#ifndef _INTEL_RINGBUFFER_H_ #define _INTEL_RINGBUFFER_H_ #include #define I915_CMD_HASH_ORDER 9 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill, * but keeps the logic simple. Indeed, the whole purpose of this macro is just * to give some inclination as to some of the magic values used in the various * workarounds! */ #define CACHELINE_BYTES 64 /* * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use" * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use" * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use" * * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same * cacheline, the Head Pointer must not be greater than the Tail * Pointer." */ #define I915_RING_FREE_SPACE 64 struct intel_hw_status_page { u32 *page_addr; unsigned int gfx_addr; struct drm_i915_gem_object *obj; }; #define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base)) #define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val) #define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base)) #define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val) #define I915_READ_HEAD(ring) I915_READ(RING_HEAD((ring)->mmio_base)) #define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val) #define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base)) #define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val) #define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base)) #define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val) #define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base)) #define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val) /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to * do the writes, and that must have qw aligned offsets, simply pretend it's 8b. */ #define i915_semaphore_seqno_size sizeof(uint64_t) #define GEN8_SIGNAL_OFFSET(__ring, to) \ (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \ ((__ring)->id * I915_NUM_RINGS * i915_semaphore_seqno_size) + \ (i915_semaphore_seqno_size * (to))) #define GEN8_WAIT_OFFSET(__ring, from) \ (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \ ((from) * I915_NUM_RINGS * i915_semaphore_seqno_size) + \ (i915_semaphore_seqno_size * (__ring)->id)) #define GEN8_RING_SEMAPHORE_INIT do { \ if (!dev_priv->semaphore_obj) { \ break; \ } \ ring->semaphore.signal_ggtt[RCS] = GEN8_SIGNAL_OFFSET(ring, RCS); \ ring->semaphore.signal_ggtt[VCS] = GEN8_SIGNAL_OFFSET(ring, VCS); \ ring->semaphore.signal_ggtt[BCS] = GEN8_SIGNAL_OFFSET(ring, BCS); \ ring->semaphore.signal_ggtt[VECS] = GEN8_SIGNAL_OFFSET(ring, VECS); \ ring->semaphore.signal_ggtt[VCS2] = GEN8_SIGNAL_OFFSET(ring, VCS2); \ ring->semaphore.signal_ggtt[ring->id] = MI_SEMAPHORE_SYNC_INVALID; \ } while(0) enum intel_ring_hangcheck_action { HANGCHECK_IDLE = 0, HANGCHECK_WAIT, HANGCHECK_ACTIVE, HANGCHECK_ACTIVE_LOOP, HANGCHECK_KICK, HANGCHECK_HUNG, }; #define HANGCHECK_SCORE_RING_HUNG 31 struct intel_ring_hangcheck { u64 acthd; u64 max_acthd; u32 seqno; int score; enum intel_ring_hangcheck_action action; int deadlock; }; struct intel_ringbuffer { struct drm_i915_gem_object *obj; void __iomem *virtual_start; struct intel_engine_cs *ring; /* * FIXME: This backpointer is an artifact of the history of how the * execlist patches came into being. It will get removed once the basic * code has landed. */ struct intel_context *FIXME_lrc_ctx; u32 head; u32 tail; int space; int size; int effective_size; /** We track the position of the requests in the ring buffer, and * when each is retired we increment last_retired_head as the GPU * must have finished processing the request and so we know we * can advance the ringbuffer up to that position. * * last_retired_head is set to -1 after the value is consumed so * we can detect new retirements. */ u32 last_retired_head; }; struct intel_engine_cs { const char *name; enum intel_ring_id { RCS = 0x0, VCS, BCS, VECS, VCS2 } id; #define I915_NUM_RINGS 5 #define LAST_USER_RING (VECS + 1) u32 mmio_base; struct drm_device *dev; struct intel_ringbuffer *buffer; struct intel_hw_status_page status_page; unsigned irq_refcount; /* protected by dev_priv->irq_lock */ u32 irq_enable_mask; /* bitmask to enable ring interrupt */ u32 trace_irq_seqno; bool __must_check (*irq_get)(struct intel_engine_cs *ring); void (*irq_put)(struct intel_engine_cs *ring); int (*init)(struct intel_engine_cs *ring); void (*write_tail)(struct intel_engine_cs *ring, u32 value); int __must_check (*flush)(struct intel_engine_cs *ring, u32 invalidate_domains, u32 flush_domains); int (*add_request)(struct intel_engine_cs *ring); /* Some chipsets are not quite as coherent as advertised and need * an expensive kick to force a true read of the up-to-date seqno. * However, the up-to-date seqno is not always required and the last * seen value is good enough. Note that the seqno will always be * monotonic, even if not coherent. */ u32 (*get_seqno)(struct intel_engine_cs *ring, bool lazy_coherency); void (*set_seqno)(struct intel_engine_cs *ring, u32 seqno); int (*dispatch_execbuffer)(struct intel_engine_cs *ring, u64 offset, u32 length, unsigned flags); #define I915_DISPATCH_SECURE 0x1 #define I915_DISPATCH_PINNED 0x2 void (*cleanup)(struct intel_engine_cs *ring); /* GEN8 signal/wait table - never trust comments! * signal to signal to signal to signal to signal to * RCS VCS BCS VECS VCS2 * -------------------------------------------------------------------- * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) | * |------------------------------------------------------------------- * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) | * |------------------------------------------------------------------- * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) | * |------------------------------------------------------------------- * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) | * |------------------------------------------------------------------- * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) | * |------------------------------------------------------------------- * * Generalization: * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id) * ie. transpose of g(x, y) * * sync from sync from sync from sync from sync from * RCS VCS BCS VECS VCS2 * -------------------------------------------------------------------- * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) | * |------------------------------------------------------------------- * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) | * |------------------------------------------------------------------- * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) | * |------------------------------------------------------------------- * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) | * |------------------------------------------------------------------- * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) | * |------------------------------------------------------------------- * * Generalization: * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id) * ie. transpose of f(x, y) */ struct { u32 sync_seqno[I915_NUM_RINGS-1]; union { struct { /* our mbox written by others */ u32 wait[I915_NUM_RINGS]; /* mboxes this ring signals to */ u32 signal[I915_NUM_RINGS]; } mbox; u64 signal_ggtt[I915_NUM_RINGS]; }; /* AKA wait() */ int (*sync_to)(struct intel_engine_cs *ring, struct intel_engine_cs *to, u32 seqno); int (*signal)(struct intel_engine_cs *signaller, /* num_dwords needed by caller */ unsigned int num_dwords); } semaphore; /* Execlists */ spinlock_t execlist_lock; struct list_head execlist_queue; u32 irq_keep_mask; /* bitmask for interrupts that should not be masked */ int (*emit_request)(struct intel_ringbuffer *ringbuf); int (*emit_flush)(struct intel_ringbuffer *ringbuf, u32 invalidate_domains, u32 flush_domains); int (*emit_bb_start)(struct intel_ringbuffer *ringbuf, u64 offset, unsigned flags); /** * List of objects currently involved in rendering from the * ringbuffer. * * Includes buffers having the contents of their GPU caches * flushed, not necessarily primitives. last_rendering_seqno * represents when the rendering involved will be completed. * * A reference is held on the buffer while on this list. */ struct list_head active_list; /** * List of breadcrumbs associated with GPU requests currently * outstanding. */ struct list_head request_list; /** * Do we have some not yet emitted requests outstanding? */ struct drm_i915_gem_request *preallocated_lazy_request; u32 outstanding_lazy_seqno; bool gpu_caches_dirty; bool fbc_dirty; wait_queue_head_t irq_queue; struct intel_context *default_context; struct intel_context *last_context; struct intel_ring_hangcheck hangcheck; struct { struct drm_i915_gem_object *obj; u32 gtt_offset; volatile u32 *cpu_page; } scratch; bool needs_cmd_parser; /* * Table of commands the command parser needs to know about * for this ring. */ DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER); /* * Table of registers allowed in commands that read/write registers. */ const u32 *reg_table; int reg_count; /* * Table of registers allowed in commands that read/write registers, but * only from the DRM master. */ const u32 *master_reg_table; int master_reg_count; /* * Returns the bitmask for the length field of the specified command. * Return 0 for an unrecognized/invalid command. * * If the command parser finds an entry for a command in the ring's * cmd_tables, it gets the command's length based on the table entry. * If not, it calls this function to determine the per-ring length field * encoding for the command (i.e. certain opcode ranges use certain bits * to encode the command length in the header). */ u32 (*get_cmd_length_mask)(u32 cmd_header); }; bool intel_ring_initialized(struct intel_engine_cs *ring); static inline unsigned intel_ring_flag(struct intel_engine_cs *ring) { return 1 << ring->id; } static inline u32 intel_ring_sync_index(struct intel_engine_cs *ring, struct intel_engine_cs *other) { int idx; /* * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2; * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs; * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs; * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs; * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs; */ idx = (other - ring) - 1; if (idx < 0) idx += I915_NUM_RINGS; return idx; } static inline u32 intel_read_status_page(struct intel_engine_cs *ring, int reg) { /* Ensure that the compiler doesn't optimize away the load. */ barrier(); return ring->status_page.page_addr[reg]; } static inline void intel_write_status_page(struct intel_engine_cs *ring, int reg, u32 value) { ring->status_page.page_addr[reg] = value; } /** * Reads a dword out of the status page, which is written to from the command * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or * MI_STORE_DATA_IMM. * * The following dwords have a reserved meaning: * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes. * 0x04: ring 0 head pointer * 0x05: ring 1 head pointer (915-class) * 0x06: ring 2 head pointer (915-class) * 0x10-0x1b: Context status DWords (GM45) * 0x1f: Last written status offset. (GM45) * * The area from dword 0x20 to 0x3ff is available for driver usage. */ #define I915_GEM_HWS_INDEX 0x20 #define I915_GEM_HWS_SCRATCH_INDEX 0x30 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT) void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf); int intel_alloc_ringbuffer_obj(struct drm_device *dev, struct intel_ringbuffer *ringbuf); void intel_stop_ring_buffer(struct intel_engine_cs *ring); void intel_cleanup_ring_buffer(struct intel_engine_cs *ring); int __must_check intel_ring_begin(struct intel_engine_cs *ring, int n); int __must_check intel_ring_cacheline_align(struct intel_engine_cs *ring); static inline void intel_ring_emit(struct intel_engine_cs *ring, u32 data) { struct intel_ringbuffer *ringbuf = ring->buffer; iowrite32(data, ringbuf->virtual_start + ringbuf->tail); ringbuf->tail += 4; } static inline void intel_ring_advance(struct intel_engine_cs *ring) { struct intel_ringbuffer *ringbuf = ring->buffer; ringbuf->tail &= ringbuf->size - 1; } int __intel_ring_space(int head, int tail, int size); int intel_ring_space(struct intel_ringbuffer *ringbuf); bool intel_ring_stopped(struct intel_engine_cs *ring); void __intel_ring_advance(struct intel_engine_cs *ring); int __must_check intel_ring_idle(struct intel_engine_cs *ring); void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno); int intel_ring_flush_all_caches(struct intel_engine_cs *ring); int intel_ring_invalidate_all_caches(struct intel_engine_cs *ring); void intel_fini_pipe_control(struct intel_engine_cs *ring); int intel_init_pipe_control(struct intel_engine_cs *ring); int intel_init_render_ring_buffer(struct drm_device *dev); int intel_init_bsd_ring_buffer(struct drm_device *dev); int intel_init_bsd2_ring_buffer(struct drm_device *dev); int intel_init_blt_ring_buffer(struct drm_device *dev); int intel_init_vebox_ring_buffer(struct drm_device *dev); u64 intel_ring_get_active_head(struct intel_engine_cs *ring); void intel_ring_setup_status_page(struct intel_engine_cs *ring); static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf) { return ringbuf->tail; } static inline u32 intel_ring_get_seqno(struct intel_engine_cs *ring) { BUG_ON(ring->outstanding_lazy_seqno == 0); return ring->outstanding_lazy_seqno; } static inline void i915_trace_irq_get(struct intel_engine_cs *ring, u32 seqno) { if (ring->trace_irq_seqno == 0 && ring->irq_get(ring)) ring->trace_irq_seqno = seqno; } /* DRI warts */ int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size); #endif /* _INTEL_RINGBUFFER_H_ */