINGS); /* shut up confused gcc */ err_printf(m, "%s command stream:\n", ring_str(ring)); err_printf(m, " HEAD: 0x%08x\n", error->head[ring]); err_printf(m, " TAIL: 0x%08x\n", error->tail[ring]); err_printf(m, " CTL: 0x%08x\n", error->ctl[ring]); err_printf(m, " ACTHD: 0x%08x\n", error->acthd[ring]); err_printf(m, " IPEIR: 0x%08x\n", error->ipeir[ring]); err_printf(m, " IPEHR: 0x%08x\n", error->ipehr[ring]); err_printf(m, " INSTDONE: 0x%08x\n", error->instdone[ring]); if (ring == RCS && INTEL_INFO(dev)->gen >= 4) err_printf(m, " BBADDR: 0x%08llx\n", error->bbaddr); if (INTEL_INFO(dev)->gen >= 4) err_printf(m, " INSTPS: 0x%08x\n", error->instps[ring]); err_printf(m, " INSTPM: 0x%08x\n", error->instpm[ring]); err_printf(m, " FADDR: 0x%08x\n", error->faddr[ring]); if (INTEL_INFO(dev)->gen >= 6) { err_printf(m, " RC PSMI: 0x%08x\n", error->rc_psmi[ring]); err_printf(m, " FAULT_REG: 0x%08x\n", error->fault_reg[ring]); err_printf(m, " SYNC_0: 0x%08x [last synced 0x%08x]\n", error->semaphore_mboxes[ring][0], error->semaphore_seqno[ring][0]); err_printf(m, " SYNC_1: 0x%08x [last synced 0x%08x]\n", error->semaphore_mboxes[ring][1], error->semaphore_seqno[ring][1]); } err_printf(m, " seqno: 0x%08x\n", error->seqno[ring]); err_printf(m, " waiting: %s\n", yesno(error->waiting[ring])); err_printf(m, " ring->head: 0x%08x\n", error->cpu_ring_head[ring]); err_printf(m, " ring->tail: 0x%08x\n", error->cpu_ring_tail[ring]); } struct i915_error_state_file_priv { struct drm_device *dev; struct drm_i915_error_state *error; }; static int i915_error_state(struct i915_error_state_file_priv *error_priv, struct drm_i915_error_state_buf *m) { struct drm_device *dev = error_priv->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_error_state *error = error_priv->error; struct intel_ring_buffer *ring; int i, j, page, offset, elt; if (!error) { err_printf(m, "no error state collected\n"); return 0; } err_printf(m, "Time: %ld s %ld us\n", error->time.tv_sec, error->time.tv_usec); err_printf(m, "Kernel: " UTS_RELEASE "\n"); err_printf(m, "PCI ID: 0x%04x\n", dev->pci_device); err_printf(m, "EIR: 0x%08x\n", error->eir); err_printf(m, "IER: 0x%08x\n", error->ier); err_printf(m, "PGTBL_ER: 0x%08x\n", error->pgtbl_er); err_printf(m, "FORCEWAKE: 0x%08x\n", error->forcewake); err_printf(m, "DERRMR: 0x%08x\n", error->derrmr); err_printf(m, "CCID: 0x%08x\n", error->ccid); for (i = 0; i < dev_priv->num_fence_regs; i++) err_printf(m, " fence[%d] = %08llx\n", i, error->fence[i]); for (i = 0; i < ARRAY_SIZE(error->extra_instdone); i++) err_printf(m, " INSTDONE_%d: 0x%08x\n", i, error->extra_instdone[i]); if (INTEL_INFO(dev)->gen >= 6) { err_printf(m, "ERROR: 0x%08x\n", error->error); err_printf(m, "DONE_REG: 0x%08x\n", error->done_reg); } if (INTEL_INFO(dev)->gen == 7) err_printf(m, "ERR_INT: 0x%08x\n", error->err_int); for_each_ring(ring, dev_priv, i) i915_ring_error_state(m, dev, error, i); if (error->active_bo) print_error_buffers(m, "Active", error->active_bo, error->active_bo_count); if (error->pinned_bo) print_error_buffers(m, "Pinned", error->pinned_bo, error->pinned_bo_count); for (i = 0; i < ARRAY_SIZE(error->ring); i++) { struct drm_i915_error_object *obj; if ((obj = error->ring[i].batchbuffer)) { err_printf(m, "%s --- gtt_offset = 0x%08x\n", dev_priv->ring[i].name, obj->gtt_offset); offset = 0; for (page = 0; page < obj->page_count; page++) { for (elt = 0; elt < PAGE_SIZE/4; elt++) { err_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]); offset += 4; } } } if (error->ring[i].num_requests) { err_printf(m, "%s --- %d requests\n", dev_priv->ring[i].name, error->ring[i].num_requests); for (j = 0; j < error->ring[i].num_requests; j++) { err_printf(m, " seqno 0x%08x, emitted %ld, tail 0x%08x\n", error->ring[i].requests[j].seqno, error->ring[i].requests[j].jiffies, error->ring[i].requests[j].tail); } } if ((obj = error->ring[i].ringbuffer)) { err_printf(m, "%s --- ringbuffer = 0x%08x\n", dev_priv->ring[i].name, obj->gtt_offset); offset = 0; for (page = 0; page < obj->page_count; page++) { for (elt = 0; elt < PAGE_SIZE/4; elt++) { err_printf(m, "%08x : %08x\n", offset, obj->pages[page][elt]); offset += 4; } } } obj = error->ring[i].ctx; if (obj) { err_printf(m, "%s --- HW Context = 0x%08x\n", dev_priv->ring[i].name, obj->gtt_offset); offset = 0; for (elt = 0; elt < PAGE_SIZE/16; elt += 4) { err_printf(m, "[%04x] %08x %08x %08x %08x\n", offset, obj->pages[0][elt], obj->pages[0][elt+1], obj->pages[0][elt+2], obj->pages[0][elt+3]); offset += 16; } } } if (error->overlay) intel_overlay_print_error_state(m, error->overlay); if (error->display) intel_display_print_error_state(m, dev, error->display); return 0; } static ssize_t i915_error_state_write(struct file *filp, const char __user *ubuf, size_t cnt, loff_t *ppos) { struct i915_error_state_file_priv *error_priv = filp->private_data; struct drm_device *dev = error_priv->dev; int ret; DRM_DEBUG_DRIVER("Resetting error state\n"); ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; i915_destroy_error_state(dev); mutex_unlock(&dev->struct_mutex); return cnt; } static int i915_error_state_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; drm_i915_private_t *dev_priv = dev->dev_private; struct i915_error_state_file_priv *error_priv; unsigned long flags; error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL); if (!error_priv) return -ENOMEM; error_priv->dev = dev; spin_lock_irqsave(&dev_priv->gpu_error.lock, flags); error_priv->error = dev_priv->gpu_error.first_error; if (error_priv->error) kref_get(&error_priv->error->ref); spin_unlock_irqrestore(&dev_priv->gpu_error.lock, flags); file->private_data = error_priv; return 0; } static int i915_error_state_release(struct inode *inode, struct file *file) { struct i915_error_state_file_priv *error_priv = file->private_data; if (error_priv->error) kref_put(&error_priv->error->ref, i915_error_state_free); kfree(error_priv); return 0; } static ssize_t i915_error_state_read(struct file *file, char __user *userbuf, size_t count, loff_t *pos) { struct i915_error_state_file_priv *error_priv = file->private_data; struct drm_i915_error_state_buf error_str; loff_t tmp_pos = 0; ssize_t ret_count = 0; int ret = 0; memset(&error_str, 0, sizeof(error_str)); /* We need to have enough room to store any i915_error_state printf * so that we can move it to start position. */ error_str.size = count + 1 > PAGE_SIZE ? count + 1 : PAGE_SIZE; error_str.buf = kmalloc(error_str.size, GFP_TEMPORARY | __GFP_NORETRY | __GFP_NOWARN); if (error_str.buf == NULL) { error_str.size = PAGE_SIZE; error_str.buf = kmalloc(error_str.size, GFP_TEMPORARY); } if (error_str.buf == NULL) { error_str.size = 128; error_str.buf = kmalloc(error_str.size, GFP_TEMPORARY); } if (error_str.buf == NULL) return -ENOMEM; error_str.start = *pos; ret = i915_error_state(error_priv, &error_str); if (ret) goto out; if (error_str.bytes == 0 && error_str.err) { ret = error_str.err; goto out; } ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos, error_str.buf, error_str.bytes); if (ret_count < 0) ret = ret_count; else *pos = error_str.start + ret_count; out: kfree(error_str.buf); return ret ?: ret_count; } static const struct file_operations i915_error_state_fops = { .owner = THIS_MODULE, .open = i915_error_state_open, .read = i915_error_state_read, .write = i915_error_state_write, .llseek = default_llseek, .release = i915_error_state_release, }; static int i915_next_seqno_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; *val = dev_priv->next_seqno; mutex_unlock(&dev->struct_mutex); return 0; } static int i915_next_seqno_set(void *data, u64 val) { struct drm_device *dev = data; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; ret = i915_gem_set_seqno(dev, val); mutex_unlock(&dev->struct_mutex); return ret; } DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops, i915_next_seqno_get, i915_next_seqno_set, "0x%llx\n"); static int i915_rstdby_delays(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u16 crstanddelay; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; crstanddelay = I915_READ16(CRSTANDVID); mutex_unlock(&dev->struct_mutex); seq_printf(m, "w/ctx: %d, w/o ctx: %d\n", (crstanddelay >> 8) & 0x3f, (crstanddelay & 0x3f)); return 0; } static int i915_cur_delayinfo(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (IS_GEN5(dev)) { u16 rgvswctl = I915_READ16(MEMSWCTL); u16 rgvstat = I915_READ16(MEMSTAT_ILK); seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf); seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f); seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >> MEMSTAT_VID_SHIFT); seq_printf(m, "Current P-state: %d\n", (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT); } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) { u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS); u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS); u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP); u32 rpstat, cagf; u32 rpupei, rpcurup, rpprevup; u32 rpdownei, rpcurdown, rpprevdown; int max_freq; /* RPSTAT1 is in the GT power well */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; gen6_gt_force_wake_get(dev_priv); rpstat = I915_READ(GEN6_RPSTAT1); rpupei = I915_READ(GEN6_RP_CUR_UP_EI); rpcurup = I915_READ(GEN6_RP_CUR_UP); rpprevup = I915_READ(GEN6_RP_PREV_UP); rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI); rpcurdown = I915_READ(GEN6_RP_CUR_DOWN); rpprevdown = I915_READ(GEN6_RP_PREV_DOWN); if (IS_HASWELL(dev)) cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; else cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; cagf *= GT_FREQUENCY_MULTIPLIER; gen6_gt_force_wake_put(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status); seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat); seq_printf(m, "Render p-state ratio: %d\n", (gt_perf_status & 0xff00) >> 8); seq_printf(m, "Render p-state VID: %d\n", gt_perf_status & 0xff); seq_printf(m, "Render p-state limit: %d\n", rp_state_limits & 0xff); seq_printf(m, "CAGF: %dMHz\n", cagf); seq_printf(m, "RP CUR UP EI: %dus\n", rpupei & GEN6_CURICONT_MASK); seq_printf(m, "RP CUR UP: %dus\n", rpcurup & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP PREV UP: %dus\n", rpprevup & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei & GEN6_CURIAVG_MASK); seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown & GEN6_CURBSYTAVG_MASK); seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown & GEN6_CURBSYTAVG_MASK); max_freq = (rp_state_cap & 0xff0000) >> 16; seq_printf(m, "Lowest (RPN) frequency: %dMHz\n", max_freq * GT_FREQUENCY_MULTIPLIER); max_freq = (rp_state_cap & 0xff00) >> 8; seq_printf(m, "Nominal (RP1) frequency: %dMHz\n", max_freq * GT_FREQUENCY_MULTIPLIER); max_freq = rp_state_cap & 0xff; seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n", max_freq * GT_FREQUENCY_MULTIPLIER); seq_printf(m, "Max overclocked frequency: %dMHz\n", dev_priv->rps.hw_max * GT_FREQUENCY_MULTIPLIER); } else if (IS_VALLEYVIEW(dev)) { u32 freq_sts, val; mutex_lock(&dev_priv->rps.hw_lock); vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS, &freq_sts); seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts); seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq); vlv_punit_read(dev_priv, PUNIT_FUSE_BUS1, &val); seq_printf(m, "max GPU freq: %d MHz\n", vlv_gpu_freq(dev_priv->mem_freq, val)); vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM, &val); seq_printf(m, "min GPU freq: %d MHz\n", vlv_gpu_freq(dev_priv->mem_freq, val)); seq_printf(m, "current GPU freq: %d MHz\n", vlv_gpu_freq(dev_priv->mem_freq, (freq_sts >> 8) & 0xff)); mutex_unlock(&dev_priv->rps.hw_lock); } else { seq_printf(m, "no P-state info available\n"); } return 0; } static int i915_delayfreq_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 delayfreq; int ret, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; for (i = 0; i < 16; i++) { delayfreq = I915_READ(PXVFREQ_BASE + i * 4); seq_printf(m, "P%02dVIDFREQ: 0x%08x (VID: %d)\n", i, delayfreq, (delayfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT); } mutex_unlock(&dev->struct_mutex); return 0; } static inline int MAP_TO_MV(int map) { return 1250 - (map * 25); } static int i915_inttoext_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 inttoext; int ret, i; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; for (i = 1; i <= 32; i++) { inttoext = I915_READ(INTTOEXT_BASE_ILK + i * 4); seq_printf(m, "INTTOEXT%02d: 0x%08x\n", i, inttoext); } mutex_unlock(&dev->struct_mutex); return 0; } static int ironlake_drpc_info(struct seq_file *m) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; u32 rgvmodectl, rstdbyctl; u16 crstandvid; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; rgvmodectl = I915_READ(MEMMODECTL); rstdbyctl = I915_READ(RSTDBYCTL); crstandvid = I915_READ16(CRSTANDVID); mutex_unlock(&dev->struct_mutex); seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ? "yes" : "no"); seq_printf(m, "Boost freq: %d\n", (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >> MEMMODE_BOOST_FREQ_SHIFT); seq_printf(m, "HW control enabled: %s\n", rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no"); seq_printf(m, "SW control enabled: %s\n", rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no"); seq_printf(m, "Gated voltage change: %s\n", rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no"); seq_printf(m, "Starting frequency: P%d\n", (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT); seq_printf(m, "Max P-state: P%d\n", (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT); seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK)); seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f)); seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f)); seq_printf(m, "Render standby enabled: %s\n", (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes"); seq_printf(m, "Current RS state: "); switch (rstdbyctl & RSX_STATUS_MASK) { case RSX_STATUS_ON: seq_printf(m, "on\n"); break; case RSX_STATUS_RC1: seq_printf(m, "RC1\n"); break; case RSX_STATUS_RC1E: seq_printf(m, "RC1E\n"); break; case RSX_STATUS_RS1: seq_printf(m, "RS1\n"); break; case RSX_STATUS_RS2: seq_printf(m, "RS2 (RC6)\n"); break; case RSX_STATUS_RS3: seq_printf(m, "RC3 (RC6+)\n"); break; default: seq_printf(m, "unknown\n"); break; } return 0; } static int gen6_drpc_info(struct seq_file *m) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0; unsigned forcewake_count; int count=0, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; spin_lock_irq(&dev_priv->gt_lock); forcewake_count = dev_priv->forcewake_count; spin_unlock_irq(&dev_priv->gt_lock); if (forcewake_count) { seq_printf(m, "RC information inaccurate because somebody " "holds a forcewake reference \n"); } else { /* NB: we cannot use forcewake, else we read the wrong values */ while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1)) udelay(10); seq_printf(m, "RC information accurate: %s\n", yesno(count < 51)); } gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS); trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4); rpmodectl1 = I915_READ(GEN6_RP_CONTROL); rcctl1 = I915_READ(GEN6_RC_CONTROL); mutex_unlock(&dev->struct_mutex); mutex_lock(&dev_priv->rps.hw_lock); sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids); mutex_unlock(&dev_priv->rps.hw_lock); seq_printf(m, "Video Turbo Mode: %s\n", yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO)); seq_printf(m, "HW control enabled: %s\n", yesno(rpmodectl1 & GEN6_RP_ENABLE)); seq_printf(m, "SW control enabled: %s\n", yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE)); seq_printf(m, "RC1e Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE)); seq_printf(m, "RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE)); seq_printf(m, "Deep RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE)); seq_printf(m, "Deepest RC6 Enabled: %s\n", yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE)); seq_printf(m, "Current RC state: "); switch (gt_core_status & GEN6_RCn_MASK) { case GEN6_RC0: if (gt_core_status & GEN6_CORE_CPD_STATE_MASK) seq_printf(m, "Core Power Down\n"); else seq_printf(m, "on\n"); break; case GEN6_RC3: seq_printf(m, "RC3\n"); break; case GEN6_RC6: seq_printf(m, "RC6\n"); break; case GEN6_RC7: seq_printf(m, "RC7\n"); break; default: seq_printf(m, "Unknown\n"); break; } seq_printf(m, "Core Power Down: %s\n", yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK)); /* Not exactly sure what this is */ seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6_LOCKED)); seq_printf(m, "RC6 residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6)); seq_printf(m, "RC6+ residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6p)); seq_printf(m, "RC6++ residency since boot: %u\n", I915_READ(GEN6_GT_GFX_RC6pp)); seq_printf(m, "RC6 voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff))); seq_printf(m, "RC6+ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff))); seq_printf(m, "RC6++ voltage: %dmV\n", GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff))); return 0; } static int i915_drpc_info(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; if (IS_GEN6(dev) || IS_GEN7(dev)) return gen6_drpc_info(m); else return ironlake_drpc_info(m); } static int i915_fbc_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; if (!I915_HAS_FBC(dev)) { seq_printf(m, "FBC unsupported on this chipset\n"); return 0; } if (intel_fbc_enabled(dev)) { seq_printf(m, "FBC enabled\n"); } else { seq_printf(m, "FBC disabled: "); switch (dev_priv->no_fbc_reason) { case FBC_NO_OUTPUT: seq_printf(m, "no outputs"); break; case FBC_STOLEN_TOO_SMALL: seq_printf(m, "not enough stolen memory"); break; case FBC_UNSUPPORTED_MODE: seq_printf(m, "mode not supported"); break; case FBC_MODE_TOO_LARGE: seq_printf(m, "mode too large"); break; case FBC_BAD_PLANE: seq_printf(m, "FBC unsupported on plane"); break; case FBC_NOT_TILED: seq_printf(m, "scanout buffer not tiled"); break; case FBC_MULTIPLE_PIPES: seq_printf(m, "multiple pipes are enabled"); break; case FBC_MODULE_PARAM: seq_printf(m, "disabled per module param (default off)"); break; default: seq_printf(m, "unknown reason"); } seq_printf(m, "\n"); } return 0; } static int i915_sr_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; bool sr_enabled = false; if (HAS_PCH_SPLIT(dev)) sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN; else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev)) sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN; else if (IS_I915GM(dev)) sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN; else if (IS_PINEVIEW(dev)) sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN; seq_printf(m, "self-refresh: %s\n", sr_enabled ? "enabled" : "disabled"); return 0; } static int i915_emon_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; unsigned long temp, chipset, gfx; int ret; if (!IS_GEN5(dev)) return -ENODEV; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; temp = i915_mch_val(dev_priv); chipset = i915_chipset_val(dev_priv); gfx = i915_gfx_val(dev_priv); mutex_unlock(&dev->struct_mutex); seq_printf(m, "GMCH temp: %ld\n", temp); seq_printf(m, "Chipset power: %ld\n", chipset); seq_printf(m, "GFX power: %ld\n", gfx); seq_printf(m, "Total power: %ld\n", chipset + gfx); return 0; } static int i915_ring_freq_table(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; int gpu_freq, ia_freq; if (!(IS_GEN6(dev) || IS_GEN7(dev))) { seq_printf(m, "unsupported on this chipset\n"); return 0; } ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; seq_printf(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n"); for (gpu_freq = dev_priv->rps.min_delay; gpu_freq <= dev_priv->rps.max_delay; gpu_freq++) { ia_freq = gpu_freq; sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_MIN_FREQ_TABLE, &ia_freq); seq_printf(m, "%d\t\t%d\t\t\t\t%d\n", gpu_freq * GT_FREQUENCY_MULTIPLIER, ((ia_freq >> 0) & 0xff) * 100, ((ia_freq >> 8) & 0xff) * 100); } mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_gfxec(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "GFXEC: %ld\n", (unsigned long)I915_READ(0x112f4)); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_opregion(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_opregion *opregion = &dev_priv->opregion; void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL); int ret; if (data == NULL) return -ENOMEM; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) goto out; if (opregion->header) { memcpy_fromio(data, opregion->header, OPREGION_SIZE); seq_write(m, data, OPREGION_SIZE); } mutex_unlock(&dev->struct_mutex); out: kfree(data); return 0; } static int i915_gem_framebuffer_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_fbdev *ifbdev; struct intel_framebuffer *fb; int ret; ret = mutex_lock_interruptible(&dev->mode_config.mutex); if (ret) return ret; ifbdev = dev_priv->fbdev; fb = to_intel_framebuffer(ifbdev->helper.fb); seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel, atomic_read(&fb->base.refcount.refcount)); describe_obj(m, fb->obj); seq_printf(m, "\n"); mutex_unlock(&dev->mode_config.mutex); mutex_lock(&dev->mode_config.fb_lock); list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) { if (&fb->base == ifbdev->helper.fb) continue; seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ", fb->base.width, fb->base.height, fb->base.depth, fb->base.bits_per_pixel, atomic_read(&fb->base.refcount.refcount)); describe_obj(m, fb->obj); seq_printf(m, "\n"); } mutex_unlock(&dev->mode_config.fb_lock); return 0; } static int i915_context_status(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int ret, i; ret = mutex_lock_interruptible(&dev->mode_config.mutex); if (ret) return ret; if (dev_priv->ips.pwrctx) { seq_printf(m, "power context "); describe_obj(m, dev_priv->ips.pwrctx); seq_printf(m, "\n"); } if (dev_priv->ips.renderctx) { seq_printf(m, "render context "); describe_obj(m, dev_priv->ips.renderctx); seq_printf(m, "\n"); } for_each_ring(ring, dev_priv, i) { if (ring->default_context) { seq_printf(m, "HW default context %s ring ", ring->name); describe_obj(m, ring->default_context->obj); seq_printf(m, "\n"); } } mutex_unlock(&dev->mode_config.mutex); return 0; } static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; unsigned forcewake_count; spin_lock_irq(&dev_priv->gt_lock); forcewake_count = dev_priv->forcewake_count; spin_unlock_irq(&dev_priv->gt_lock); seq_printf(m, "forcewake count = %u\n", forcewake_count); return 0; } static const char *swizzle_string(unsigned swizzle) { switch(swizzle) { case I915_BIT_6_SWIZZLE_NONE: return "none"; case I915_BIT_6_SWIZZLE_9: return "bit9"; case I915_BIT_6_SWIZZLE_9_10: return "bit9/bit10"; case I915_BIT_6_SWIZZLE_9_11: return "bit9/bit11"; case I915_BIT_6_SWIZZLE_9_10_11: return "bit9/bit10/bit11"; case I915_BIT_6_SWIZZLE_9_17: return "bit9/bit17"; case I915_BIT_6_SWIZZLE_9_10_17: return "bit9/bit10/bit17"; case I915_BIT_6_SWIZZLE_UNKNOWN: return "unknown"; } return "bug"; } static int i915_swizzle_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; seq_printf(m, "bit6 swizzle for X-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_x)); seq_printf(m, "bit6 swizzle for Y-tiling = %s\n", swizzle_string(dev_priv->mm.bit_6_swizzle_y)); if (IS_GEN3(dev) || IS_GEN4(dev)) { seq_printf(m, "DDC = 0x%08x\n", I915_READ(DCC)); seq_printf(m, "C0DRB3 = 0x%04x\n", I915_READ16(C0DRB3)); seq_printf(m, "C1DRB3 = 0x%04x\n", I915_READ16(C1DRB3)); } else if (IS_GEN6(dev) || IS_GEN7(dev)) { seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n", I915_READ(MAD_DIMM_C0)); seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n", I915_READ(MAD_DIMM_C1)); seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n", I915_READ(MAD_DIMM_C2)); seq_printf(m, "TILECTL = 0x%08x\n", I915_READ(TILECTL)); seq_printf(m, "ARB_MODE = 0x%08x\n", I915_READ(ARB_MODE)); seq_printf(m, "DISP_ARB_CTL = 0x%08x\n", I915_READ(DISP_ARB_CTL)); } mutex_unlock(&dev->struct_mutex); return 0; } static int i915_ppgtt_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_ring_buffer *ring; int i, ret; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (INTEL_INFO(dev)->gen == 6) seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE)); for_each_ring(ring, dev_priv, i) { seq_printf(m, "%s\n", ring->name); if (INTEL_INFO(dev)->gen == 7) seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring))); seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring))); seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring))); seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring))); } if (dev_priv->mm.aliasing_ppgtt) { struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt; seq_printf(m, "aliasing PPGTT:\n"); seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset); } seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK)); mutex_unlock(&dev->struct_mutex); return 0; } static int i915_dpio_info(struct seq_file *m, void *data) { struct drm_info_node *node = (struct drm_info_node *) m->private; struct drm_device *dev = node->minor->dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (!IS_VALLEYVIEW(dev)) { seq_printf(m, "unsupported\n"); return 0; } ret = mutex_lock_interruptible(&dev_priv->dpio_lock); if (ret) return ret; seq_printf(m, "DPIO_CTL: 0x%08x\n", I915_READ(DPIO_CTL)); seq_printf(m, "DPIO_DIV_A: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_DIV_A)); seq_printf(m, "DPIO_DIV_B: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_DIV_B)); seq_printf(m, "DPIO_REFSFR_A: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_REFSFR_A)); seq_printf(m, "DPIO_REFSFR_B: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_REFSFR_B)); seq_printf(m, "DPIO_CORE_CLK_A: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_CORE_CLK_A)); seq_printf(m, "DPIO_CORE_CLK_B: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_CORE_CLK_B)); seq_printf(m, "DPIO_LFP_COEFF_A: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_LFP_COEFF_A)); seq_printf(m, "DPIO_LFP_COEFF_B: 0x%08x\n", vlv_dpio_read(dev_priv, _DPIO_LFP_COEFF_B)); seq_printf(m, "DPIO_FASTCLK_DISABLE: 0x%08x\n", vlv_dpio_read(dev_priv, DPIO_FASTCLK_DISABLE)); mutex_unlock(&dev_priv->dpio_lock); return 0; } static int i915_wedged_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; *val = atomic_read(&dev_priv->gpu_error.reset_counter); return 0; } static int i915_wedged_set(void *data, u64 val) { struct drm_device *dev = data; DRM_INFO("Manually setting wedged to %llu\n", val); i915_handle_error(dev, val); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops, i915_wedged_get, i915_wedged_set, "%llu\n"); static int i915_ring_stop_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; *val = dev_priv->gpu_error.stop_rings; return 0; } static int i915_ring_stop_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val); ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; dev_priv->gpu_error.stop_rings = val; mutex_unlock(&dev->struct_mutex); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops, i915_ring_stop_get, i915_ring_stop_set, "0x%08llx\n"); #define DROP_UNBOUND 0x1 #define DROP_BOUND 0x2 #define DROP_RETIRE 0x4 #define DROP_ACTIVE 0x8 #define DROP_ALL (DROP_UNBOUND | \ DROP_BOUND | \ DROP_RETIRE | \ DROP_ACTIVE) static int i915_drop_caches_get(void *data, u64 *val) { *val = DROP_ALL; return 0; } static int i915_drop_caches_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj, *next; int ret; DRM_DEBUG_DRIVER("Dropping caches: 0x%08llx\n", val); /* No need to check and wait for gpu resets, only libdrm auto-restarts * on ioctls on -EAGAIN. */ ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; if (val & DROP_ACTIVE) { ret = i915_gpu_idle(dev); if (ret) goto unlock; } if (val & (DROP_RETIRE | DROP_ACTIVE)) i915_gem_retire_requests(dev); if (val & DROP_BOUND) { list_for_each_entry_safe(obj, next, &dev_priv->mm.inactive_list, mm_list) if (obj->pin_count == 0) { ret = i915_gem_object_unbind(obj); if (ret) goto unlock; } } if (val & DROP_UNBOUND) { list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list, gtt_list) if (obj->pages_pin_count == 0) { ret = i915_gem_object_put_pages(obj); if (ret) goto unlock; } } unlock: mutex_unlock(&dev->struct_mutex); return ret; } DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops, i915_drop_caches_get, i915_drop_caches_set, "0x%08llx\n"); static int i915_max_freq_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; if (IS_VALLEYVIEW(dev)) *val = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.max_delay); else *val = dev_priv->rps.max_delay * GT_FREQUENCY_MULTIPLIER; mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_max_freq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; /* * Turbo will still be enabled, but won't go above the set value. */ if (IS_VALLEYVIEW(dev)) { val = vlv_freq_opcode(dev_priv->mem_freq, val); dev_priv->rps.max_delay = val; gen6_set_rps(dev, val); } else { do_div(val, GT_FREQUENCY_MULTIPLIER); dev_priv->rps.max_delay = val; gen6_set_rps(dev, val); } mutex_unlock(&dev_priv->rps.hw_lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops, i915_max_freq_get, i915_max_freq_set, "%llu\n"); static int i915_min_freq_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; if (IS_VALLEYVIEW(dev)) *val = vlv_gpu_freq(dev_priv->mem_freq, dev_priv->rps.min_delay); else *val = dev_priv->rps.min_delay * GT_FREQUENCY_MULTIPLIER; mutex_unlock(&dev_priv->rps.hw_lock); return 0; } static int i915_min_freq_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val); ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock); if (ret) return ret; /* * Turbo will still be enabled, but won't go below the set value. */ if (IS_VALLEYVIEW(dev)) { val = vlv_freq_opcode(dev_priv->mem_freq, val); dev_priv->rps.min_delay = val; valleyview_set_rps(dev, val); } else { do_div(val, GT_FREQUENCY_MULTIPLIER); dev_priv->rps.min_delay = val; gen6_set_rps(dev, val); } mutex_unlock(&dev_priv->rps.hw_lock); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops, i915_min_freq_get, i915_min_freq_set, "%llu\n"); static int i915_cache_sharing_get(void *data, u64 *val) { struct drm_device *dev = data; drm_i915_private_t *dev_priv = dev->dev_private; u32 snpcr; int ret; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; ret = mutex_lock_interruptible(&dev->struct_mutex); if (ret) return ret; snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); mutex_unlock(&dev_priv->dev->struct_mutex); *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT; return 0; } static int i915_cache_sharing_set(void *data, u64 val) { struct drm_device *dev = data; struct drm_i915_private *dev_priv = dev->dev_private; u32 snpcr; if (!(IS_GEN6(dev) || IS_GEN7(dev))) return -ENODEV; if (val > 3) return -EINVAL; DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val); /* Update the cache sharing policy here as well */ snpcr = I915_READ(GEN6_MBCUNIT_SNPCR); snpcr &= ~GEN6_MBC_SNPCR_MASK; snpcr |= (val << GEN6_MBC_SNPCR_SHIFT); I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr); return 0; } DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops, i915_cache_sharing_get, i915_cache_sharing_set, "%llu\n"); /* As the drm_debugfs_init() routines are called before dev->dev_private is * allocated we need to hook into the minor for release. */ static int drm_add_fake_info_node(struct drm_minor *minor, struct dentry *ent, const void *key) { struct drm_info_node *node; node = kmalloc(sizeof(struct drm_info_node), GFP_KERNEL); if (node == NULL) { debugfs_remove(ent); return -ENOMEM; } node->minor = minor; node->dent = ent; node->info_ent = (void *) key; mutex_lock(&minor->debugfs_lock); list_add(&node->list, &minor->debugfs_list); mutex_unlock(&minor->debugfs_lock); return 0; } static int i915_forcewake_open(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 6) return 0; gen6_gt_force_wake_get(dev_priv); return 0; } static int i915_forcewake_release(struct inode *inode, struct file *file) { struct drm_device *dev = inode->i_private; struct drm_i915_private *dev_priv = dev->dev_private; if (INTEL_INFO(dev)->gen < 6) return 0; gen6_gt_force_wake_put(dev_priv); return 0; } static const struct file_operations i915_forcewake_fops = { .owner = THIS_MODULE, .open = i915_forcewake_open, .release = i915_forcewake_release, }; static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor) { struct drm_device *dev = minor->dev; struct dentry *ent; ent = debugfs_create_file("i915_forcewake_user", S_IRUSR, root, dev, &i915_forcewake_fops); if (IS_ERR(ent)) return PTR_ERR(ent); return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops); } static int i915_debugfs_create(struct dentry *root, struct drm_minor *minor, const char *name, const struct file_operations *fops) { struct drm_device *dev = minor->dev; struct dentry *ent; ent = debugfs_create_file(name, S_IRUGO | S_IWUSR, root, dev, fops); if (IS_ERR(ent)) return PTR_ERR(ent); return drm_add_fake_info_node(minor, ent, fops); } static struct drm_info_list i915_debugfs_list[] = { {"i915_capabilities", i915_capabilities, 0}, {"i915_gem_objects", i915_gem_object_info, 0}, {"i915_gem_gtt", i915_gem_gtt_info, 0}, {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST}, {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST}, {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST}, {"i915_gem_pageflip", i915_gem_pageflip_info, 0}, {"i915_gem_request", i915_gem_request_info, 0}, {"i915_gem_seqno", i915_gem_seqno_info, 0}, {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0}, {"i915_gem_interrupt", i915_interrupt_info, 0}, {"i915_gem_hws", i915_hws_info, 0, (void *)RCS}, {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS}, {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS}, {"i915_rstdby_delays", i915_rstdby_delays, 0}, {"i915_cur_delayinfo", i915_cur_delayinfo, 0}, {"i915_delayfreq_table", i915_delayfreq_table, 0}, {"i915_inttoext_table", i915_inttoext_table, 0}, {"i915_drpc_info", i915_drpc_info, 0}, {"i915_emon_status", i915_emon_status, 0}, {"i915_ring_freq_table", i915_ring_freq_table, 0}, {"i915_gfxec", i915_gfxec, 0}, {"i915_fbc_status", i915_fbc_status, 0}, {"i915_sr_status", i915_sr_status, 0}, {"i915_opregion", i915_opregion, 0}, {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0}, {"i915_context_status", i915_context_status, 0}, {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0}, {"i915_swizzle_info", i915_swizzle_info, 0}, {"i915_ppgtt_info", i915_ppgtt_info, 0}, {"i915_dpio", i915_dpio_info, 0}, }; #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list) int i915_debugfs_init(struct drm_minor *minor) { int ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_wedged", &i915_wedged_fops); if (ret) return ret; ret = i915_forcewake_create(minor->debugfs_root, minor); if (ret) return ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_max_freq", &i915_max_freq_fops); if (ret) return ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_min_freq", &i915_min_freq_fops); if (ret) return ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_cache_sharing", &i915_cache_sharing_fops); if (ret) return ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_ring_stop", &i915_ring_stop_fops); if (ret) return ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_gem_drop_caches", &i915_drop_caches_fops); if (ret) return ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_error_state", &i915_error_state_fops); if (ret) return ret; ret = i915_debugfs_create(minor->debugfs_root, minor, "i915_next_seqno", &i915_next_seqno_fops); if (ret) return ret; return drm_debugfs_create_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor->debugfs_root, minor); } void i915_debugfs_cleanup(struct drm_minor *minor) { drm_debugfs_remove_files(i915_debugfs_list, I915_DEBUGFS_ENTRIES, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_wedged_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_max_freq_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_min_freq_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_cache_sharing_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_drop_caches_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_ring_stop_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_error_state_fops, 1, minor); drm_debugfs_remove_files((struct drm_info_list *) &i915_next_seqno_fops, 1, minor); } #endif /* CONFIG_DEBUG_FS */