/* * Copyright (c) 2007 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #if IS_ENABLED(CONFIG_IPV6) #include #endif #include "mlx4_en.h" static int mlx4_alloc_pages(struct mlx4_en_priv *priv, struct mlx4_en_rx_alloc *page_alloc, const struct mlx4_en_frag_info *frag_info, gfp_t _gfp) { int order; struct page *page; dma_addr_t dma; for (order = priv->rx_page_order; ;) { gfp_t gfp = _gfp; if (order) gfp |= __GFP_COMP | __GFP_NOWARN | __GFP_NOMEMALLOC; page = alloc_pages(gfp, order); if (likely(page)) break; if (--order < 0 || ((PAGE_SIZE << order) < frag_info->frag_size)) return -ENOMEM; } dma = dma_map_page(priv->ddev, page, 0, PAGE_SIZE << order, priv->dma_dir); if (unlikely(dma_mapping_error(priv->ddev, dma))) { put_page(page); return -ENOMEM; } page_alloc->page_size = PAGE_SIZE << order; page_alloc->page = page; page_alloc->dma = dma; page_alloc->page_offset = 0; /* Not doing get_page() for each frag is a big win * on asymetric workloads. Note we can not use atomic_set(). */ page_ref_add(page, page_alloc->page_size / frag_info->frag_stride - 1); return 0; } static int mlx4_en_alloc_frags(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct mlx4_en_rx_alloc *frags, struct mlx4_en_rx_alloc *ring_alloc, gfp_t gfp) { struct mlx4_en_rx_alloc page_alloc[MLX4_EN_MAX_RX_FRAGS]; const struct mlx4_en_frag_info *frag_info; struct page *page; int i; for (i = 0; i < priv->num_frags; i++) { frag_info = &priv->frag_info[i]; page_alloc[i] = ring_alloc[i]; page_alloc[i].page_offset += frag_info->frag_stride; if (page_alloc[i].page_offset + frag_info->frag_stride <= ring_alloc[i].page_size) continue; if (unlikely(mlx4_alloc_pages(priv, &page_alloc[i], frag_info, gfp))) goto out; } for (i = 0; i < priv->num_frags; i++) { frags[i] = ring_alloc[i]; frags[i].page_offset += priv->rx_headroom; rx_desc->data[i].addr = cpu_to_be64(frags[i].dma + frags[i].page_offset); ring_alloc[i] = page_alloc[i]; } return 0; out: while (i--) { if (page_alloc[i].page != ring_alloc[i].page) { dma_unmap_page(priv->ddev, page_alloc[i].dma, page_alloc[i].page_size, priv->dma_dir); page = page_alloc[i].page; /* Revert changes done by mlx4_alloc_pages */ page_ref_sub(page, page_alloc[i].page_size / priv->frag_info[i].frag_stride - 1); put_page(page); } } return -ENOMEM; } static void mlx4_en_free_frag(struct mlx4_en_priv *priv, struct mlx4_en_rx_alloc *frags, int i) { const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; u32 next_frag_end = frags[i].page_offset + 2 * frag_info->frag_stride; if (next_frag_end > frags[i].page_size) dma_unmap_page(priv->ddev, frags[i].dma, frags[i].page_size, priv->dma_dir); if (frags[i].page) put_page(frags[i].page); } static int mlx4_en_init_allocator(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { int i; struct mlx4_en_rx_alloc *page_alloc; for (i = 0; i < priv->num_frags; i++) { const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; if (mlx4_alloc_pages(priv, &ring->page_alloc[i], frag_info, GFP_KERNEL | __GFP_COLD)) goto out; en_dbg(DRV, priv, " frag %d allocator: - size:%d frags:%d\n", i, ring->page_alloc[i].page_size, page_ref_count(ring->page_alloc[i].page)); } return 0; out: while (i--) { struct page *page; page_alloc = &ring->page_alloc[i]; dma_unmap_page(priv->ddev, page_alloc->dma, page_alloc->page_size, priv->dma_dir); page = page_alloc->page; /* Revert changes done by mlx4_alloc_pages */ page_ref_sub(page, page_alloc->page_size / priv->frag_info[i].frag_stride - 1); put_page(page); page_alloc->page = NULL; } return -ENOMEM; } static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { struct mlx4_en_rx_alloc *page_alloc; int i; for (i = 0; i < priv->num_frags; i++) { const struct mlx4_en_frag_info *frag_info = &priv->frag_info[i]; page_alloc = &ring->page_alloc[i]; en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n", i, page_count(page_alloc->page)); dma_unmap_page(priv->ddev, page_alloc->dma, page_alloc->page_size, priv->dma_dir); while (page_alloc->page_offset + frag_info->frag_stride < page_alloc->page_size) { put_page(page_alloc->page); page_alloc->page_offset += frag_info->frag_stride; } page_alloc->page = NULL; } } static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index) { struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index; int possible_frags; int i; /* Set size and memtype fields */ for (i = 0; i < priv->num_frags; i++) { rx_desc->data[i].byte_count = cpu_to_be32(priv->frag_info[i].frag_size); rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key); } /* If the number of used fragments does not fill up the ring stride, * remaining (unused) fragments must be padded with null address/size * and a special memory key */ possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE; for (i = priv->num_frags; i < possible_frags; i++) { rx_desc->data[i].byte_count = 0; rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD); rx_desc->data[i].addr = 0; } } static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index, gfp_t gfp) { struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride); struct mlx4_en_rx_alloc *frags = ring->rx_info + (index << priv->log_rx_info); if (ring->page_cache.index > 0) { ring->page_cache.index--; frags[0].page = ring->page_cache.buf[ring->page_cache.index].page; frags[0].dma = ring->page_cache.buf[ring->page_cache.index].dma; frags[0].page_offset = XDP_PACKET_HEADROOM; rx_desc->data[0].addr = cpu_to_be64(frags[0].dma + frags[0].page_offset); return 0; } return mlx4_en_alloc_frags(priv, rx_desc, frags, ring->page_alloc, gfp); } static inline bool mlx4_en_is_ring_empty(struct mlx4_en_rx_ring *ring) { return ring->prod == ring->cons; } static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring) { *ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff); } static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring, int index) { struct mlx4_en_rx_alloc *frags; int nr; frags = ring->rx_info + (index << priv->log_rx_info); for (nr = 0; nr < priv->num_frags; nr++) { en_dbg(DRV, priv, "Freeing fragment:%d\n", nr); mlx4_en_free_frag(priv, frags, nr); } } static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv) { struct mlx4_en_rx_ring *ring; int ring_ind; int buf_ind; int new_size; for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) { for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = priv->rx_ring[ring_ind]; if (mlx4_en_prepare_rx_desc(priv, ring, ring->actual_size, GFP_KERNEL | __GFP_COLD)) { if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) { en_err(priv, "Failed to allocate enough rx buffers\n"); return -ENOMEM; } else { new_size = rounddown_pow_of_two(ring->actual_size); en_warn(priv, "Only %d buffers allocated reducing ring size to %d\n", ring->actual_size, new_size); goto reduce_rings; } } ring->actual_size++; ring->prod++; } } return 0; reduce_rings: for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = priv->rx_ring[ring_ind]; while (ring->actual_size > new_size) { ring->actual_size--; ring->prod--; mlx4_en_free_rx_desc(priv, ring, ring->actual_size); } } return 0; } static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { int index; en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n", ring->cons, ring->prod); /* Unmap and free Rx buffers */ while (!mlx4_en_is_ring_empty(ring)) { index = ring->cons & ring->size_mask; en_dbg(DRV, priv, "Processing descriptor:%d\n", index); mlx4_en_free_rx_desc(priv, ring, index); ++ring->cons; } } void mlx4_en_set_num_rx_rings(struct mlx4_en_dev *mdev) { int i; int num_of_eqs; int num_rx_rings; struct mlx4_dev *dev = mdev->dev; mlx4_foreach_port(i, dev, MLX4_PORT_TYPE_ETH) { num_of_eqs = max_t(int, MIN_RX_RINGS, min_t(int, mlx4_get_eqs_per_port(mdev->dev, i), DEF_RX_RINGS)); num_rx_rings = mlx4_low_memory_profile() ? MIN_RX_RINGS : min_t(int, num_of_eqs, netif_get_num_default_rss_queues()); mdev->profile.prof[i].rx_ring_num = rounddown_pow_of_two(num_rx_rings); } } int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring **pring, u32 size, u16 stride, int node) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rx_ring *ring; int err = -ENOMEM; int tmp; ring = kzalloc_node(sizeof(*ring), GFP_KERNEL, node); if (!ring) { ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) { en_err(priv, "Failed to allocate RX ring structure\n"); return -ENOMEM; } } ring->prod = 0; ring->cons = 0; ring->size = size; ring->size_mask = size - 1; ring->stride = stride; ring->log_stride = ffs(ring->stride) - 1; ring->buf_size = ring->size * ring->stride + TXBB_SIZE; tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS * sizeof(struct mlx4_en_rx_alloc)); ring->rx_info = vmalloc_node(tmp, node); if (!ring->rx_info) { ring->rx_info = vmalloc(tmp); if (!ring->rx_info) { err = -ENOMEM; goto err_ring; } } en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n", ring->rx_info, tmp); /* Allocate HW buffers on provided NUMA node */ set_dev_node(&mdev->dev->persist->pdev->dev, node); err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres, ring->buf_size); set_dev_node(&mdev->dev->persist->pdev->dev, mdev->dev->numa_node); if (err) goto err_info; ring->buf = ring->wqres.buf.direct.buf; ring->hwtstamp_rx_filter = priv->hwtstamp_config.rx_filter; *pring = ring; return 0; err_info: vfree(ring->rx_info); ring->rx_info = NULL; err_ring: kfree(ring); *pring = NULL; return err; } int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv) { struct mlx4_en_rx_ring *ring; int i; int ring_ind; int err; int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) + DS_SIZE * priv->num_frags); for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = priv->rx_ring[ring_ind]; ring->prod = 0; ring->cons = 0; ring->actual_size = 0; ring->cqn = priv->rx_cq[ring_ind]->mcq.cqn; ring->stride = stride; if (ring->stride <= TXBB_SIZE) { /* Stamp first unused send wqe */ __be32 *ptr = (__be32 *)ring->buf; __be32 stamp = cpu_to_be32(1 << STAMP_SHIFT); *ptr = stamp; /* Move pointer to start of rx section */ ring->buf += TXBB_SIZE; } ring->log_stride = ffs(ring->stride) - 1; ring->buf_size = ring->size * ring->stride; memset(ring->buf, 0, ring->buf_size); mlx4_en_update_rx_prod_db(ring); /* Initialize all descriptors */ for (i = 0; i < ring->size; i++) mlx4_en_init_rx_desc(priv, ring, i); /* Initialize page allocators */ err = mlx4_en_init_allocator(priv, ring); if (err) { en_err(priv, "Failed initializing ring allocator\n"); if (ring->stride <= TXBB_SIZE) ring->buf -= TXBB_SIZE; ring_ind--; goto err_allocator; } } err = mlx4_en_fill_rx_buffers(priv); if (err) goto err_buffers; for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) { ring = priv->rx_ring[ring_ind]; ring->size_mask = ring->actual_size - 1; mlx4_en_update_rx_prod_db(ring); } return 0; err_buffers: for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) mlx4_en_free_rx_buf(priv, priv->rx_ring[ring_ind]); ring_ind = priv->rx_ring_num - 1; err_allocator: while (ring_ind >= 0) { if (priv->rx_ring[ring_ind]->stride <= TXBB_SIZE) priv->rx_ring[ring_ind]->buf -= TXBB_SIZE; mlx4_en_destroy_allocator(priv, priv->rx_ring[ring_ind]); ring_ind--; } return err; } /* We recover from out of memory by scheduling our napi poll * function (mlx4_en_process_cq), which tries to allocate * all missing RX buffers (call to mlx4_en_refill_rx_buffers). */ void mlx4_en_recover_from_oom(struct mlx4_en_priv *priv) { int ring; if (!priv->port_up) return; for (ring = 0; ring < priv->rx_ring_num; ring++) { if (mlx4_en_is_ring_empty(priv->rx_ring[ring])) { local_bh_disable(); napi_reschedule(&priv->rx_cq[ring]->napi); local_bh_enable(); } } } /* When the rx ring is running in page-per-packet mode, a released frame can go * directly into a small cache, to avoid unmapping or touching the page * allocator. In bpf prog performance scenarios, buffers are either forwarded * or dropped, never converted to skbs, so every page can come directly from * this cache when it is sized to be a multiple of the napi budget. */ bool mlx4_en_rx_recycle(struct mlx4_en_rx_ring *ring, struct mlx4_en_rx_alloc *frame) { struct mlx4_en_page_cache *cache = &ring->page_cache; if (cache->index >= MLX4_EN_CACHE_SIZE) return false; cache->buf[cache->index].page = frame->page; cache->buf[cache->index].dma = frame->dma; cache->index++; return true; } void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring **pring, u32 size, u16 stride) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rx_ring *ring = *pring; struct bpf_prog *old_prog; old_prog = rcu_dereference_protected( ring->xdp_prog, lockdep_is_held(&mdev->state_lock)); if (old_prog) bpf_prog_put(old_prog); mlx4_free_hwq_res(mdev->dev, &ring->wqres, size * stride + TXBB_SIZE); vfree(ring->rx_info); ring->rx_info = NULL; kfree(ring); *pring = NULL; } void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { int i; for (i = 0; i < ring->page_cache.index; i++) { dma_unmap_page(priv->ddev, ring->page_cache.buf[i].dma, PAGE_SIZE, priv->dma_dir); put_page(ring->page_cache.buf[i].page); } ring->page_cache.index = 0; mlx4_en_free_rx_buf(priv, ring); if (ring->stride <= TXBB_SIZE) ring->buf -= TXBB_SIZE; mlx4_en_destroy_allocator(priv, ring); } static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct mlx4_en_rx_alloc *frags, struct sk_buff *skb, int length) { struct skb_frag_struct *skb_frags_rx = skb_shinfo(skb)->frags; struct mlx4_en_frag_info *frag_info = priv->frag_info; int nr, frag_size; dma_addr_t dma; /* Collect used fragments while replacing them in the HW descriptors */ for (nr = 0;;) { frag_size = min_t(int, length, frag_info->frag_size); if (unlikely(!frags[nr].page)) goto fail; dma = be64_to_cpu(rx_desc->data[nr].addr); dma_sync_single_for_cpu(priv->ddev, dma, frag_info->frag_size, DMA_FROM_DEVICE); __skb_fill_page_desc(skb, nr, frags[nr].page, frags[nr].page_offset, frag_size); skb->truesize += frag_info->frag_stride; frags[nr].page = NULL; nr++; length -= frag_size; if (!length) break; frag_info++; } return nr; fail: while (nr > 0) { nr--; __skb_frag_unref(&skb_frags_rx[nr]); } return 0; } static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv, struct mlx4_en_rx_desc *rx_desc, struct mlx4_en_rx_alloc *frags, unsigned int length) { struct sk_buff *skb; void *va; int used_frags; dma_addr_t dma; skb = netdev_alloc_skb(priv->dev, SMALL_PACKET_SIZE + NET_IP_ALIGN); if (unlikely(!skb)) { en_dbg(RX_ERR, priv, "Failed allocating skb\n"); return NULL; } skb_reserve(skb, NET_IP_ALIGN); skb->len = length; /* Get pointer to first fragment so we could copy the headers into the * (linear part of the) skb */ va = page_address(frags[0].page) + frags[0].page_offset; if (length <= SMALL_PACKET_SIZE) { /* We are copying all relevant data to the skb - temporarily * sync buffers for the copy */ dma = be64_to_cpu(rx_desc->data[0].addr); dma_sync_single_for_cpu(priv->ddev, dma, length, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, va, length); skb->tail += length; } else { unsigned int pull_len; /* Move relevant fragments to skb */ used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, frags, skb, length); if (unlikely(!used_frags)) { kfree_skb(skb); return NULL; } skb_shinfo(skb)->nr_frags = used_frags; pull_len = eth_get_headlen(va, SMALL_PACKET_SIZE); /* Copy headers into the skb linear buffer */ memcpy(skb->data, va, pull_len); skb->tail += pull_len; /* Skip headers in first fragment */ skb_shinfo(skb)->frags[0].page_offset += pull_len; /* Adjust size of first fragment */ skb_frag_size_sub(&skb_shinfo(skb)->frags[0], pull_len); skb->data_len = length - pull_len; } return skb; } static void validate_loopback(struct mlx4_en_priv *priv, struct sk_buff *skb) { int i; int offset = ETH_HLEN; for (i = 0; i < MLX4_LOOPBACK_TEST_PAYLOAD; i++, offset++) { if (*(skb->data + offset) != (unsigned char) (i & 0xff)) goto out_loopback; } /* Loopback found */ priv->loopback_ok = 1; out_loopback: dev_kfree_skb_any(skb); } static bool mlx4_en_refill_rx_buffers(struct mlx4_en_priv *priv, struct mlx4_en_rx_ring *ring) { u32 missing = ring->actual_size - (ring->prod - ring->cons); /* Try to batch allocations, but not too much. */ if (missing < 8) return false; do { if (mlx4_en_prepare_rx_desc(priv, ring, ring->prod & ring->size_mask, GFP_ATOMIC | __GFP_COLD | __GFP_MEMALLOC)) break; ring->prod++; } while (--missing); return true; } /* When hardware doesn't strip the vlan, we need to calculate the checksum * over it and add it to the hardware's checksum calculation */ static inline __wsum get_fixed_vlan_csum(__wsum hw_checksum, struct vlan_hdr *vlanh) { return csum_add(hw_checksum, *(__wsum *)vlanh); } /* Although the stack expects checksum which doesn't include the pseudo * header, the HW adds it. To address that, we are subtracting the pseudo * header checksum from the checksum value provided by the HW. */ static void get_fixed_ipv4_csum(__wsum hw_checksum, struct sk_buff *skb, struct iphdr *iph) { __u16 length_for_csum = 0; __wsum csum_pseudo_header = 0; length_for_csum = (be16_to_cpu(iph->tot_len) - (iph->ihl << 2)); csum_pseudo_header = csum_tcpudp_nofold(iph->saddr, iph->daddr, length_for_csum, iph->protocol, 0); skb->csum = csum_sub(hw_checksum, csum_pseudo_header); } #if IS_ENABLED(CONFIG_IPV6) /* In IPv6 packets, besides subtracting the pseudo header checksum, * we also compute/add the IP header checksum which * is not added by the HW. */ static int get_fixed_ipv6_csum(__wsum hw_checksum, struct sk_buff *skb, struct ipv6hdr *ipv6h) { __wsum csum_pseudo_hdr = 0; if (unlikely(ipv6h->nexthdr == IPPROTO_FRAGMENT || ipv6h->nexthdr == IPPROTO_HOPOPTS)) return -1; hw_checksum = csum_add(hw_checksum, (__force __wsum)htons(ipv6h->nexthdr)); csum_pseudo_hdr = csum_partial(&ipv6h->saddr, sizeof(ipv6h->saddr) + sizeof(ipv6h->daddr), 0); csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ipv6h->payload_len); csum_pseudo_hdr = csum_add(csum_pseudo_hdr, (__force __wsum)ntohs(ipv6h->nexthdr)); skb->csum = csum_sub(hw_checksum, csum_pseudo_hdr); skb->csum = csum_add(skb->csum, csum_partial(ipv6h, sizeof(struct ipv6hdr), 0)); return 0; } #endif static int check_csum(struct mlx4_cqe *cqe, struct sk_buff *skb, void *va, netdev_features_t dev_features) { __wsum hw_checksum = 0; void *hdr = (u8 *)va + sizeof(struct ethhdr); hw_checksum = csum_unfold((__force __sum16)cqe->checksum); if (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK) && !(dev_features & NETIF_F_HW_VLAN_CTAG_RX)) { hw_checksum = get_fixed_vlan_csum(hw_checksum, hdr); hdr += sizeof(struct vlan_hdr); } if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4)) get_fixed_ipv4_csum(hw_checksum, skb, hdr); #if IS_ENABLED(CONFIG_IPV6) else if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV6)) if (unlikely(get_fixed_ipv6_csum(hw_checksum, skb, hdr))) return -1; #endif return 0; } int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget) { struct mlx4_en_priv *priv = netdev_priv(dev); struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_cqe *cqe; struct mlx4_en_rx_ring *ring = priv->rx_ring[cq->ring]; struct mlx4_en_rx_alloc *frags; struct mlx4_en_rx_desc *rx_desc; struct bpf_prog *xdp_prog; int doorbell_pending; struct sk_buff *skb; int index; int nr; unsigned int length; int polled = 0; int ip_summed; int factor = priv->cqe_factor; u64 timestamp; bool l2_tunnel; if (unlikely(!priv->port_up)) return 0; if (unlikely(budget <= 0)) return polled; /* Protect accesses to: ring->xdp_prog, priv->mac_hash list */ rcu_read_lock(); xdp_prog = rcu_dereference(ring->xdp_prog); doorbell_pending = 0; /* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx * descriptor offset can be deduced from the CQE index instead of * reading 'cqe->index' */ index = cq->mcq.cons_index & ring->size_mask; cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; /* Process all completed CQEs */ while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK, cq->mcq.cons_index & cq->size)) { frags = ring->rx_info + (index << priv->log_rx_info); rx_desc = ring->buf + (index << ring->log_stride); /* * make sure we read the CQE after we read the ownership bit */ dma_rmb(); /* Drop packet on bad receive or bad checksum */ if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) == MLX4_CQE_OPCODE_ERROR)) { en_err(priv, "CQE completed in error - vendor syndrom:%d syndrom:%d\n", ((struct mlx4_err_cqe *)cqe)->vendor_err_syndrome, ((struct mlx4_err_cqe *)cqe)->syndrome); goto next; } if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) { en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n"); goto next; } /* Check if we need to drop the packet if SRIOV is not enabled * and not performing the selftest or flb disabled */ if (priv->flags & MLX4_EN_FLAG_RX_FILTER_NEEDED) { struct ethhdr *ethh; dma_addr_t dma; /* Get pointer to first fragment since we haven't * skb yet and cast it to ethhdr struct */ dma = be64_to_cpu(rx_desc->data[0].addr); dma_sync_single_for_cpu(priv->ddev, dma, sizeof(*ethh), DMA_FROM_DEVICE); ethh = (struct ethhdr *)(page_address(frags[0].page) + frags[0].page_offset); if (is_multicast_ether_addr(ethh->h_dest)) { struct mlx4_mac_entry *entry; struct hlist_head *bucket; unsigned int mac_hash; /* Drop the packet, since HW loopback-ed it */ mac_hash = ethh->h_source[MLX4_EN_MAC_HASH_IDX]; bucket = &priv->mac_hash[mac_hash]; hlist_for_each_entry_rcu(entry, bucket, hlist) { if (ether_addr_equal_64bits(entry->mac, ethh->h_source)) goto next; } } } /* * Packet is OK - process it. */ length = be32_to_cpu(cqe->byte_cnt); length -= ring->fcs_del; l2_tunnel = (dev->hw_enc_features & NETIF_F_RXCSUM) && (cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_L2_TUNNEL)); /* A bpf program gets first chance to drop the packet. It may * read bytes but not past the end of the frag. */ if (xdp_prog) { struct xdp_buff xdp; dma_addr_t dma; void *orig_data; u32 act; dma = be64_to_cpu(rx_desc->data[0].addr); dma_sync_single_for_cpu(priv->ddev, dma, priv->frag_info[0].frag_size, DMA_FROM_DEVICE); xdp.data_hard_start = page_address(frags[0].page); xdp.data = xdp.data_hard_start + frags[0].page_offset; xdp.data_end = xdp.data + length; orig_data = xdp.data; act = bpf_prog_run_xdp(xdp_prog, &xdp); if (xdp.data != orig_data) { length = xdp.data_end - xdp.data; frags[0].page_offset = xdp.data - xdp.data_hard_start; } switch (act) { case XDP_PASS: break; case XDP_TX: if (likely(!mlx4_en_xmit_frame(ring, frags, dev, length, cq->ring, &doorbell_pending))) goto consumed; trace_xdp_exception(dev, xdp_prog, act); goto xdp_drop_no_cnt; /* Drop on xmit failure */ default: bpf_warn_invalid_xdp_action(act); case XDP_ABORTED: trace_xdp_exception(dev, xdp_prog, act); case XDP_DROP: ring->xdp_drop++; xdp_drop_no_cnt: if (likely(mlx4_en_rx_recycle(ring, frags))) goto consumed; goto next; } } ring->bytes += length; ring->packets++; if (likely(dev->features & NETIF_F_RXCSUM)) { if (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_TCP | MLX4_CQE_STATUS_UDP)) { if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) && cqe->checksum == cpu_to_be16(0xffff)) { ip_summed = CHECKSUM_UNNECESSARY; ring->csum_ok++; } else { ip_summed = CHECKSUM_NONE; ring->csum_none++; } } else { if (priv->flags & MLX4_EN_FLAG_RX_CSUM_NON_TCP_UDP && (cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPV4 | MLX4_CQE_STATUS_IPV6))) { ip_summed = CHECKSUM_COMPLETE; ring->csum_complete++; } else { ip_summed = CHECKSUM_NONE; ring->csum_none++; } } } else { ip_summed = CHECKSUM_NONE; ring->csum_none++; } /* This packet is eligible for GRO if it is: * - DIX Ethernet (type interpretation) * - TCP/IP (v4) * - without IP options * - not an IP fragment */ if (dev->features & NETIF_F_GRO) { struct sk_buff *gro_skb = napi_get_frags(&cq->napi); if (!gro_skb) goto next; nr = mlx4_en_complete_rx_desc(priv, rx_desc, frags, gro_skb, length); if (!nr) goto next; if (ip_summed == CHECKSUM_COMPLETE) { void *va = skb_frag_address(skb_shinfo(gro_skb)->frags); if (check_csum(cqe, gro_skb, va, dev->features)) { ip_summed = CHECKSUM_NONE; ring->csum_none++; ring->csum_complete--; } } skb_shinfo(gro_skb)->nr_frags = nr; gro_skb->len = length; gro_skb->data_len = length; gro_skb->ip_summed = ip_summed; if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) gro_skb->csum_level = 1; if ((cqe->vlan_my_qpn & cpu_to_be32(MLX4_CQE_CVLAN_PRESENT_MASK)) && (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) { u16 vid = be16_to_cpu(cqe->sl_vid); __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021Q), vid); } else if ((be32_to_cpu(cqe->vlan_my_qpn) & MLX4_CQE_SVLAN_PRESENT_MASK) && (dev->features & NETIF_F_HW_VLAN_STAG_RX)) { __vlan_hwaccel_put_tag(gro_skb, htons(ETH_P_8021AD), be16_to_cpu(cqe->sl_vid)); } if (dev->features & NETIF_F_RXHASH) skb_set_hash(gro_skb, be32_to_cpu(cqe->immed_rss_invalid), (ip_summed == CHECKSUM_UNNECESSARY) ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); skb_record_rx_queue(gro_skb, cq->ring); if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { timestamp = mlx4_en_get_cqe_ts(cqe); mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(gro_skb), timestamp); } napi_gro_frags(&cq->napi); goto next; } /* GRO not possible, complete processing here */ skb = mlx4_en_rx_skb(priv, rx_desc, frags, length); if (unlikely(!skb)) { ring->dropped++; goto next; } if (unlikely(priv->validate_loopback)) { validate_loopback(priv, skb); goto next; } if (ip_summed == CHECKSUM_COMPLETE) { if (check_csum(cqe, skb, skb->data, dev->features)) { ip_summed = CHECKSUM_NONE; ring->csum_complete--; ring->csum_none++; } } skb->ip_summed = ip_summed; skb->protocol = eth_type_trans(skb, dev); skb_record_rx_queue(skb, cq->ring); if (l2_tunnel && ip_summed == CHECKSUM_UNNECESSARY) skb->csum_level = 1; if (dev->features & NETIF_F_RXHASH) skb_set_hash(skb, be32_to_cpu(cqe->immed_rss_invalid), (ip_summed == CHECKSUM_UNNECESSARY) ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); if ((be32_to_cpu(cqe->vlan_my_qpn) & MLX4_CQE_CVLAN_PRESENT_MASK) && (dev->features & NETIF_F_HW_VLAN_CTAG_RX)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(cqe->sl_vid)); else if ((be32_to_cpu(cqe->vlan_my_qpn) & MLX4_CQE_SVLAN_PRESENT_MASK) && (dev->features & NETIF_F_HW_VLAN_STAG_RX)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), be16_to_cpu(cqe->sl_vid)); if (ring->hwtstamp_rx_filter == HWTSTAMP_FILTER_ALL) { timestamp = mlx4_en_get_cqe_ts(cqe); mlx4_en_fill_hwtstamps(mdev, skb_hwtstamps(skb), timestamp); } napi_gro_receive(&cq->napi, skb); next: for (nr = 0; nr < priv->num_frags; nr++) mlx4_en_free_frag(priv, frags, nr); consumed: ++cq->mcq.cons_index; index = (cq->mcq.cons_index) & ring->size_mask; cqe = mlx4_en_get_cqe(cq->buf, index, priv->cqe_size) + factor; if (++polled == budget) goto out; } out: rcu_read_unlock(); if (polled) { if (doorbell_pending) mlx4_en_xmit_doorbell(priv->tx_ring[TX_XDP][cq->ring]); mlx4_cq_set_ci(&cq->mcq); wmb(); /* ensure HW sees CQ consumer before we post new buffers */ ring->cons = cq->mcq.cons_index; } AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled); if (mlx4_en_refill_rx_buffers(priv, ring)) mlx4_en_update_rx_prod_db(ring); return polled; } void mlx4_en_rx_irq(struct mlx4_cq *mcq) { struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq); struct mlx4_en_priv *priv = netdev_priv(cq->dev); if (likely(priv->port_up)) napi_schedule_irqoff(&cq->napi); else mlx4_en_arm_cq(priv, cq); } /* Rx CQ polling - called by NAPI */ int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget) { struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi); struct net_device *dev = cq->dev; struct mlx4_en_priv *priv = netdev_priv(dev); int done; done = mlx4_en_process_rx_cq(dev, cq, budget); /* If we used up all the quota - we're probably not done yet... */ if (done == budget) { const struct cpumask *aff; struct irq_data *idata; int cpu_curr; INC_PERF_COUNTER(priv->pstats.napi_quota); cpu_curr = smp_processor_id(); idata = irq_desc_get_irq_data(cq->irq_desc); aff = irq_data_get_affinity_mask(idata); if (likely(cpumask_test_cpu(cpu_curr, aff))) return budget; /* Current cpu is not according to smp_irq_affinity - * probably affinity changed. Need to stop this NAPI * poll, and restart it on the right CPU. * Try to avoid returning a too small value (like 0), * to not fool net_rx_action() and its netdev_budget */ if (done) done--; } /* Done for now */ if (napi_complete_done(napi, done)) mlx4_en_arm_cq(priv, cq); return done; } static const int frag_sizes[] = { FRAG_SZ0, FRAG_SZ1, FRAG_SZ2, FRAG_SZ3 }; void mlx4_en_calc_rx_buf(struct net_device *dev) { struct mlx4_en_priv *priv = netdev_priv(dev); int eff_mtu = MLX4_EN_EFF_MTU(dev->mtu); int i = 0; /* bpf requires buffers to be set up as 1 packet per page. * This only works when num_frags == 1. */ if (priv->tx_ring_num[TX_XDP]) { priv->rx_page_order = 0; priv->frag_info[0].frag_size = eff_mtu; /* This will gain efficient xdp frame recycling at the * expense of more costly truesize accounting */ priv->frag_info[0].frag_stride = PAGE_SIZE; priv->dma_dir = PCI_DMA_BIDIRECTIONAL; priv->rx_headroom = XDP_PACKET_HEADROOM; i = 1; } else { int buf_size = 0; while (buf_size < eff_mtu) { priv->frag_info[i].frag_size = (eff_mtu > buf_size + frag_sizes[i]) ? frag_sizes[i] : eff_mtu - buf_size; priv->frag_info[i].frag_stride = ALIGN(priv->frag_info[i].frag_size, SMP_CACHE_BYTES); buf_size += priv->frag_info[i].frag_size; i++; } priv->rx_page_order = MLX4_EN_ALLOC_PREFER_ORDER; priv->dma_dir = PCI_DMA_FROMDEVICE; priv->rx_headroom = 0; } priv->num_frags = i; priv->rx_skb_size = eff_mtu; priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct mlx4_en_rx_alloc)); en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d num_frags:%d):\n", eff_mtu, priv->num_frags); for (i = 0; i < priv->num_frags; i++) { en_err(priv, " frag:%d - size:%d stride:%d\n", i, priv->frag_info[i].frag_size, priv->frag_info[i].frag_stride); } } /* RSS related functions */ static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn, struct mlx4_en_rx_ring *ring, enum mlx4_qp_state *state, struct mlx4_qp *qp) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_qp_context *context; int err = 0; context = kmalloc(sizeof(*context), GFP_KERNEL); if (!context) return -ENOMEM; err = mlx4_qp_alloc(mdev->dev, qpn, qp, GFP_KERNEL); if (err) { en_err(priv, "Failed to allocate qp #%x\n", qpn); goto out; } qp->event = mlx4_en_sqp_event; memset(context, 0, sizeof *context); mlx4_en_fill_qp_context(priv, ring->actual_size, ring->stride, 0, 0, qpn, ring->cqn, -1, context); context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma); /* Cancel FCS removal if FW allows */ if (mdev->dev->caps.flags & MLX4_DEV_CAP_FLAG_FCS_KEEP) { context->param3 |= cpu_to_be32(1 << 29); if (priv->dev->features & NETIF_F_RXFCS) ring->fcs_del = 0; else ring->fcs_del = ETH_FCS_LEN; } else ring->fcs_del = 0; err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state); if (err) { mlx4_qp_remove(mdev->dev, qp); mlx4_qp_free(mdev->dev, qp); } mlx4_en_update_rx_prod_db(ring); out: kfree(context); return err; } int mlx4_en_create_drop_qp(struct mlx4_en_priv *priv) { int err; u32 qpn; err = mlx4_qp_reserve_range(priv->mdev->dev, 1, 1, &qpn, MLX4_RESERVE_A0_QP); if (err) { en_err(priv, "Failed reserving drop qpn\n"); return err; } err = mlx4_qp_alloc(priv->mdev->dev, qpn, &priv->drop_qp, GFP_KERNEL); if (err) { en_err(priv, "Failed allocating drop qp\n"); mlx4_qp_release_range(priv->mdev->dev, qpn, 1); return err; } return 0; } void mlx4_en_destroy_drop_qp(struct mlx4_en_priv *priv) { u32 qpn; qpn = priv->drop_qp.qpn; mlx4_qp_remove(priv->mdev->dev, &priv->drop_qp); mlx4_qp_free(priv->mdev->dev, &priv->drop_qp); mlx4_qp_release_range(priv->mdev->dev, qpn, 1); } /* Allocate rx qp's and configure them according to rss map */ int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rss_map *rss_map = &priv->rss_map; struct mlx4_qp_context context; struct mlx4_rss_context *rss_context; int rss_rings; void *ptr; u8 rss_mask = (MLX4_RSS_IPV4 | MLX4_RSS_TCP_IPV4 | MLX4_RSS_IPV6 | MLX4_RSS_TCP_IPV6); int i, qpn; int err = 0; int good_qps = 0; en_dbg(DRV, priv, "Configuring rss steering\n"); err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num, priv->rx_ring_num, &rss_map->base_qpn, 0); if (err) { en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num); return err; } for (i = 0; i < priv->rx_ring_num; i++) { qpn = rss_map->base_qpn + i; err = mlx4_en_config_rss_qp(priv, qpn, priv->rx_ring[i], &rss_map->state[i], &rss_map->qps[i]); if (err) goto rss_err; ++good_qps; } /* Configure RSS indirection qp */ err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp, GFP_KERNEL); if (err) { en_err(priv, "Failed to allocate RSS indirection QP\n"); goto rss_err; } rss_map->indir_qp.event = mlx4_en_sqp_event; mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn, priv->rx_ring[0]->cqn, -1, &context); if (!priv->prof->rss_rings || priv->prof->rss_rings > priv->rx_ring_num) rss_rings = priv->rx_ring_num; else rss_rings = priv->prof->rss_rings; ptr = ((void *) &context) + offsetof(struct mlx4_qp_context, pri_path) + MLX4_RSS_OFFSET_IN_QPC_PRI_PATH; rss_context = ptr; rss_context->base_qpn = cpu_to_be32(ilog2(rss_rings) << 24 | (rss_map->base_qpn)); rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn); if (priv->mdev->profile.udp_rss) { rss_mask |= MLX4_RSS_UDP_IPV4 | MLX4_RSS_UDP_IPV6; rss_context->base_qpn_udp = rss_context->default_qpn; } if (mdev->dev->caps.tunnel_offload_mode == MLX4_TUNNEL_OFFLOAD_MODE_VXLAN) { en_info(priv, "Setting RSS context tunnel type to RSS on inner headers\n"); rss_mask |= MLX4_RSS_BY_INNER_HEADERS; } rss_context->flags = rss_mask; rss_context->hash_fn = MLX4_RSS_HASH_TOP; if (priv->rss_hash_fn == ETH_RSS_HASH_XOR) { rss_context->hash_fn = MLX4_RSS_HASH_XOR; } else if (priv->rss_hash_fn == ETH_RSS_HASH_TOP) { rss_context->hash_fn = MLX4_RSS_HASH_TOP; memcpy(rss_context->rss_key, priv->rss_key, MLX4_EN_RSS_KEY_SIZE); } else { en_err(priv, "Unknown RSS hash function requested\n"); err = -EINVAL; goto indir_err; } err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context, &rss_map->indir_qp, &rss_map->indir_state); if (err) goto indir_err; return 0; indir_err: mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); mlx4_qp_free(mdev->dev, &rss_map->indir_qp); rss_err: for (i = 0; i < good_qps; i++) { mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); mlx4_qp_free(mdev->dev, &rss_map->qps[i]); } mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); return err; } void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv) { struct mlx4_en_dev *mdev = priv->mdev; struct mlx4_en_rss_map *rss_map = &priv->rss_map; int i; mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state, MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp); mlx4_qp_remove(mdev->dev, &rss_map->indir_qp); mlx4_qp_free(mdev->dev, &rss_map->indir_qp); for (i = 0; i < priv->rx_ring_num; i++) { mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i], MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]); mlx4_qp_remove(mdev->dev, &rss_map->qps[i]); mlx4_qp_free(mdev->dev, &rss_map->qps[i]); } mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num); }