/* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nfit.h" /* * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is * irrelevant. */ #include static bool force_enable_dimms; module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status"); static unsigned int scrub_timeout = NFIT_ARS_TIMEOUT; module_param(scrub_timeout, uint, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(scrub_timeout, "Initial scrub timeout in seconds"); /* after three payloads of overflow, it's dead jim */ static unsigned int scrub_overflow_abort = 3; module_param(scrub_overflow_abort, uint, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(scrub_overflow_abort, "Number of times we overflow ARS results before abort"); static bool disable_vendor_specific; module_param(disable_vendor_specific, bool, S_IRUGO); MODULE_PARM_DESC(disable_vendor_specific, "Limit commands to the publicly specified set"); static unsigned long override_dsm_mask; module_param(override_dsm_mask, ulong, S_IRUGO); MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions"); static int default_dsm_family = -1; module_param(default_dsm_family, int, S_IRUGO); MODULE_PARM_DESC(default_dsm_family, "Try this DSM type first when identifying NVDIMM family"); LIST_HEAD(acpi_descs); DEFINE_MUTEX(acpi_desc_lock); static struct workqueue_struct *nfit_wq; struct nfit_table_prev { struct list_head spas; struct list_head memdevs; struct list_head dcrs; struct list_head bdws; struct list_head idts; struct list_head flushes; }; static u8 nfit_uuid[NFIT_UUID_MAX][16]; const u8 *to_nfit_uuid(enum nfit_uuids id) { return nfit_uuid[id]; } EXPORT_SYMBOL(to_nfit_uuid); static struct acpi_nfit_desc *to_acpi_nfit_desc( struct nvdimm_bus_descriptor *nd_desc) { return container_of(nd_desc, struct acpi_nfit_desc, nd_desc); } static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; /* * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct * acpi_device. */ if (!nd_desc->provider_name || strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0) return NULL; return to_acpi_device(acpi_desc->dev); } static int xlat_bus_status(void *buf, unsigned int cmd, u32 status) { struct nd_cmd_clear_error *clear_err; struct nd_cmd_ars_status *ars_status; u16 flags; switch (cmd) { case ND_CMD_ARS_CAP: if ((status & 0xffff) == NFIT_ARS_CAP_NONE) return -ENOTTY; /* Command failed */ if (status & 0xffff) return -EIO; /* No supported scan types for this range */ flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE; if ((status >> 16 & flags) == 0) return -ENOTTY; return 0; case ND_CMD_ARS_START: /* ARS is in progress */ if ((status & 0xffff) == NFIT_ARS_START_BUSY) return -EBUSY; /* Command failed */ if (status & 0xffff) return -EIO; return 0; case ND_CMD_ARS_STATUS: ars_status = buf; /* Command failed */ if (status & 0xffff) return -EIO; /* Check extended status (Upper two bytes) */ if (status == NFIT_ARS_STATUS_DONE) return 0; /* ARS is in progress */ if (status == NFIT_ARS_STATUS_BUSY) return -EBUSY; /* No ARS performed for the current boot */ if (status == NFIT_ARS_STATUS_NONE) return -EAGAIN; /* * ARS interrupted, either we overflowed or some other * agent wants the scan to stop. If we didn't overflow * then just continue with the returned results. */ if (status == NFIT_ARS_STATUS_INTR) { if (ars_status->out_length >= 40 && (ars_status->flags & NFIT_ARS_F_OVERFLOW)) return -ENOSPC; return 0; } /* Unknown status */ if (status >> 16) return -EIO; return 0; case ND_CMD_CLEAR_ERROR: clear_err = buf; if (status & 0xffff) return -EIO; if (!clear_err->cleared) return -EIO; if (clear_err->length > clear_err->cleared) return clear_err->cleared; return 0; default: break; } /* all other non-zero status results in an error */ if (status) return -EIO; return 0; } static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd, u32 status) { if (!nvdimm) return xlat_bus_status(buf, cmd, status); if (status) return -EIO; return 0; } int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc) { struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); union acpi_object in_obj, in_buf, *out_obj; const struct nd_cmd_desc *desc = NULL; struct device *dev = acpi_desc->dev; struct nd_cmd_pkg *call_pkg = NULL; const char *cmd_name, *dimm_name; unsigned long cmd_mask, dsm_mask; u32 offset, fw_status = 0; acpi_handle handle; unsigned int func; const u8 *uuid; int rc, i; func = cmd; if (cmd == ND_CMD_CALL) { call_pkg = buf; func = call_pkg->nd_command; } if (nvdimm) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); struct acpi_device *adev = nfit_mem->adev; if (!adev) return -ENOTTY; if (call_pkg && nfit_mem->family != call_pkg->nd_family) return -ENOTTY; dimm_name = nvdimm_name(nvdimm); cmd_name = nvdimm_cmd_name(cmd); cmd_mask = nvdimm_cmd_mask(nvdimm); dsm_mask = nfit_mem->dsm_mask; desc = nd_cmd_dimm_desc(cmd); uuid = to_nfit_uuid(nfit_mem->family); handle = adev->handle; } else { struct acpi_device *adev = to_acpi_dev(acpi_desc); cmd_name = nvdimm_bus_cmd_name(cmd); cmd_mask = nd_desc->cmd_mask; dsm_mask = cmd_mask; desc = nd_cmd_bus_desc(cmd); uuid = to_nfit_uuid(NFIT_DEV_BUS); handle = adev->handle; dimm_name = "bus"; } if (!desc || (cmd && (desc->out_num + desc->in_num == 0))) return -ENOTTY; if (!test_bit(cmd, &cmd_mask) || !test_bit(func, &dsm_mask)) return -ENOTTY; in_obj.type = ACPI_TYPE_PACKAGE; in_obj.package.count = 1; in_obj.package.elements = &in_buf; in_buf.type = ACPI_TYPE_BUFFER; in_buf.buffer.pointer = buf; in_buf.buffer.length = 0; /* libnvdimm has already validated the input envelope */ for (i = 0; i < desc->in_num; i++) in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc, i, buf); if (call_pkg) { /* skip over package wrapper */ in_buf.buffer.pointer = (void *) &call_pkg->nd_payload; in_buf.buffer.length = call_pkg->nd_size_in; } if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) { dev_dbg(dev, "%s:%s cmd: %d: func: %d input length: %d\n", __func__, dimm_name, cmd, func, in_buf.buffer.length); print_hex_dump_debug("nvdimm in ", DUMP_PREFIX_OFFSET, 4, 4, in_buf.buffer.pointer, min_t(u32, 256, in_buf.buffer.length), true); } out_obj = acpi_evaluate_dsm(handle, uuid, 1, func, &in_obj); if (!out_obj) { dev_dbg(dev, "%s:%s _DSM failed cmd: %s\n", __func__, dimm_name, cmd_name); return -EINVAL; } if (call_pkg) { call_pkg->nd_fw_size = out_obj->buffer.length; memcpy(call_pkg->nd_payload + call_pkg->nd_size_in, out_obj->buffer.pointer, min(call_pkg->nd_fw_size, call_pkg->nd_size_out)); ACPI_FREE(out_obj); /* * Need to support FW function w/o known size in advance. * Caller can determine required size based upon nd_fw_size. * If we return an error (like elsewhere) then caller wouldn't * be able to rely upon data returned to make calculation. */ return 0; } if (out_obj->package.type != ACPI_TYPE_BUFFER) { dev_dbg(dev, "%s:%s unexpected output object type cmd: %s type: %d\n", __func__, dimm_name, cmd_name, out_obj->type); rc = -EINVAL; goto out; } if (IS_ENABLED(CONFIG_ACPI_NFIT_DEBUG)) { dev_dbg(dev, "%s:%s cmd: %s output length: %d\n", __func__, dimm_name, cmd_name, out_obj->buffer.length); print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4, out_obj->buffer.pointer, min_t(u32, 128, out_obj->buffer.length), true); } for (i = 0, offset = 0; i < desc->out_num; i++) { u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf, (u32 *) out_obj->buffer.pointer, out_obj->buffer.length - offset); if (offset + out_size > out_obj->buffer.length) { dev_dbg(dev, "%s:%s output object underflow cmd: %s field: %d\n", __func__, dimm_name, cmd_name, i); break; } if (in_buf.buffer.length + offset + out_size > buf_len) { dev_dbg(dev, "%s:%s output overrun cmd: %s field: %d\n", __func__, dimm_name, cmd_name, i); rc = -ENXIO; goto out; } memcpy(buf + in_buf.buffer.length + offset, out_obj->buffer.pointer + offset, out_size); offset += out_size; } /* * Set fw_status for all the commands with a known format to be * later interpreted by xlat_status(). */ if (i >= 1 && ((cmd >= ND_CMD_ARS_CAP && cmd <= ND_CMD_CLEAR_ERROR) || (cmd >= ND_CMD_SMART && cmd <= ND_CMD_VENDOR))) fw_status = *(u32 *) out_obj->buffer.pointer; if (offset + in_buf.buffer.length < buf_len) { if (i >= 1) { /* * status valid, return the number of bytes left * unfilled in the output buffer */ rc = buf_len - offset - in_buf.buffer.length; if (cmd_rc) *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); } else { dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n", __func__, dimm_name, cmd_name, buf_len, offset); rc = -ENXIO; } } else { rc = 0; if (cmd_rc) *cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status); } out: ACPI_FREE(out_obj); return rc; } EXPORT_SYMBOL_GPL(acpi_nfit_ctl); static const char *spa_type_name(u16 type) { static const char *to_name[] = { [NFIT_SPA_VOLATILE] = "volatile", [NFIT_SPA_PM] = "pmem", [NFIT_SPA_DCR] = "dimm-control-region", [NFIT_SPA_BDW] = "block-data-window", [NFIT_SPA_VDISK] = "volatile-disk", [NFIT_SPA_VCD] = "volatile-cd", [NFIT_SPA_PDISK] = "persistent-disk", [NFIT_SPA_PCD] = "persistent-cd", }; if (type > NFIT_SPA_PCD) return "unknown"; return to_name[type]; } int nfit_spa_type(struct acpi_nfit_system_address *spa) { int i; for (i = 0; i < NFIT_UUID_MAX; i++) if (memcmp(to_nfit_uuid(i), spa->range_guid, 16) == 0) return i; return -1; } static bool add_spa(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_system_address *spa) { struct device *dev = acpi_desc->dev; struct nfit_spa *nfit_spa; if (spa->header.length != sizeof(*spa)) return false; list_for_each_entry(nfit_spa, &prev->spas, list) { if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) { list_move_tail(&nfit_spa->list, &acpi_desc->spas); return true; } } nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa), GFP_KERNEL); if (!nfit_spa) return false; INIT_LIST_HEAD(&nfit_spa->list); memcpy(nfit_spa->spa, spa, sizeof(*spa)); list_add_tail(&nfit_spa->list, &acpi_desc->spas); dev_dbg(dev, "%s: spa index: %d type: %s\n", __func__, spa->range_index, spa_type_name(nfit_spa_type(spa))); return true; } static bool add_memdev(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_memory_map *memdev) { struct device *dev = acpi_desc->dev; struct nfit_memdev *nfit_memdev; if (memdev->header.length != sizeof(*memdev)) return false; list_for_each_entry(nfit_memdev, &prev->memdevs, list) if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) { list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs); return true; } nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev), GFP_KERNEL); if (!nfit_memdev) return false; INIT_LIST_HEAD(&nfit_memdev->list); memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev)); list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs); dev_dbg(dev, "%s: memdev handle: %#x spa: %d dcr: %d\n", __func__, memdev->device_handle, memdev->range_index, memdev->region_index); return true; } /* * An implementation may provide a truncated control region if no block windows * are defined. */ static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr) { if (dcr->header.length < offsetof(struct acpi_nfit_control_region, window_size)) return 0; if (dcr->windows) return sizeof(*dcr); return offsetof(struct acpi_nfit_control_region, window_size); } static bool add_dcr(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_control_region *dcr) { struct device *dev = acpi_desc->dev; struct nfit_dcr *nfit_dcr; if (!sizeof_dcr(dcr)) return false; list_for_each_entry(nfit_dcr, &prev->dcrs, list) if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) { list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs); return true; } nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr), GFP_KERNEL); if (!nfit_dcr) return false; INIT_LIST_HEAD(&nfit_dcr->list); memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)); list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs); dev_dbg(dev, "%s: dcr index: %d windows: %d\n", __func__, dcr->region_index, dcr->windows); return true; } static bool add_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_data_region *bdw) { struct device *dev = acpi_desc->dev; struct nfit_bdw *nfit_bdw; if (bdw->header.length != sizeof(*bdw)) return false; list_for_each_entry(nfit_bdw, &prev->bdws, list) if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) { list_move_tail(&nfit_bdw->list, &acpi_desc->bdws); return true; } nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw), GFP_KERNEL); if (!nfit_bdw) return false; INIT_LIST_HEAD(&nfit_bdw->list); memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw)); list_add_tail(&nfit_bdw->list, &acpi_desc->bdws); dev_dbg(dev, "%s: bdw dcr: %d windows: %d\n", __func__, bdw->region_index, bdw->windows); return true; } static size_t sizeof_idt(struct acpi_nfit_interleave *idt) { if (idt->header.length < sizeof(*idt)) return 0; return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1); } static bool add_idt(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_interleave *idt) { struct device *dev = acpi_desc->dev; struct nfit_idt *nfit_idt; if (!sizeof_idt(idt)) return false; list_for_each_entry(nfit_idt, &prev->idts, list) { if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt)) continue; if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) { list_move_tail(&nfit_idt->list, &acpi_desc->idts); return true; } } nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt), GFP_KERNEL); if (!nfit_idt) return false; INIT_LIST_HEAD(&nfit_idt->list); memcpy(nfit_idt->idt, idt, sizeof_idt(idt)); list_add_tail(&nfit_idt->list, &acpi_desc->idts); dev_dbg(dev, "%s: idt index: %d num_lines: %d\n", __func__, idt->interleave_index, idt->line_count); return true; } static size_t sizeof_flush(struct acpi_nfit_flush_address *flush) { if (flush->header.length < sizeof(*flush)) return 0; return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1); } static bool add_flush(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, struct acpi_nfit_flush_address *flush) { struct device *dev = acpi_desc->dev; struct nfit_flush *nfit_flush; if (!sizeof_flush(flush)) return false; list_for_each_entry(nfit_flush, &prev->flushes, list) { if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush)) continue; if (memcmp(nfit_flush->flush, flush, sizeof_flush(flush)) == 0) { list_move_tail(&nfit_flush->list, &acpi_desc->flushes); return true; } } nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush) + sizeof_flush(flush), GFP_KERNEL); if (!nfit_flush) return false; INIT_LIST_HEAD(&nfit_flush->list); memcpy(nfit_flush->flush, flush, sizeof_flush(flush)); list_add_tail(&nfit_flush->list, &acpi_desc->flushes); dev_dbg(dev, "%s: nfit_flush handle: %d hint_count: %d\n", __func__, flush->device_handle, flush->hint_count); return true; } static void *add_table(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev, void *table, const void *end) { struct device *dev = acpi_desc->dev; struct acpi_nfit_header *hdr; void *err = ERR_PTR(-ENOMEM); if (table >= end) return NULL; hdr = table; if (!hdr->length) { dev_warn(dev, "found a zero length table '%d' parsing nfit\n", hdr->type); return NULL; } switch (hdr->type) { case ACPI_NFIT_TYPE_SYSTEM_ADDRESS: if (!add_spa(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_MEMORY_MAP: if (!add_memdev(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_CONTROL_REGION: if (!add_dcr(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_DATA_REGION: if (!add_bdw(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_INTERLEAVE: if (!add_idt(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_FLUSH_ADDRESS: if (!add_flush(acpi_desc, prev, table)) return err; break; case ACPI_NFIT_TYPE_SMBIOS: dev_dbg(dev, "%s: smbios\n", __func__); break; default: dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type); break; } return table + hdr->length; } static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem) { u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle; u16 dcr = nfit_mem->dcr->region_index; struct nfit_spa *nfit_spa; list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { u16 range_index = nfit_spa->spa->range_index; int type = nfit_spa_type(nfit_spa->spa); struct nfit_memdev *nfit_memdev; if (type != NFIT_SPA_BDW) continue; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { if (nfit_memdev->memdev->range_index != range_index) continue; if (nfit_memdev->memdev->device_handle != device_handle) continue; if (nfit_memdev->memdev->region_index != dcr) continue; nfit_mem->spa_bdw = nfit_spa->spa; return; } } dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n", nfit_mem->spa_dcr->range_index); nfit_mem->bdw = NULL; } static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa) { u16 dcr = __to_nfit_memdev(nfit_mem)->region_index; struct nfit_memdev *nfit_memdev; struct nfit_bdw *nfit_bdw; struct nfit_idt *nfit_idt; u16 idt_idx, range_index; list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) { if (nfit_bdw->bdw->region_index != dcr) continue; nfit_mem->bdw = nfit_bdw->bdw; break; } if (!nfit_mem->bdw) return; nfit_mem_find_spa_bdw(acpi_desc, nfit_mem); if (!nfit_mem->spa_bdw) return; range_index = nfit_mem->spa_bdw->range_index; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { if (nfit_memdev->memdev->range_index != range_index || nfit_memdev->memdev->region_index != dcr) continue; nfit_mem->memdev_bdw = nfit_memdev->memdev; idt_idx = nfit_memdev->memdev->interleave_index; list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { if (nfit_idt->idt->interleave_index != idt_idx) continue; nfit_mem->idt_bdw = nfit_idt->idt; break; } break; } } static int nfit_mem_dcr_init(struct acpi_nfit_desc *acpi_desc, struct acpi_nfit_system_address *spa) { struct nfit_mem *nfit_mem, *found; struct nfit_memdev *nfit_memdev; int type = nfit_spa_type(spa); switch (type) { case NFIT_SPA_DCR: case NFIT_SPA_PM: break; default: return 0; } list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct nfit_flush *nfit_flush; struct nfit_dcr *nfit_dcr; u32 device_handle; u16 dcr; if (nfit_memdev->memdev->range_index != spa->range_index) continue; found = NULL; dcr = nfit_memdev->memdev->region_index; device_handle = nfit_memdev->memdev->device_handle; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) { found = nfit_mem; break; } if (found) nfit_mem = found; else { nfit_mem = devm_kzalloc(acpi_desc->dev, sizeof(*nfit_mem), GFP_KERNEL); if (!nfit_mem) return -ENOMEM; INIT_LIST_HEAD(&nfit_mem->list); nfit_mem->acpi_desc = acpi_desc; list_add(&nfit_mem->list, &acpi_desc->dimms); } list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { if (nfit_dcr->dcr->region_index != dcr) continue; /* * Record the control region for the dimm. For * the ACPI 6.1 case, where there are separate * control regions for the pmem vs blk * interfaces, be sure to record the extended * blk details. */ if (!nfit_mem->dcr) nfit_mem->dcr = nfit_dcr->dcr; else if (nfit_mem->dcr->windows == 0 && nfit_dcr->dcr->windows) nfit_mem->dcr = nfit_dcr->dcr; break; } list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) { struct acpi_nfit_flush_address *flush; u16 i; if (nfit_flush->flush->device_handle != device_handle) continue; nfit_mem->nfit_flush = nfit_flush; flush = nfit_flush->flush; nfit_mem->flush_wpq = devm_kzalloc(acpi_desc->dev, flush->hint_count * sizeof(struct resource), GFP_KERNEL); if (!nfit_mem->flush_wpq) return -ENOMEM; for (i = 0; i < flush->hint_count; i++) { struct resource *res = &nfit_mem->flush_wpq[i]; res->start = flush->hint_address[i]; res->end = res->start + 8 - 1; } break; } if (dcr && !nfit_mem->dcr) { dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n", spa->range_index, dcr); return -ENODEV; } if (type == NFIT_SPA_DCR) { struct nfit_idt *nfit_idt; u16 idt_idx; /* multiple dimms may share a SPA when interleaved */ nfit_mem->spa_dcr = spa; nfit_mem->memdev_dcr = nfit_memdev->memdev; idt_idx = nfit_memdev->memdev->interleave_index; list_for_each_entry(nfit_idt, &acpi_desc->idts, list) { if (nfit_idt->idt->interleave_index != idt_idx) continue; nfit_mem->idt_dcr = nfit_idt->idt; break; } nfit_mem_init_bdw(acpi_desc, nfit_mem, spa); } else { /* * A single dimm may belong to multiple SPA-PM * ranges, record at least one in addition to * any SPA-DCR range. */ nfit_mem->memdev_pmem = nfit_memdev->memdev; } } return 0; } static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b) { struct nfit_mem *a = container_of(_a, typeof(*a), list); struct nfit_mem *b = container_of(_b, typeof(*b), list); u32 handleA, handleB; handleA = __to_nfit_memdev(a)->device_handle; handleB = __to_nfit_memdev(b)->device_handle; if (handleA < handleB) return -1; else if (handleA > handleB) return 1; return 0; } static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc) { struct nfit_spa *nfit_spa; /* * For each SPA-DCR or SPA-PMEM address range find its * corresponding MEMDEV(s). From each MEMDEV find the * corresponding DCR. Then, if we're operating on a SPA-DCR, * try to find a SPA-BDW and a corresponding BDW that references * the DCR. Throw it all into an nfit_mem object. Note, that * BDWs are optional. */ list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { int rc; rc = nfit_mem_dcr_init(acpi_desc, nfit_spa->spa); if (rc) return rc; } list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp); return 0; } static ssize_t revision_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision); } static DEVICE_ATTR_RO(revision); static ssize_t hw_error_scrub_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); return sprintf(buf, "%d\n", acpi_desc->scrub_mode); } /* * The 'hw_error_scrub' attribute can have the following values written to it: * '0': Switch to the default mode where an exception will only insert * the address of the memory error into the poison and badblocks lists. * '1': Enable a full scrub to happen if an exception for a memory error is * received. */ static ssize_t hw_error_scrub_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct nvdimm_bus_descriptor *nd_desc; ssize_t rc; long val; rc = kstrtol(buf, 0, &val); if (rc) return rc; device_lock(dev); nd_desc = dev_get_drvdata(dev); if (nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); switch (val) { case HW_ERROR_SCRUB_ON: acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON; break; case HW_ERROR_SCRUB_OFF: acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF; break; default: rc = -EINVAL; break; } } device_unlock(dev); if (rc) return rc; return size; } static DEVICE_ATTR_RW(hw_error_scrub); /* * This shows the number of full Address Range Scrubs that have been * completed since driver load time. Userspace can wait on this using * select/poll etc. A '+' at the end indicates an ARS is in progress */ static ssize_t scrub_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm_bus_descriptor *nd_desc; ssize_t rc = -ENXIO; device_lock(dev); nd_desc = dev_get_drvdata(dev); if (nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, (work_busy(&acpi_desc->work)) ? "+\n" : "\n"); } device_unlock(dev); return rc; } static ssize_t scrub_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t size) { struct nvdimm_bus_descriptor *nd_desc; ssize_t rc; long val; rc = kstrtol(buf, 0, &val); if (rc) return rc; if (val != 1) return -EINVAL; device_lock(dev); nd_desc = dev_get_drvdata(dev); if (nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc); rc = acpi_nfit_ars_rescan(acpi_desc); } device_unlock(dev); if (rc) return rc; return size; } static DEVICE_ATTR_RW(scrub); static bool ars_supported(struct nvdimm_bus *nvdimm_bus) { struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START | 1 << ND_CMD_ARS_STATUS; return (nd_desc->cmd_mask & mask) == mask; } static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus)) return 0; return a->mode; } static struct attribute *acpi_nfit_attributes[] = { &dev_attr_revision.attr, &dev_attr_scrub.attr, &dev_attr_hw_error_scrub.attr, NULL, }; static struct attribute_group acpi_nfit_attribute_group = { .name = "nfit", .attrs = acpi_nfit_attributes, .is_visible = nfit_visible, }; static const struct attribute_group *acpi_nfit_attribute_groups[] = { &nvdimm_bus_attribute_group, &acpi_nfit_attribute_group, NULL, }; static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return __to_nfit_memdev(nfit_mem); } static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); return nfit_mem->dcr; } static ssize_t handle_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); return sprintf(buf, "%#x\n", memdev->device_handle); } static DEVICE_ATTR_RO(handle); static ssize_t phys_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev); return sprintf(buf, "%#x\n", memdev->physical_id); } static DEVICE_ATTR_RO(phys_id); static ssize_t vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id)); } static DEVICE_ATTR_RO(vendor); static ssize_t rev_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id)); } static DEVICE_ATTR_RO(rev_id); static ssize_t device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id)); } static DEVICE_ATTR_RO(device); static ssize_t subsystem_vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id)); } static DEVICE_ATTR_RO(subsystem_vendor); static ssize_t subsystem_rev_id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_revision_id)); } static DEVICE_ATTR_RO(subsystem_rev_id); static ssize_t subsystem_device_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id)); } static DEVICE_ATTR_RO(subsystem_device); static int num_nvdimm_formats(struct nvdimm *nvdimm) { struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); int formats = 0; if (nfit_mem->memdev_pmem) formats++; if (nfit_mem->memdev_bdw) formats++; return formats; } static ssize_t format_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code)); } static DEVICE_ATTR_RO(format); static ssize_t format1_show(struct device *dev, struct device_attribute *attr, char *buf) { u32 handle; ssize_t rc = -ENXIO; struct nfit_mem *nfit_mem; struct nfit_memdev *nfit_memdev; struct acpi_nfit_desc *acpi_desc; struct nvdimm *nvdimm = to_nvdimm(dev); struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); nfit_mem = nvdimm_provider_data(nvdimm); acpi_desc = nfit_mem->acpi_desc; handle = to_nfit_memdev(dev)->device_handle; /* assumes DIMMs have at most 2 published interface codes */ mutex_lock(&acpi_desc->init_mutex); list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; struct nfit_dcr *nfit_dcr; if (memdev->device_handle != handle) continue; list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) { if (nfit_dcr->dcr->region_index != memdev->region_index) continue; if (nfit_dcr->dcr->code == dcr->code) continue; rc = sprintf(buf, "0x%04x\n", le16_to_cpu(nfit_dcr->dcr->code)); break; } if (rc != ENXIO) break; } mutex_unlock(&acpi_desc->init_mutex); return rc; } static DEVICE_ATTR_RO(format1); static ssize_t formats_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm)); } static DEVICE_ATTR_RO(formats); static ssize_t serial_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number)); } static DEVICE_ATTR_RO(serial); static ssize_t family_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); if (nfit_mem->family < 0) return -ENXIO; return sprintf(buf, "%d\n", nfit_mem->family); } static DEVICE_ATTR_RO(family); static ssize_t dsm_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nvdimm *nvdimm = to_nvdimm(dev); struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); if (nfit_mem->family < 0) return -ENXIO; return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask); } static DEVICE_ATTR_RO(dsm_mask); static ssize_t flags_show(struct device *dev, struct device_attribute *attr, char *buf) { u16 flags = to_nfit_memdev(dev)->flags; return sprintf(buf, "%s%s%s%s%s%s%s\n", flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "", flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "", flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "", flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "", flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "", flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "", flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : ""); } static DEVICE_ATTR_RO(flags); static ssize_t id_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev); if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID) return sprintf(buf, "%04x-%02x-%04x-%08x\n", be16_to_cpu(dcr->vendor_id), dcr->manufacturing_location, be16_to_cpu(dcr->manufacturing_date), be32_to_cpu(dcr->serial_number)); else return sprintf(buf, "%04x-%08x\n", be16_to_cpu(dcr->vendor_id), be32_to_cpu(dcr->serial_number)); } static DEVICE_ATTR_RO(id); static struct attribute *acpi_nfit_dimm_attributes[] = { &dev_attr_handle.attr, &dev_attr_phys_id.attr, &dev_attr_vendor.attr, &dev_attr_device.attr, &dev_attr_rev_id.attr, &dev_attr_subsystem_vendor.attr, &dev_attr_subsystem_device.attr, &dev_attr_subsystem_rev_id.attr, &dev_attr_format.attr, &dev_attr_formats.attr, &dev_attr_format1.attr, &dev_attr_serial.attr, &dev_attr_flags.attr, &dev_attr_id.attr, &dev_attr_family.attr, &dev_attr_dsm_mask.attr, NULL, }; static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, struct device, kobj); struct nvdimm *nvdimm = to_nvdimm(dev); if (!to_nfit_dcr(dev)) return 0; if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1) return 0; return a->mode; } static struct attribute_group acpi_nfit_dimm_attribute_group = { .name = "nfit", .attrs = acpi_nfit_dimm_attributes, .is_visible = acpi_nfit_dimm_attr_visible, }; static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = { &nvdimm_attribute_group, &nd_device_attribute_group, &acpi_nfit_dimm_attribute_group, NULL, }; static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc, u32 device_handle) { struct nfit_mem *nfit_mem; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle) return nfit_mem->nvdimm; return NULL; } void __acpi_nvdimm_notify(struct device *dev, u32 event) { struct nfit_mem *nfit_mem; struct acpi_nfit_desc *acpi_desc; dev_dbg(dev->parent, "%s: %s: event: %d\n", dev_name(dev), __func__, event); if (event != NFIT_NOTIFY_DIMM_HEALTH) { dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev), event); return; } acpi_desc = dev_get_drvdata(dev->parent); if (!acpi_desc) return; /* * If we successfully retrieved acpi_desc, then we know nfit_mem data * is still valid. */ nfit_mem = dev_get_drvdata(dev); if (nfit_mem && nfit_mem->flags_attr) sysfs_notify_dirent(nfit_mem->flags_attr); } EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify); static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data) { struct acpi_device *adev = data; struct device *dev = &adev->dev; device_lock(dev->parent); __acpi_nvdimm_notify(dev, event); device_unlock(dev->parent); } static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc, struct nfit_mem *nfit_mem, u32 device_handle) { struct acpi_device *adev, *adev_dimm; struct device *dev = acpi_desc->dev; unsigned long dsm_mask; const u8 *uuid; int i; int family = -1; /* nfit test assumes 1:1 relationship between commands and dsms */ nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en; nfit_mem->family = NVDIMM_FAMILY_INTEL; adev = to_acpi_dev(acpi_desc); if (!adev) return 0; adev_dimm = acpi_find_child_device(adev, device_handle, false); nfit_mem->adev = adev_dimm; if (!adev_dimm) { dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n", device_handle); return force_enable_dimms ? 0 : -ENODEV; } if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle, ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) { dev_err(dev, "%s: notification registration failed\n", dev_name(&adev_dimm->dev)); return -ENXIO; } /* * Until standardization materializes we need to consider 4 * different command sets. Note, that checking for function0 (bit0) * tells us if any commands are reachable through this uuid. */ for (i = NVDIMM_FAMILY_INTEL; i <= NVDIMM_FAMILY_MSFT; i++) if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1)) if (family < 0 || i == default_dsm_family) family = i; /* limit the supported commands to those that are publicly documented */ nfit_mem->family = family; if (override_dsm_mask && !disable_vendor_specific) dsm_mask = override_dsm_mask; else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) { dsm_mask = 0x3fe; if (disable_vendor_specific) dsm_mask &= ~(1 << ND_CMD_VENDOR); } else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) { dsm_mask = 0x1c3c76; } else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) { dsm_mask = 0x1fe; if (disable_vendor_specific) dsm_mask &= ~(1 << 8); } else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) { dsm_mask = 0xffffffff; } else { dev_dbg(dev, "unknown dimm command family\n"); nfit_mem->family = -1; /* DSMs are optional, continue loading the driver... */ return 0; } uuid = to_nfit_uuid(nfit_mem->family); for_each_set_bit(i, &dsm_mask, BITS_PER_LONG) if (acpi_check_dsm(adev_dimm->handle, uuid, 1, 1ULL << i)) set_bit(i, &nfit_mem->dsm_mask); return 0; } static void shutdown_dimm_notify(void *data) { struct acpi_nfit_desc *acpi_desc = data; struct nfit_mem *nfit_mem; mutex_lock(&acpi_desc->init_mutex); /* * Clear out the nfit_mem->flags_attr and shut down dimm event * notifications. */ list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { struct acpi_device *adev_dimm = nfit_mem->adev; if (nfit_mem->flags_attr) { sysfs_put(nfit_mem->flags_attr); nfit_mem->flags_attr = NULL; } if (adev_dimm) acpi_remove_notify_handler(adev_dimm->handle, ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify); } mutex_unlock(&acpi_desc->init_mutex); } static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc) { struct nfit_mem *nfit_mem; int dimm_count = 0, rc; struct nvdimm *nvdimm; list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { struct acpi_nfit_flush_address *flush; unsigned long flags = 0, cmd_mask; u32 device_handle; u16 mem_flags; device_handle = __to_nfit_memdev(nfit_mem)->device_handle; nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle); if (nvdimm) { dimm_count++; continue; } if (nfit_mem->bdw && nfit_mem->memdev_pmem) flags |= NDD_ALIASING; mem_flags = __to_nfit_memdev(nfit_mem)->flags; if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED) flags |= NDD_UNARMED; rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle); if (rc) continue; /* * TODO: provide translation for non-NVDIMM_FAMILY_INTEL * devices (i.e. from nd_cmd to acpi_dsm) to standardize the * userspace interface. */ cmd_mask = 1UL << ND_CMD_CALL; if (nfit_mem->family == NVDIMM_FAMILY_INTEL) cmd_mask |= nfit_mem->dsm_mask; flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush : NULL; nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem, acpi_nfit_dimm_attribute_groups, flags, cmd_mask, flush ? flush->hint_count : 0, nfit_mem->flush_wpq); if (!nvdimm) return -ENOMEM; nfit_mem->nvdimm = nvdimm; dimm_count++; if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0) continue; dev_info(acpi_desc->dev, "%s flags:%s%s%s%s\n", nvdimm_name(nvdimm), mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "", mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"", mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "", mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : ""); } rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count); if (rc) return rc; /* * Now that dimms are successfully registered, and async registration * is flushed, attempt to enable event notification. */ list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) { struct kernfs_node *nfit_kernfs; nvdimm = nfit_mem->nvdimm; nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit"); if (nfit_kernfs) nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs, "flags"); sysfs_put(nfit_kernfs); if (!nfit_mem->flags_attr) dev_warn(acpi_desc->dev, "%s: notifications disabled\n", nvdimm_name(nvdimm)); } return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify, acpi_desc); } static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; const u8 *uuid = to_nfit_uuid(NFIT_DEV_BUS); struct acpi_device *adev; int i; nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en; adev = to_acpi_dev(acpi_desc); if (!adev) return; for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++) if (acpi_check_dsm(adev->handle, uuid, 1, 1ULL << i)) set_bit(i, &nd_desc->cmd_mask); } static ssize_t range_index_show(struct device *dev, struct device_attribute *attr, char *buf) { struct nd_region *nd_region = to_nd_region(dev); struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region); return sprintf(buf, "%d\n", nfit_spa->spa->range_index); } static DEVICE_ATTR_RO(range_index); static struct attribute *acpi_nfit_region_attributes[] = { &dev_attr_range_index.attr, NULL, }; static struct attribute_group acpi_nfit_region_attribute_group = { .name = "nfit", .attrs = acpi_nfit_region_attributes, }; static const struct attribute_group *acpi_nfit_region_attribute_groups[] = { &nd_region_attribute_group, &nd_mapping_attribute_group, &nd_device_attribute_group, &nd_numa_attribute_group, &acpi_nfit_region_attribute_group, NULL, }; /* enough info to uniquely specify an interleave set */ struct nfit_set_info { struct nfit_set_info_map { u64 region_offset; u32 serial_number; u32 pad; } mapping[0]; }; static size_t sizeof_nfit_set_info(int num_mappings) { return sizeof(struct nfit_set_info) + num_mappings * sizeof(struct nfit_set_info_map); } static int cmp_map_compat(const void *m0, const void *m1) { const struct nfit_set_info_map *map0 = m0; const struct nfit_set_info_map *map1 = m1; return memcmp(&map0->region_offset, &map1->region_offset, sizeof(u64)); } static int cmp_map(const void *m0, const void *m1) { const struct nfit_set_info_map *map0 = m0; const struct nfit_set_info_map *map1 = m1; if (map0->region_offset < map1->region_offset) return -1; else if (map0->region_offset > map1->region_offset) return 1; return 0; } /* Retrieve the nth entry referencing this spa */ static struct acpi_nfit_memory_map *memdev_from_spa( struct acpi_nfit_desc *acpi_desc, u16 range_index, int n) { struct nfit_memdev *nfit_memdev; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) if (nfit_memdev->memdev->range_index == range_index) if (n-- == 0) return nfit_memdev->memdev; return NULL; } static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc, struct nd_region_desc *ndr_desc, struct acpi_nfit_system_address *spa) { int i, spa_type = nfit_spa_type(spa); struct device *dev = acpi_desc->dev; struct nd_interleave_set *nd_set; u16 nr = ndr_desc->num_mappings; struct nfit_set_info *info; if (spa_type == NFIT_SPA_PM || spa_type == NFIT_SPA_VOLATILE) /* pass */; else return 0; nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL); if (!nd_set) return -ENOMEM; info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL); if (!info) return -ENOMEM; for (i = 0; i < nr; i++) { struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; struct nfit_set_info_map *map = &info->mapping[i]; struct nvdimm *nvdimm = mapping->nvdimm; struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm); struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc, spa->range_index, i); if (!memdev || !nfit_mem->dcr) { dev_err(dev, "%s: failed to find DCR\n", __func__); return -ENODEV; } map->region_offset = memdev->region_offset; map->serial_number = nfit_mem->dcr->serial_number; } sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), cmp_map, NULL); nd_set->cookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); /* support namespaces created with the wrong sort order */ sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map), cmp_map_compat, NULL); nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0); ndr_desc->nd_set = nd_set; devm_kfree(dev, info); return 0; } static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio) { struct acpi_nfit_interleave *idt = mmio->idt; u32 sub_line_offset, line_index, line_offset; u64 line_no, table_skip_count, table_offset; line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset); table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index); line_offset = idt->line_offset[line_index] * mmio->line_size; table_offset = table_skip_count * mmio->table_size; return mmio->base_offset + line_offset + table_offset + sub_line_offset; } static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw) { struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; u64 offset = nfit_blk->stat_offset + mmio->size * bw; const u32 STATUS_MASK = 0x80000037; if (mmio->num_lines) offset = to_interleave_offset(offset, mmio); return readl(mmio->addr.base + offset) & STATUS_MASK; } static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw, resource_size_t dpa, unsigned int len, unsigned int write) { u64 cmd, offset; struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR]; enum { BCW_OFFSET_MASK = (1ULL << 48)-1, BCW_LEN_SHIFT = 48, BCW_LEN_MASK = (1ULL << 8) - 1, BCW_CMD_SHIFT = 56, }; cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK; len = len >> L1_CACHE_SHIFT; cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT; cmd |= ((u64) write) << BCW_CMD_SHIFT; offset = nfit_blk->cmd_offset + mmio->size * bw; if (mmio->num_lines) offset = to_interleave_offset(offset, mmio); writeq(cmd, mmio->addr.base + offset); nvdimm_flush(nfit_blk->nd_region); if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH) readq(mmio->addr.base + offset); } static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk, resource_size_t dpa, void *iobuf, size_t len, int rw, unsigned int lane) { struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; unsigned int copied = 0; u64 base_offset; int rc; base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES + lane * mmio->size; write_blk_ctl(nfit_blk, lane, dpa, len, rw); while (len) { unsigned int c; u64 offset; if (mmio->num_lines) { u32 line_offset; offset = to_interleave_offset(base_offset + copied, mmio); div_u64_rem(offset, mmio->line_size, &line_offset); c = min_t(size_t, len, mmio->line_size - line_offset); } else { offset = base_offset + nfit_blk->bdw_offset; c = len; } if (rw) memcpy_to_pmem(mmio->addr.aperture + offset, iobuf + copied, c); else { if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH) mmio_flush_range((void __force *) mmio->addr.aperture + offset, c); memcpy_from_pmem(iobuf + copied, mmio->addr.aperture + offset, c); } copied += c; len -= c; } if (rw) nvdimm_flush(nfit_blk->nd_region); rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0; return rc; } static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr, resource_size_t dpa, void *iobuf, u64 len, int rw) { struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr); struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW]; struct nd_region *nd_region = nfit_blk->nd_region; unsigned int lane, copied = 0; int rc = 0; lane = nd_region_acquire_lane(nd_region); while (len) { u64 c = min(len, mmio->size); rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied, iobuf + copied, c, rw, lane); if (rc) break; copied += c; len -= c; } nd_region_release_lane(nd_region, lane); return rc; } static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio, struct acpi_nfit_interleave *idt, u16 interleave_ways) { if (idt) { mmio->num_lines = idt->line_count; mmio->line_size = idt->line_size; if (interleave_ways == 0) return -ENXIO; mmio->table_size = mmio->num_lines * interleave_ways * mmio->line_size; } return 0; } static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, struct nfit_blk *nfit_blk) { struct nd_cmd_dimm_flags flags; int rc; memset(&flags, 0, sizeof(flags)); rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags, sizeof(flags), NULL); if (rc >= 0 && flags.status == 0) nfit_blk->dimm_flags = flags.flags; else if (rc == -ENOTTY) { /* fall back to a conservative default */ nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH; rc = 0; } else rc = -ENXIO; return rc; } static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus, struct device *dev) { struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus); struct nd_blk_region *ndbr = to_nd_blk_region(dev); struct nfit_blk_mmio *mmio; struct nfit_blk *nfit_blk; struct nfit_mem *nfit_mem; struct nvdimm *nvdimm; int rc; nvdimm = nd_blk_region_to_dimm(ndbr); nfit_mem = nvdimm_provider_data(nvdimm); if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) { dev_dbg(dev, "%s: missing%s%s%s\n", __func__, nfit_mem ? "" : " nfit_mem", (nfit_mem && nfit_mem->dcr) ? "" : " dcr", (nfit_mem && nfit_mem->bdw) ? "" : " bdw"); return -ENXIO; } nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL); if (!nfit_blk) return -ENOMEM; nd_blk_region_set_provider_data(ndbr, nfit_blk); nfit_blk->nd_region = to_nd_region(dev); /* map block aperture memory */ nfit_blk->bdw_offset = nfit_mem->bdw->offset; mmio = &nfit_blk->mmio[BDW]; mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address, nfit_mem->spa_bdw->length, ARCH_MEMREMAP_PMEM); if (!mmio->addr.base) { dev_dbg(dev, "%s: %s failed to map bdw\n", __func__, nvdimm_name(nvdimm)); return -ENOMEM; } mmio->size = nfit_mem->bdw->size; mmio->base_offset = nfit_mem->memdev_bdw->region_offset; mmio->idt = nfit_mem->idt_bdw; mmio->spa = nfit_mem->spa_bdw; rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw, nfit_mem->memdev_bdw->interleave_ways); if (rc) { dev_dbg(dev, "%s: %s failed to init bdw interleave\n", __func__, nvdimm_name(nvdimm)); return rc; } /* map block control memory */ nfit_blk->cmd_offset = nfit_mem->dcr->command_offset; nfit_blk->stat_offset = nfit_mem->dcr->status_offset; mmio = &nfit_blk->mmio[DCR]; mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address, nfit_mem->spa_dcr->length); if (!mmio->addr.base) { dev_dbg(dev, "%s: %s failed to map dcr\n", __func__, nvdimm_name(nvdimm)); return -ENOMEM; } mmio->size = nfit_mem->dcr->window_size; mmio->base_offset = nfit_mem->memdev_dcr->region_offset; mmio->idt = nfit_mem->idt_dcr; mmio->spa = nfit_mem->spa_dcr; rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr, nfit_mem->memdev_dcr->interleave_ways); if (rc) { dev_dbg(dev, "%s: %s failed to init dcr interleave\n", __func__, nvdimm_name(nvdimm)); return rc; } rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk); if (rc < 0) { dev_dbg(dev, "%s: %s failed get DIMM flags\n", __func__, nvdimm_name(nvdimm)); return rc; } if (nvdimm_has_flush(nfit_blk->nd_region) < 0) dev_warn(dev, "unable to guarantee persistence of writes\n"); if (mmio->line_size == 0) return 0; if ((u32) nfit_blk->cmd_offset % mmio->line_size + 8 > mmio->line_size) { dev_dbg(dev, "cmd_offset crosses interleave boundary\n"); return -ENXIO; } else if ((u32) nfit_blk->stat_offset % mmio->line_size + 8 > mmio->line_size) { dev_dbg(dev, "stat_offset crosses interleave boundary\n"); return -ENXIO; } return 0; } static int ars_get_cap(struct acpi_nfit_desc *acpi_desc, struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; struct acpi_nfit_system_address *spa = nfit_spa->spa; int cmd_rc, rc; cmd->address = spa->address; cmd->length = spa->length; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd, sizeof(*cmd), &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static int ars_start(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { int rc; int cmd_rc; struct nd_cmd_ars_start ars_start; struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; memset(&ars_start, 0, sizeof(ars_start)); ars_start.address = spa->address; ars_start.length = spa->length; if (nfit_spa_type(spa) == NFIT_SPA_PM) ars_start.type = ND_ARS_PERSISTENT; else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) ars_start.type = ND_ARS_VOLATILE; else return -ENOTTY; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, sizeof(ars_start), &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static int ars_continue(struct acpi_nfit_desc *acpi_desc) { int rc, cmd_rc; struct nd_cmd_ars_start ars_start; struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; memset(&ars_start, 0, sizeof(ars_start)); ars_start.address = ars_status->restart_address; ars_start.length = ars_status->restart_length; ars_start.type = ars_status->type; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start, sizeof(ars_start), &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static int ars_get_status(struct acpi_nfit_desc *acpi_desc) { struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc; struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status; int rc, cmd_rc; rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status, acpi_desc->ars_status_size, &cmd_rc); if (rc < 0) return rc; return cmd_rc; } static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc, struct nd_cmd_ars_status *ars_status) { struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus; int rc; u32 i; /* * First record starts at 44 byte offset from the start of the * payload. */ if (ars_status->out_length < 44) return 0; for (i = 0; i < ars_status->num_records; i++) { /* only process full records */ if (ars_status->out_length < 44 + sizeof(struct nd_ars_record) * (i + 1)) break; rc = nvdimm_bus_add_poison(nvdimm_bus, ars_status->records[i].err_address, ars_status->records[i].length); if (rc) return rc; } if (i < ars_status->num_records) dev_warn(acpi_desc->dev, "detected truncated ars results\n"); return 0; } static void acpi_nfit_remove_resource(void *data) { struct resource *res = data; remove_resource(res); } static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc, struct nd_region_desc *ndr_desc) { struct resource *res, *nd_res = ndr_desc->res; int is_pmem, ret; /* No operation if the region is already registered as PMEM */ is_pmem = region_intersects(nd_res->start, resource_size(nd_res), IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY); if (is_pmem == REGION_INTERSECTS) return 0; res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL); if (!res) return -ENOMEM; res->name = "Persistent Memory"; res->start = nd_res->start; res->end = nd_res->end; res->flags = IORESOURCE_MEM; res->desc = IORES_DESC_PERSISTENT_MEMORY; ret = insert_resource(&iomem_resource, res); if (ret) return ret; ret = devm_add_action_or_reset(acpi_desc->dev, acpi_nfit_remove_resource, res); if (ret) return ret; return 0; } static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc, struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc, struct acpi_nfit_memory_map *memdev, struct nfit_spa *nfit_spa) { struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, memdev->device_handle); struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nd_blk_region_desc *ndbr_desc; struct nfit_mem *nfit_mem; int blk_valid = 0; if (!nvdimm) { dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n", spa->range_index, memdev->device_handle); return -ENODEV; } mapping->nvdimm = nvdimm; switch (nfit_spa_type(spa)) { case NFIT_SPA_PM: case NFIT_SPA_VOLATILE: mapping->start = memdev->address; mapping->size = memdev->region_size; break; case NFIT_SPA_DCR: nfit_mem = nvdimm_provider_data(nvdimm); if (!nfit_mem || !nfit_mem->bdw) { dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n", spa->range_index, nvdimm_name(nvdimm)); } else { mapping->size = nfit_mem->bdw->capacity; mapping->start = nfit_mem->bdw->start_address; ndr_desc->num_lanes = nfit_mem->bdw->windows; blk_valid = 1; } ndr_desc->mapping = mapping; ndr_desc->num_mappings = blk_valid; ndbr_desc = to_blk_region_desc(ndr_desc); ndbr_desc->enable = acpi_nfit_blk_region_enable; ndbr_desc->do_io = acpi_desc->blk_do_io; nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) return -ENOMEM; break; } return 0; } static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa) { return (nfit_spa_type(spa) == NFIT_SPA_VDISK || nfit_spa_type(spa) == NFIT_SPA_VCD || nfit_spa_type(spa) == NFIT_SPA_PDISK || nfit_spa_type(spa) == NFIT_SPA_PCD); } static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS]; struct acpi_nfit_system_address *spa = nfit_spa->spa; struct nd_blk_region_desc ndbr_desc; struct nd_region_desc *ndr_desc; struct nfit_memdev *nfit_memdev; struct nvdimm_bus *nvdimm_bus; struct resource res; int count = 0, rc; if (nfit_spa->nd_region) return 0; if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) { dev_dbg(acpi_desc->dev, "%s: detected invalid spa index\n", __func__); return 0; } memset(&res, 0, sizeof(res)); memset(&mappings, 0, sizeof(mappings)); memset(&ndbr_desc, 0, sizeof(ndbr_desc)); res.start = spa->address; res.end = res.start + spa->length - 1; ndr_desc = &ndbr_desc.ndr_desc; ndr_desc->res = &res; ndr_desc->provider_data = nfit_spa; ndr_desc->attr_groups = acpi_nfit_region_attribute_groups; if (spa->flags & ACPI_NFIT_PROXIMITY_VALID) ndr_desc->numa_node = acpi_map_pxm_to_online_node( spa->proximity_domain); else ndr_desc->numa_node = NUMA_NO_NODE; list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) { struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev; struct nd_mapping_desc *mapping; if (memdev->range_index != spa->range_index) continue; if (count >= ND_MAX_MAPPINGS) { dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n", spa->range_index, ND_MAX_MAPPINGS); return -ENXIO; } mapping = &mappings[count++]; rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc, memdev, nfit_spa); if (rc) goto out; } ndr_desc->mapping = mappings; ndr_desc->num_mappings = count; rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa); if (rc) goto out; nvdimm_bus = acpi_desc->nvdimm_bus; if (nfit_spa_type(spa) == NFIT_SPA_PM) { rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc); if (rc) { dev_warn(acpi_desc->dev, "failed to insert pmem resource to iomem: %d\n", rc); goto out; } nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) rc = -ENOMEM; } else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE) { nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) rc = -ENOMEM; } else if (nfit_spa_is_virtual(spa)) { nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus, ndr_desc); if (!nfit_spa->nd_region) rc = -ENOMEM; } out: if (rc) dev_err(acpi_desc->dev, "failed to register spa range %d\n", nfit_spa->spa->range_index); return rc; } static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc, u32 max_ars) { struct device *dev = acpi_desc->dev; struct nd_cmd_ars_status *ars_status; if (acpi_desc->ars_status && acpi_desc->ars_status_size >= max_ars) { memset(acpi_desc->ars_status, 0, acpi_desc->ars_status_size); return 0; } if (acpi_desc->ars_status) devm_kfree(dev, acpi_desc->ars_status); acpi_desc->ars_status = NULL; ars_status = devm_kzalloc(dev, max_ars, GFP_KERNEL); if (!ars_status) return -ENOMEM; acpi_desc->ars_status = ars_status; acpi_desc->ars_status_size = max_ars; return 0; } static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { struct acpi_nfit_system_address *spa = nfit_spa->spa; int rc; if (!nfit_spa->max_ars) { struct nd_cmd_ars_cap ars_cap; memset(&ars_cap, 0, sizeof(ars_cap)); rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa); if (rc < 0) return rc; nfit_spa->max_ars = ars_cap.max_ars_out; nfit_spa->clear_err_unit = ars_cap.clear_err_unit; /* check that the supported scrub types match the spa type */ if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16) & ND_ARS_VOLATILE) == 0) return -ENOTTY; else if (nfit_spa_type(spa) == NFIT_SPA_PM && ((ars_cap.status >> 16) & ND_ARS_PERSISTENT) == 0) return -ENOTTY; } if (ars_status_alloc(acpi_desc, nfit_spa->max_ars)) return -ENOMEM; rc = ars_get_status(acpi_desc); if (rc < 0 && rc != -ENOSPC) return rc; if (ars_status_process_records(acpi_desc, acpi_desc->ars_status)) return -ENOMEM; return 0; } static void acpi_nfit_async_scrub(struct acpi_nfit_desc *acpi_desc, struct nfit_spa *nfit_spa) { struct acpi_nfit_system_address *spa = nfit_spa->spa; unsigned int overflow_retry = scrub_overflow_abort; u64 init_ars_start = 0, init_ars_len = 0; struct device *dev = acpi_desc->dev; unsigned int tmo = scrub_timeout; int rc; if (!nfit_spa->ars_required || !nfit_spa->nd_region) return; rc = ars_start(acpi_desc, nfit_spa); /* * If we timed out the initial scan we'll still be busy here, * and will wait another timeout before giving up permanently. */ if (rc < 0 && rc != -EBUSY) return; do { u64 ars_start, ars_len; if (acpi_desc->cancel) break; rc = acpi_nfit_query_poison(acpi_desc, nfit_spa); if (rc == -ENOTTY) break; if (rc == -EBUSY && !tmo) { dev_warn(dev, "range %d ars timeout, aborting\n", spa->range_index); break; } if (rc == -EBUSY) { /* * Note, entries may be appended to the list * while the lock is dropped, but the workqueue * being active prevents entries being deleted / * freed. */ mutex_unlock(&acpi_desc->init_mutex); ssleep(1); tmo--; mutex_lock(&acpi_desc->init_mutex); continue; } /* we got some results, but there are more pending... */ if (rc == -ENOSPC && overflow_retry--) { if (!init_ars_len) { init_ars_len = acpi_desc->ars_status->length; init_ars_start = acpi_desc->ars_status->address; } rc = ars_continue(acpi_desc); } if (rc < 0) { dev_warn(dev, "range %d ars continuation failed\n", spa->range_index); break; } if (init_ars_len) { ars_start = init_ars_start; ars_len = init_ars_len; } else { ars_start = acpi_desc->ars_status->address; ars_len = acpi_desc->ars_status->length; } dev_dbg(dev, "spa range: %d ars from %#llx + %#llx complete\n", spa->range_index, ars_start, ars_len); /* notify the region about new poison entries */ nvdimm_region_notify(nfit_spa->nd_region, NVDIMM_REVALIDATE_POISON); break; } while (1); } static void acpi_nfit_scrub(struct work_struct *work) { struct device *dev; u64 init_scrub_length = 0; struct nfit_spa *nfit_spa; u64 init_scrub_address = 0; bool init_ars_done = false; struct acpi_nfit_desc *acpi_desc; unsigned int tmo = scrub_timeout; unsigned int overflow_retry = scrub_overflow_abort; acpi_desc = container_of(work, typeof(*acpi_desc), work); dev = acpi_desc->dev; /* * We scrub in 2 phases. The first phase waits for any platform * firmware initiated scrubs to complete and then we go search for the * affected spa regions to mark them scanned. In the second phase we * initiate a directed scrub for every range that was not scrubbed in * phase 1. If we're called for a 'rescan', we harmlessly pass through * the first phase, but really only care about running phase 2, where * regions can be notified of new poison. */ /* process platform firmware initiated scrubs */ retry: mutex_lock(&acpi_desc->init_mutex); list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { struct nd_cmd_ars_status *ars_status; struct acpi_nfit_system_address *spa; u64 ars_start, ars_len; int rc; if (acpi_desc->cancel) break; if (nfit_spa->nd_region) continue; if (init_ars_done) { /* * No need to re-query, we're now just * reconciling all the ranges covered by the * initial scrub */ rc = 0; } else rc = acpi_nfit_query_poison(acpi_desc, nfit_spa); if (rc == -ENOTTY) { /* no ars capability, just register spa and move on */ acpi_nfit_register_region(acpi_desc, nfit_spa); continue; } if (rc == -EBUSY && !tmo) { /* fallthrough to directed scrub in phase 2 */ dev_warn(dev, "timeout awaiting ars results, continuing...\n"); break; } else if (rc == -EBUSY) { mutex_unlock(&acpi_desc->init_mutex); ssleep(1); tmo--; goto retry; } /* we got some results, but there are more pending... */ if (rc == -ENOSPC && overflow_retry--) { ars_status = acpi_desc->ars_status; /* * Record the original scrub range, so that we * can recall all the ranges impacted by the * initial scrub. */ if (!init_scrub_length) { init_scrub_length = ars_status->length; init_scrub_address = ars_status->address; } rc = ars_continue(acpi_desc); if (rc == 0) { mutex_unlock(&acpi_desc->init_mutex); goto retry; } } if (rc < 0) { /* * Initial scrub failed, we'll give it one more * try below... */ break; } /* We got some final results, record completed ranges */ ars_status = acpi_desc->ars_status; if (init_scrub_length) { ars_start = init_scrub_address; ars_len = ars_start + init_scrub_length; } else { ars_start = ars_status->address; ars_len = ars_status->length; } spa = nfit_spa->spa; if (!init_ars_done) { init_ars_done = true; dev_dbg(dev, "init scrub %#llx + %#llx complete\n", ars_start, ars_len); } if (ars_start <= spa->address && ars_start + ars_len >= spa->address + spa->length) acpi_nfit_register_region(acpi_desc, nfit_spa); } /* * For all the ranges not covered by an initial scrub we still * want to see if there are errors, but it's ok to discover them * asynchronously. */ list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { /* * Flag all the ranges that still need scrubbing, but * register them now to make data available. */ if (!nfit_spa->nd_region) { nfit_spa->ars_required = 1; acpi_nfit_register_region(acpi_desc, nfit_spa); } } list_for_each_entry(nfit_spa, &acpi_desc->spas, list) acpi_nfit_async_scrub(acpi_desc, nfit_spa); acpi_desc->scrub_count++; if (acpi_desc->scrub_count_state) sysfs_notify_dirent(acpi_desc->scrub_count_state); mutex_unlock(&acpi_desc->init_mutex); } static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc) { struct nfit_spa *nfit_spa; int rc; list_for_each_entry(nfit_spa, &acpi_desc->spas, list) if (nfit_spa_type(nfit_spa->spa) == NFIT_SPA_DCR) { /* BLK regions don't need to wait for ars results */ rc = acpi_nfit_register_region(acpi_desc, nfit_spa); if (rc) return rc; } queue_work(nfit_wq, &acpi_desc->work); return 0; } static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc, struct nfit_table_prev *prev) { struct device *dev = acpi_desc->dev; if (!list_empty(&prev->spas) || !list_empty(&prev->memdevs) || !list_empty(&prev->dcrs) || !list_empty(&prev->bdws) || !list_empty(&prev->idts) || !list_empty(&prev->flushes)) { dev_err(dev, "new nfit deletes entries (unsupported)\n"); return -ENXIO; } return 0; } static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc) { struct device *dev = acpi_desc->dev; struct kernfs_node *nfit; struct device *bus_dev; if (!ars_supported(acpi_desc->nvdimm_bus)) return 0; bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit"); if (!nfit) { dev_err(dev, "sysfs_get_dirent 'nfit' failed\n"); return -ENODEV; } acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub"); sysfs_put(nfit); if (!acpi_desc->scrub_count_state) { dev_err(dev, "sysfs_get_dirent 'scrub' failed\n"); return -ENODEV; } return 0; } static void acpi_nfit_destruct(void *data) { struct acpi_nfit_desc *acpi_desc = data; struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus); /* * Destruct under acpi_desc_lock so that nfit_handle_mce does not * race teardown */ mutex_lock(&acpi_desc_lock); acpi_desc->cancel = 1; /* * Bounce the nvdimm bus lock to make sure any in-flight * acpi_nfit_ars_rescan() submissions have had a chance to * either submit or see ->cancel set. */ device_lock(bus_dev); device_unlock(bus_dev); flush_workqueue(nfit_wq); if (acpi_desc->scrub_count_state) sysfs_put(acpi_desc->scrub_count_state); nvdimm_bus_unregister(acpi_desc->nvdimm_bus); acpi_desc->nvdimm_bus = NULL; list_del(&acpi_desc->list); mutex_unlock(&acpi_desc_lock); } int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz) { struct device *dev = acpi_desc->dev; struct nfit_table_prev prev; const void *end; int rc; if (!acpi_desc->nvdimm_bus) { acpi_nfit_init_dsms(acpi_desc); acpi_desc->nvdimm_bus = nvdimm_bus_register(dev, &acpi_desc->nd_desc); if (!acpi_desc->nvdimm_bus) return -ENOMEM; rc = devm_add_action_or_reset(dev, acpi_nfit_destruct, acpi_desc); if (rc) return rc; rc = acpi_nfit_desc_init_scrub_attr(acpi_desc); if (rc) return rc; /* register this acpi_desc for mce notifications */ mutex_lock(&acpi_desc_lock); list_add_tail(&acpi_desc->list, &acpi_descs); mutex_unlock(&acpi_desc_lock); } mutex_lock(&acpi_desc->init_mutex); INIT_LIST_HEAD(&prev.spas); INIT_LIST_HEAD(&prev.memdevs); INIT_LIST_HEAD(&prev.dcrs); INIT_LIST_HEAD(&prev.bdws); INIT_LIST_HEAD(&prev.idts); INIT_LIST_HEAD(&prev.flushes); list_cut_position(&prev.spas, &acpi_desc->spas, acpi_desc->spas.prev); list_cut_position(&prev.memdevs, &acpi_desc->memdevs, acpi_desc->memdevs.prev); list_cut_position(&prev.dcrs, &acpi_desc->dcrs, acpi_desc->dcrs.prev); list_cut_position(&prev.bdws, &acpi_desc->bdws, acpi_desc->bdws.prev); list_cut_position(&prev.idts, &acpi_desc->idts, acpi_desc->idts.prev); list_cut_position(&prev.flushes, &acpi_desc->flushes, acpi_desc->flushes.prev); end = data + sz; while (!IS_ERR_OR_NULL(data)) data = add_table(acpi_desc, &prev, data, end); if (IS_ERR(data)) { dev_dbg(dev, "%s: nfit table parsing error: %ld\n", __func__, PTR_ERR(data)); rc = PTR_ERR(data); goto out_unlock; } rc = acpi_nfit_check_deletions(acpi_desc, &prev); if (rc) goto out_unlock; rc = nfit_mem_init(acpi_desc); if (rc) goto out_unlock; rc = acpi_nfit_register_dimms(acpi_desc); if (rc) goto out_unlock; rc = acpi_nfit_register_regions(acpi_desc); out_unlock: mutex_unlock(&acpi_desc->init_mutex); return rc; } EXPORT_SYMBOL_GPL(acpi_nfit_init); struct acpi_nfit_flush_work { struct work_struct work; struct completion cmp; }; static void flush_probe(struct work_struct *work) { struct acpi_nfit_flush_work *flush; flush = container_of(work, typeof(*flush), work); complete(&flush->cmp); } static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc) { struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); struct device *dev = acpi_desc->dev; struct acpi_nfit_flush_work flush; int rc; /* bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */ device_lock(dev); device_unlock(dev); /* * Scrub work could take 10s of seconds, userspace may give up so we * need to be interruptible while waiting. */ INIT_WORK_ONSTACK(&flush.work, flush_probe); COMPLETION_INITIALIZER_ONSTACK(flush.cmp); queue_work(nfit_wq, &flush.work); rc = wait_for_completion_interruptible(&flush.cmp); cancel_work_sync(&flush.work); return rc; } static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm, unsigned int cmd) { struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc); if (nvdimm) return 0; if (cmd != ND_CMD_ARS_START) return 0; /* * The kernel and userspace may race to initiate a scrub, but * the scrub thread is prepared to lose that initial race. It * just needs guarantees that any ars it initiates are not * interrupted by any intervening start reqeusts from userspace. */ if (work_busy(&acpi_desc->work)) return -EBUSY; return 0; } int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc) { struct device *dev = acpi_desc->dev; struct nfit_spa *nfit_spa; if (work_busy(&acpi_desc->work)) return -EBUSY; if (acpi_desc->cancel) return 0; mutex_lock(&acpi_desc->init_mutex); list_for_each_entry(nfit_spa, &acpi_desc->spas, list) { struct acpi_nfit_system_address *spa = nfit_spa->spa; if (nfit_spa_type(spa) != NFIT_SPA_PM) continue; nfit_spa->ars_required = 1; } queue_work(nfit_wq, &acpi_desc->work); dev_dbg(dev, "%s: ars_scan triggered\n", __func__); mutex_unlock(&acpi_desc->init_mutex); return 0; } void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev) { struct nvdimm_bus_descriptor *nd_desc; dev_set_drvdata(dev, acpi_desc); acpi_desc->dev = dev; acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io; nd_desc = &acpi_desc->nd_desc; nd_desc->provider_name = "ACPI.NFIT"; nd_desc->module = THIS_MODULE; nd_desc->ndctl = acpi_nfit_ctl; nd_desc->flush_probe = acpi_nfit_flush_probe; nd_desc->clear_to_send = acpi_nfit_clear_to_send; nd_desc->attr_groups = acpi_nfit_attribute_groups; INIT_LIST_HEAD(&acpi_desc->spas); INIT_LIST_HEAD(&acpi_desc->dcrs); INIT_LIST_HEAD(&acpi_desc->bdws); INIT_LIST_HEAD(&acpi_desc->idts); INIT_LIST_HEAD(&acpi_desc->flushes); INIT_LIST_HEAD(&acpi_desc->memdevs); INIT_LIST_HEAD(&acpi_desc->dimms); INIT_LIST_HEAD(&acpi_desc->list); mutex_init(&acpi_desc->init_mutex); INIT_WORK(&acpi_desc->work, acpi_nfit_scrub); } EXPORT_SYMBOL_GPL(acpi_nfit_desc_init); static void acpi_nfit_put_table(void *table) { acpi_put_table(table); } static int acpi_nfit_add(struct acpi_device *adev) { struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_nfit_desc *acpi_desc; struct device *dev = &adev->dev; struct acpi_table_header *tbl; acpi_status status = AE_OK; acpi_size sz; int rc = 0; status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl); if (ACPI_FAILURE(status)) { /* This is ok, we could have an nvdimm hotplugged later */ dev_dbg(dev, "failed to find NFIT at startup\n"); return 0; } rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl); if (rc) return rc; sz = tbl->length; acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); if (!acpi_desc) return -ENOMEM; acpi_nfit_desc_init(acpi_desc, &adev->dev); /* Save the acpi header for exporting the revision via sysfs */ acpi_desc->acpi_header = *tbl; /* Evaluate _FIT and override with that if present */ status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf); if (ACPI_SUCCESS(status) && buf.length > 0) { union acpi_object *obj = buf.pointer; if (obj->type == ACPI_TYPE_BUFFER) rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer, obj->buffer.length); else dev_dbg(dev, "%s invalid type %d, ignoring _FIT\n", __func__, (int) obj->type); kfree(buf.pointer); } else /* skip over the lead-in header table */ rc = acpi_nfit_init(acpi_desc, (void *) tbl + sizeof(struct acpi_table_nfit), sz - sizeof(struct acpi_table_nfit)); return rc; } static int acpi_nfit_remove(struct acpi_device *adev) { /* see acpi_nfit_destruct */ return 0; } void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event) { struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev); struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *obj; acpi_status status; int ret; dev_dbg(dev, "%s: event: %d\n", __func__, event); if (event != NFIT_NOTIFY_UPDATE) return; if (!dev->driver) { /* dev->driver may be null if we're being removed */ dev_dbg(dev, "%s: no driver found for dev\n", __func__); return; } if (!acpi_desc) { acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL); if (!acpi_desc) return; acpi_nfit_desc_init(acpi_desc, dev); } else { /* * Finish previous registration before considering new * regions. */ flush_workqueue(nfit_wq); } /* Evaluate _FIT */ status = acpi_evaluate_object(handle, "_FIT", NULL, &buf); if (ACPI_FAILURE(status)) { dev_err(dev, "failed to evaluate _FIT\n"); return; } obj = buf.pointer; if (obj->type == ACPI_TYPE_BUFFER) { ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer, obj->buffer.length); if (ret) dev_err(dev, "failed to merge updated NFIT\n"); } else dev_err(dev, "Invalid _FIT\n"); kfree(buf.pointer); } EXPORT_SYMBOL_GPL(__acpi_nfit_notify); static void acpi_nfit_notify(struct acpi_device *adev, u32 event) { device_lock(&adev->dev); __acpi_nfit_notify(&adev->dev, adev->handle, event); device_unlock(&adev->dev); } static const struct acpi_device_id acpi_nfit_ids[] = { { "ACPI0012", 0 }, { "", 0 }, }; MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids); static struct acpi_driver acpi_nfit_driver = { .name = KBUILD_MODNAME, .ids = acpi_nfit_ids, .ops = { .add = acpi_nfit_add, .remove = acpi_nfit_remove, .notify = acpi_nfit_notify, }, }; static __init int nfit_init(void) { BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40); BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56); BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48); BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20); BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9); BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80); BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40); acpi_str_to_uuid(UUID_VOLATILE_MEMORY, nfit_uuid[NFIT_SPA_VOLATILE]); acpi_str_to_uuid(UUID_PERSISTENT_MEMORY, nfit_uuid[NFIT_SPA_PM]); acpi_str_to_uuid(UUID_CONTROL_REGION, nfit_uuid[NFIT_SPA_DCR]); acpi_str_to_uuid(UUID_DATA_REGION, nfit_uuid[NFIT_SPA_BDW]); acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_VDISK]); acpi_str_to_uuid(UUID_VOLATILE_VIRTUAL_CD, nfit_uuid[NFIT_SPA_VCD]); acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_DISK, nfit_uuid[NFIT_SPA_PDISK]); acpi_str_to_uuid(UUID_PERSISTENT_VIRTUAL_CD, nfit_uuid[NFIT_SPA_PCD]); acpi_str_to_uuid(UUID_NFIT_BUS, nfit_uuid[NFIT_DEV_BUS]); acpi_str_to_uuid(UUID_NFIT_DIMM, nfit_uuid[NFIT_DEV_DIMM]); acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE1, nfit_uuid[NFIT_DEV_DIMM_N_HPE1]); acpi_str_to_uuid(UUID_NFIT_DIMM_N_HPE2, nfit_uuid[NFIT_DEV_DIMM_N_HPE2]); acpi_str_to_uuid(UUID_NFIT_DIMM_N_MSFT, nfit_uuid[NFIT_DEV_DIMM_N_MSFT]); nfit_wq = create_singlethread_workqueue("nfit"); if (!nfit_wq) return -ENOMEM; nfit_mce_register(); return acpi_bus_register_driver(&acpi_nfit_driver); } static __exit void nfit_exit(void) { nfit_mce_unregister(); acpi_bus_unregister_driver(&acpi_nfit_driver); destroy_workqueue(nfit_wq); WARN_ON(!list_empty(&acpi_descs)); } module_init(nfit_init); module_exit(nfit_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Intel Corporation");