/* * Performance counter core code * * Copyright(C) 2008 Thomas Gleixner * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar * * For licencing details see kernel-base/COPYING */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Each CPU has a list of per CPU counters: */ DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context); int perf_max_counters __read_mostly = 1; static int perf_reserved_percpu __read_mostly; static int perf_overcommit __read_mostly = 1; /* * Mutex for (sysadmin-configurable) counter reservations: */ static DEFINE_MUTEX(perf_resource_mutex); /* * Architecture provided APIs - weak aliases: */ extern __weak const struct hw_perf_counter_ops * hw_perf_counter_init(struct perf_counter *counter) { return ERR_PTR(-EINVAL); } u64 __weak hw_perf_save_disable(void) { return 0; } void __weak hw_perf_restore(u64 ctrl) { } void __weak hw_perf_counter_setup(void) { } static void list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx) { struct perf_counter *group_leader = counter->group_leader; /* * Depending on whether it is a standalone or sibling counter, * add it straight to the context's counter list, or to the group * leader's sibling list: */ if (counter->group_leader == counter) list_add_tail(&counter->list_entry, &ctx->counter_list); else list_add_tail(&counter->list_entry, &group_leader->sibling_list); } static void list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx) { struct perf_counter *sibling, *tmp; list_del_init(&counter->list_entry); /* * If this was a group counter with sibling counters then * upgrade the siblings to singleton counters by adding them * to the context list directly: */ list_for_each_entry_safe(sibling, tmp, &counter->sibling_list, list_entry) { list_del_init(&sibling->list_entry); list_add_tail(&sibling->list_entry, &ctx->counter_list); sibling->group_leader = sibling; } } /* * Cross CPU call to remove a performance counter * * We disable the counter on the hardware level first. After that we * remove it from the context list. */ static void __perf_counter_remove_from_context(void *info) { struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); struct perf_counter *counter = info; struct perf_counter_context *ctx = counter->ctx; unsigned long flags; u64 perf_flags; /* * If this is a task context, we need to check whether it is * the current task context of this cpu. If not it has been * scheduled out before the smp call arrived. */ if (ctx->task && cpuctx->task_ctx != ctx) return; curr_rq_lock_irq_save(&flags); spin_lock(&ctx->lock); if (counter->state == PERF_COUNTER_STATE_ACTIVE) { counter->hw_ops->disable(counter); counter->state = PERF_COUNTER_STATE_INACTIVE; ctx->nr_active--; cpuctx->active_oncpu--; counter->task = NULL; } ctx->nr_counters--; /* * Protect the list operation against NMI by disabling the * counters on a global level. NOP for non NMI based counters. */ perf_flags = hw_perf_save_disable(); list_del_counter(counter, ctx); hw_perf_restore(perf_flags); if (!ctx->task) { /* * Allow more per task counters with respect to the * reservation: */ cpuctx->max_pertask = min(perf_max_counters - ctx->nr_counters, perf_max_counters - perf_reserved_percpu); } spin_unlock(&ctx->lock); curr_rq_unlock_irq_restore(&flags); } /* * Remove the counter from a task's (or a CPU's) list of counters. * * Must be called with counter->mutex held. * * CPU counters are removed with a smp call. For task counters we only * call when the task is on a CPU. */ static void perf_counter_remove_from_context(struct perf_counter *counter) { struct perf_counter_context *ctx = counter->ctx; struct task_struct *task = ctx->task; if (!task) { /* * Per cpu counters are removed via an smp call and * the removal is always sucessful. */ smp_call_function_single(counter->cpu, __perf_counter_remove_from_context, counter, 1); return; } retry: task_oncpu_function_call(task, __perf_counter_remove_from_context, counter); spin_lock_irq(&ctx->lock); /* * If the context is active we need to retry the smp call. */ if (ctx->nr_active && !list_empty(&counter->list_entry)) { spin_unlock_irq(&ctx->lock); goto retry; } /* * The lock prevents that this context is scheduled in so we * can remove the counter safely, if the call above did not * succeed. */ if (!list_empty(&counter->list_entry)) { ctx->nr_counters--; list_del_counter(counter, ctx); counter->task = NULL; } spin_unlock_irq(&ctx->lock); } /* * Cross CPU call to install and enable a preformance counter */ static void __perf_install_in_context(void *info) { struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); struct perf_counter *counter = info; struct perf_counter_context *ctx = counter->ctx; int cpu = smp_processor_id(); unsigned long flags; u64 perf_flags; /* * If this is a task context, we need to check whether it is * the current task context of this cpu. If not it has been * scheduled out before the smp call arrived. */ if (ctx->task && cpuctx->task_ctx != ctx) return; curr_rq_lock_irq_save(&flags); spin_lock(&ctx->lock); /* * Protect the list operation against NMI by disabling the * counters on a global level. NOP for non NMI based counters. */ perf_flags = hw_perf_save_disable(); list_add_counter(counter, ctx); hw_perf_restore(perf_flags); ctx->nr_counters++; if (cpuctx->active_oncpu < perf_max_counters) { counter->state = PERF_COUNTER_STATE_ACTIVE; counter->oncpu = cpu; ctx->nr_active++; cpuctx->active_oncpu++; counter->hw_ops->enable(counter); } if (!ctx->task && cpuctx->max_pertask) cpuctx->max_pertask--; spin_unlock(&ctx->lock); curr_rq_unlock_irq_restore(&flags); } /* * Attach a performance counter to a context * * First we add the counter to the list with the hardware enable bit * in counter->hw_config cleared. * * If the counter is attached to a task which is on a CPU we use a smp * call to enable it in the task context. The task might have been * scheduled away, but we check this in the smp call again. */ static void perf_install_in_context(struct perf_counter_context *ctx, struct perf_counter *counter, int cpu) { struct task_struct *task = ctx->task; counter->ctx = ctx; if (!task) { /* * Per cpu counters are installed via an smp call and * the install is always sucessful. */ smp_call_function_single(cpu, __perf_install_in_context, counter, 1); return; } counter->task = task; retry: task_oncpu_function_call(task, __perf_install_in_context, counter); spin_lock_irq(&ctx->lock); /* * we need to retry the smp call. */ if (ctx->nr_active && list_empty(&counter->list_entry)) { spin_unlock_irq(&ctx->lock); goto retry; } /* * The lock prevents that this context is scheduled in so we * can add the counter safely, if it the call above did not * succeed. */ if (list_empty(&counter->list_entry)) { list_add_counter(counter, ctx); ctx->nr_counters++; } spin_unlock_irq(&ctx->lock); } static void counter_sched_out(struct perf_counter *counter, struct perf_cpu_context *cpuctx, struct perf_counter_context *ctx) { if (counter->state != PERF_COUNTER_STATE_ACTIVE) return; counter->hw_ops->disable(counter); counter->state = PERF_COUNTER_STATE_INACTIVE; counter->oncpu = -1; cpuctx->active_oncpu--; ctx->nr_active--; } static void group_sched_out(struct perf_counter *group_counter, struct perf_cpu_context *cpuctx, struct perf_counter_context *ctx) { struct perf_counter *counter; counter_sched_out(group_counter, cpuctx, ctx); /* * Schedule out siblings (if any): */ list_for_each_entry(counter, &group_counter->sibling_list, list_entry) counter_sched_out(counter, cpuctx, ctx); } /* * Called from scheduler to remove the counters of the current task, * with interrupts disabled. * * We stop each counter and update the counter value in counter->count. * * This does not protect us against NMI, but disable() * sets the disabled bit in the control field of counter _before_ * accessing the counter control register. If a NMI hits, then it will * not restart the counter. */ void perf_counter_task_sched_out(struct task_struct *task, int cpu) { struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); struct perf_counter_context *ctx = &task->perf_counter_ctx; struct perf_counter *counter; if (likely(!cpuctx->task_ctx)) return; spin_lock(&ctx->lock); if (ctx->nr_active) { list_for_each_entry(counter, &ctx->counter_list, list_entry) group_sched_out(counter, cpuctx, ctx); } spin_unlock(&ctx->lock); cpuctx->task_ctx = NULL; } static void counter_sched_in(struct perf_counter *counter, struct perf_cpu_context *cpuctx, struct perf_counter_context *ctx, int cpu) { if (counter->state == PERF_COUNTER_STATE_OFF) return; counter->hw_ops->enable(counter); counter->state = PERF_COUNTER_STATE_ACTIVE; counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */ cpuctx->active_oncpu++; ctx->nr_active++; } static int group_sched_in(struct perf_counter *group_counter, struct perf_cpu_context *cpuctx, struct perf_counter_context *ctx, int cpu) { struct perf_counter *counter; int was_group = 0; counter_sched_in(group_counter, cpuctx, ctx, cpu); /* * Schedule in siblings as one group (if any): */ list_for_each_entry(counter, &group_counter->sibling_list, list_entry) { counter_sched_in(counter, cpuctx, ctx, cpu); was_group = 1; } return was_group; } /* * Called from scheduler to add the counters of the current task * with interrupts disabled. * * We restore the counter value and then enable it. * * This does not protect us against NMI, but enable() * sets the enabled bit in the control field of counter _before_ * accessing the counter control register. If a NMI hits, then it will * keep the counter running. */ void perf_counter_task_sched_in(struct task_struct *task, int cpu) { struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu); struct perf_counter_context *ctx = &task->perf_counter_ctx; struct perf_counter *counter; if (likely(!ctx->nr_counters)) return; spin_lock(&ctx->lock); list_for_each_entry(counter, &ctx->counter_list, list_entry) { if (ctx->nr_active == cpuctx->max_pertask) break; /* * Listen to the 'cpu' scheduling filter constraint * of counters: */ if (counter->cpu != -1 && counter->cpu != cpu) continue; /* * If we scheduled in a group atomically and * exclusively, break out: */ if (group_sched_in(counter, cpuctx, ctx, cpu)) break; } spin_unlock(&ctx->lock); cpuctx->task_ctx = ctx; } int perf_counter_task_disable(void) { struct task_struct *curr = current; struct perf_counter_context *ctx = &curr->perf_counter_ctx; struct perf_counter *counter; unsigned long flags; u64 perf_flags; int cpu; if (likely(!ctx->nr_counters)) return 0; curr_rq_lock_irq_save(&flags); cpu = smp_processor_id(); /* force the update of the task clock: */ __task_delta_exec(curr, 1); perf_counter_task_sched_out(curr, cpu); spin_lock(&ctx->lock); /* * Disable all the counters: */ perf_flags = hw_perf_save_disable(); list_for_each_entry(counter, &ctx->counter_list, list_entry) counter->state = PERF_COUNTER_STATE_OFF; hw_perf_restore(perf_flags); spin_unlock(&ctx->lock); curr_rq_unlock_irq_restore(&flags); return 0; } int perf_counter_task_enable(void) { struct task_struct *curr = current; struct perf_counter_context *ctx = &curr->perf_counter_ctx; struct perf_counter *counter; unsigned long flags; u64 perf_flags; int cpu; if (likely(!ctx->nr_counters)) return 0; curr_rq_lock_irq_save(&flags); cpu = smp_processor_id(); /* force the update of the task clock: */ __task_delta_exec(curr, 1); spin_lock(&ctx->lock); /* * Disable all the counters: */ perf_flags = hw_perf_save_disable(); list_for_each_entry(counter, &ctx->counter_list, list_entry) { if (counter->state != PERF_COUNTER_STATE_OFF) continue; counter->state = PERF_COUNTER_STATE_INACTIVE; counter->hw_event.disabled = 0; } hw_perf_restore(perf_flags); spin_unlock(&ctx->lock); perf_counter_task_sched_in(curr, cpu); curr_rq_unlock_irq_restore(&flags); return 0; } void perf_counter_task_tick(struct task_struct *curr, int cpu) { struct perf_counter_context *ctx = &curr->perf_counter_ctx; struct perf_counter *counter; u64 perf_flags; if (likely(!ctx->nr_counters)) return; perf_counter_task_sched_out(curr, cpu); spin_lock(&ctx->lock); /* * Rotate the first entry last (works just fine for group counters too): */ perf_flags = hw_perf_save_disable(); list_for_each_entry(counter, &ctx->counter_list, list_entry) { list_del(&counter->list_entry); list_add_tail(&counter->list_entry, &ctx->counter_list); break; } hw_perf_restore(perf_flags); spin_unlock(&ctx->lock); perf_counter_task_sched_in(curr, cpu); } /* * Cross CPU call to read the hardware counter */ static void __read(void *info) { struct perf_counter *counter = info; unsigned long flags; curr_rq_lock_irq_save(&flags); counter->hw_ops->read(counter); curr_rq_unlock_irq_restore(&flags); } static u64 perf_counter_read(struct perf_counter *counter) { /* * If counter is enabled and currently active on a CPU, update the * value in the counter structure: */ if (counter->state == PERF_COUNTER_STATE_ACTIVE) { smp_call_function_single(counter->oncpu, __read, counter, 1); } return atomic64_read(&counter->count); } /* * Cross CPU call to switch performance data pointers */ static void __perf_switch_irq_data(void *info) { struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); struct perf_counter *counter = info; struct perf_counter_context *ctx = counter->ctx; struct perf_data *oldirqdata = counter->irqdata; /* * If this is a task context, we need to check whether it is * the current task context of this cpu. If not it has been * scheduled out before the smp call arrived. */ if (ctx->task) { if (cpuctx->task_ctx != ctx) return; spin_lock(&ctx->lock); } /* Change the pointer NMI safe */ atomic_long_set((atomic_long_t *)&counter->irqdata, (unsigned long) counter->usrdata); counter->usrdata = oldirqdata; if (ctx->task) spin_unlock(&ctx->lock); } static struct perf_data *perf_switch_irq_data(struct perf_counter *counter) { struct perf_counter_context *ctx = counter->ctx; struct perf_data *oldirqdata = counter->irqdata; struct task_struct *task = ctx->task; if (!task) { smp_call_function_single(counter->cpu, __perf_switch_irq_data, counter, 1); return counter->usrdata; } retry: spin_lock_irq(&ctx->lock); if (counter->state != PERF_COUNTER_STATE_ACTIVE) { counter->irqdata = counter->usrdata; counter->usrdata = oldirqdata; spin_unlock_irq(&ctx->lock); return oldirqdata; } spin_unlock_irq(&ctx->lock); task_oncpu_function_call(task, __perf_switch_irq_data, counter); /* Might have failed, because task was scheduled out */ if (counter->irqdata == oldirqdata) goto retry; return counter->usrdata; } static void put_context(struct perf_counter_context *ctx) { if (ctx->task) put_task_struct(ctx->task); } static struct perf_counter_context *find_get_context(pid_t pid, int cpu) { struct perf_cpu_context *cpuctx; struct perf_counter_context *ctx; struct task_struct *task; /* * If cpu is not a wildcard then this is a percpu counter: */ if (cpu != -1) { /* Must be root to operate on a CPU counter: */ if (!capable(CAP_SYS_ADMIN)) return ERR_PTR(-EACCES); if (cpu < 0 || cpu > num_possible_cpus()) return ERR_PTR(-EINVAL); /* * We could be clever and allow to attach a counter to an * offline CPU and activate it when the CPU comes up, but * that's for later. */ if (!cpu_isset(cpu, cpu_online_map)) return ERR_PTR(-ENODEV); cpuctx = &per_cpu(perf_cpu_context, cpu); ctx = &cpuctx->ctx; return ctx; } rcu_read_lock(); if (!pid) task = current; else task = find_task_by_vpid(pid); if (task) get_task_struct(task); rcu_read_unlock(); if (!task) return ERR_PTR(-ESRCH); ctx = &task->perf_counter_ctx; ctx->task = task; /* Reuse ptrace permission checks for now. */ if (!ptrace_may_access(task, PTRACE_MODE_READ)) { put_context(ctx); return ERR_PTR(-EACCES); } return ctx; } /* * Called when the last reference to the file is gone. */ static int perf_release(struct inode *inode, struct file *file) { struct perf_counter *counter = file->private_data; struct perf_counter_context *ctx = counter->ctx; file->private_data = NULL; mutex_lock(&counter->mutex); perf_counter_remove_from_context(counter); put_context(ctx); mutex_unlock(&counter->mutex); kfree(counter); return 0; } /* * Read the performance counter - simple non blocking version for now */ static ssize_t perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count) { u64 cntval; if (count != sizeof(cntval)) return -EINVAL; mutex_lock(&counter->mutex); cntval = perf_counter_read(counter); mutex_unlock(&counter->mutex); return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval); } static ssize_t perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count) { if (!usrdata->len) return 0; count = min(count, (size_t)usrdata->len); if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count)) return -EFAULT; /* Adjust the counters */ usrdata->len -= count; if (!usrdata->len) usrdata->rd_idx = 0; else usrdata->rd_idx += count; return count; } static ssize_t perf_read_irq_data(struct perf_counter *counter, char __user *buf, size_t count, int nonblocking) { struct perf_data *irqdata, *usrdata; DECLARE_WAITQUEUE(wait, current); ssize_t res; irqdata = counter->irqdata; usrdata = counter->usrdata; if (usrdata->len + irqdata->len >= count) goto read_pending; if (nonblocking) return -EAGAIN; spin_lock_irq(&counter->waitq.lock); __add_wait_queue(&counter->waitq, &wait); for (;;) { set_current_state(TASK_INTERRUPTIBLE); if (usrdata->len + irqdata->len >= count) break; if (signal_pending(current)) break; spin_unlock_irq(&counter->waitq.lock); schedule(); spin_lock_irq(&counter->waitq.lock); } __remove_wait_queue(&counter->waitq, &wait); __set_current_state(TASK_RUNNING); spin_unlock_irq(&counter->waitq.lock); if (usrdata->len + irqdata->len < count) return -ERESTARTSYS; read_pending: mutex_lock(&counter->mutex); /* Drain pending data first: */ res = perf_copy_usrdata(usrdata, buf, count); if (res < 0 || res == count) goto out; /* Switch irq buffer: */ usrdata = perf_switch_irq_data(counter); if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) { if (!res) res = -EFAULT; } else { res = count; } out: mutex_unlock(&counter->mutex); return res; } static ssize_t perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos) { struct perf_counter *counter = file->private_data; switch (counter->hw_event.record_type) { case PERF_RECORD_SIMPLE: return perf_read_hw(counter, buf, count); case PERF_RECORD_IRQ: case PERF_RECORD_GROUP: return perf_read_irq_data(counter, buf, count, file->f_flags & O_NONBLOCK); } return -EINVAL; } static unsigned int perf_poll(struct file *file, poll_table *wait) { struct perf_counter *counter = file->private_data; unsigned int events = 0; unsigned long flags; poll_wait(file, &counter->waitq, wait); spin_lock_irqsave(&counter->waitq.lock, flags); if (counter->usrdata->len || counter->irqdata->len) events |= POLLIN; spin_unlock_irqrestore(&counter->waitq.lock, flags); return events; } static const struct file_operations perf_fops = { .release = perf_release, .read = perf_read, .poll = perf_poll, }; static void cpu_clock_perf_counter_enable(struct perf_counter *counter) { } static void cpu_clock_perf_counter_disable(struct perf_counter *counter) { } static void cpu_clock_perf_counter_read(struct perf_counter *counter) { int cpu = raw_smp_processor_id(); atomic64_set(&counter->count, cpu_clock(cpu)); } static const struct hw_perf_counter_ops perf_ops_cpu_clock = { .enable = cpu_clock_perf_counter_enable, .disable = cpu_clock_perf_counter_disable, .read = cpu_clock_perf_counter_read, }; /* * Called from within the scheduler: */ static u64 task_clock_perf_counter_val(struct perf_counter *counter, int update) { struct task_struct *curr = counter->task; u64 delta; WARN_ON_ONCE(counter->task != current); delta = __task_delta_exec(curr, update); return curr->se.sum_exec_runtime + delta; } static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now) { u64 prev; s64 delta; prev = atomic64_read(&counter->hw.prev_count); atomic64_set(&counter->hw.prev_count, now); delta = now - prev; atomic64_add(delta, &counter->count); } static void task_clock_perf_counter_read(struct perf_counter *counter) { u64 now = task_clock_perf_counter_val(counter, 1); task_clock_perf_counter_update(counter, now); } static void task_clock_perf_counter_enable(struct perf_counter *counter) { u64 now = task_clock_perf_counter_val(counter, 0); atomic64_set(&counter->hw.prev_count, now); } static void task_clock_perf_counter_disable(struct perf_counter *counter) { u64 now = task_clock_perf_counter_val(counter, 0); task_clock_perf_counter_update(counter, now); } static const struct hw_perf_counter_ops perf_ops_task_clock = { .enable = task_clock_perf_counter_enable, .disable = task_clock_perf_counter_disable, .read = task_clock_perf_counter_read, }; static u64 get_page_faults(void) { struct task_struct *curr = current; return curr->maj_flt + curr->min_flt; } static void page_faults_perf_counter_update(struct perf_counter *counter) { u64 prev, now; s64 delta; prev = atomic64_read(&counter->hw.prev_count); now = get_page_faults(); atomic64_set(&counter->hw.prev_count, now); delta = now - prev; atomic64_add(delta, &counter->count); } static void page_faults_perf_counter_read(struct perf_counter *counter) { page_faults_perf_counter_update(counter); } static void page_faults_perf_counter_enable(struct perf_counter *counter) { /* * page-faults is a per-task value already, * so we dont have to clear it on switch-in. */ } static void page_faults_perf_counter_disable(struct perf_counter *counter) { page_faults_perf_counter_update(counter); } static const struct hw_perf_counter_ops perf_ops_page_faults = { .enable = page_faults_perf_counter_enable, .disable = page_faults_perf_counter_disable, .read = page_faults_perf_counter_read, }; static u64 get_context_switches(void) { struct task_struct *curr = current; return curr->nvcsw + curr->nivcsw; } static void context_switches_perf_counter_update(struct perf_counter *counter) { u64 prev, now; s64 delta; prev = atomic64_read(&counter->hw.prev_count); now = get_context_switches(); atomic64_set(&counter->hw.prev_count, now); delta = now - prev; atomic64_add(delta, &counter->count); } static void context_switches_perf_counter_read(struct perf_counter *counter) { context_switches_perf_counter_update(counter); } static void context_switches_perf_counter_enable(struct perf_counter *counter) { /* * ->nvcsw + curr->nivcsw is a per-task value already, * so we dont have to clear it on switch-in. */ } static void context_switches_perf_counter_disable(struct perf_counter *counter) { context_switches_perf_counter_update(counter); } static const struct hw_perf_counter_ops perf_ops_context_switches = { .enable = context_switches_perf_counter_enable, .disable = context_switches_perf_counter_disable, .read = context_switches_perf_counter_read, }; static inline u64 get_cpu_migrations(void) { return current->se.nr_migrations; } static void cpu_migrations_perf_counter_update(struct perf_counter *counter) { u64 prev, now; s64 delta; prev = atomic64_read(&counter->hw.prev_count); now = get_cpu_migrations(); atomic64_set(&counter->hw.prev_count, now); delta = now - prev; atomic64_add(delta, &counter->count); } static void cpu_migrations_perf_counter_read(struct perf_counter *counter) { cpu_migrations_perf_counter_update(counter); } static void cpu_migrations_perf_counter_enable(struct perf_counter *counter) { /* * se.nr_migrations is a per-task value already, * so we dont have to clear it on switch-in. */ } static void cpu_migrations_perf_counter_disable(struct perf_counter *counter) { cpu_migrations_perf_counter_update(counter); } static const struct hw_perf_counter_ops perf_ops_cpu_migrations = { .enable = cpu_migrations_perf_counter_enable, .disable = cpu_migrations_perf_counter_disable, .read = cpu_migrations_perf_counter_read, }; static const struct hw_perf_counter_ops * sw_perf_counter_init(struct perf_counter *counter) { const struct hw_perf_counter_ops *hw_ops = NULL; switch (counter->hw_event.type) { case PERF_COUNT_CPU_CLOCK: hw_ops = &perf_ops_cpu_clock; break; case PERF_COUNT_TASK_CLOCK: hw_ops = &perf_ops_task_clock; break; case PERF_COUNT_PAGE_FAULTS: hw_ops = &perf_ops_page_faults; break; case PERF_COUNT_CONTEXT_SWITCHES: hw_ops = &perf_ops_context_switches; break; case PERF_COUNT_CPU_MIGRATIONS: hw_ops = &perf_ops_cpu_migrations; break; default: break; } return hw_ops; } /* * Allocate and initialize a counter structure */ static struct perf_counter * perf_counter_alloc(struct perf_counter_hw_event *hw_event, int cpu, struct perf_counter *group_leader, gfp_t gfpflags) { const struct hw_perf_counter_ops *hw_ops; struct perf_counter *counter; counter = kzalloc(sizeof(*counter), gfpflags); if (!counter) return NULL; /* * Single counters are their own group leaders, with an * empty sibling list: */ if (!group_leader) group_leader = counter; mutex_init(&counter->mutex); INIT_LIST_HEAD(&counter->list_entry); INIT_LIST_HEAD(&counter->sibling_list); init_waitqueue_head(&counter->waitq); counter->irqdata = &counter->data[0]; counter->usrdata = &counter->data[1]; counter->cpu = cpu; counter->hw_event = *hw_event; counter->wakeup_pending = 0; counter->group_leader = group_leader; counter->hw_ops = NULL; if (hw_event->disabled) counter->state = PERF_COUNTER_STATE_OFF; hw_ops = NULL; if (!hw_event->raw && hw_event->type < 0) hw_ops = sw_perf_counter_init(counter); if (!hw_ops) hw_ops = hw_perf_counter_init(counter); if (!hw_ops) { kfree(counter); return NULL; } counter->hw_ops = hw_ops; return counter; } /** * sys_perf_task_open - open a performance counter, associate it to a task/cpu * * @hw_event_uptr: event type attributes for monitoring/sampling * @pid: target pid * @cpu: target cpu * @group_fd: group leader counter fd */ asmlinkage int sys_perf_counter_open(struct perf_counter_hw_event *hw_event_uptr __user, pid_t pid, int cpu, int group_fd) { struct perf_counter *counter, *group_leader; struct perf_counter_hw_event hw_event; struct perf_counter_context *ctx; struct file *counter_file = NULL; struct file *group_file = NULL; int fput_needed = 0; int fput_needed2 = 0; int ret; if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0) return -EFAULT; /* * Get the target context (task or percpu): */ ctx = find_get_context(pid, cpu); if (IS_ERR(ctx)) return PTR_ERR(ctx); /* * Look up the group leader (we will attach this counter to it): */ group_leader = NULL; if (group_fd != -1) { ret = -EINVAL; group_file = fget_light(group_fd, &fput_needed); if (!group_file) goto err_put_context; if (group_file->f_op != &perf_fops) goto err_put_context; group_leader = group_file->private_data; /* * Do not allow a recursive hierarchy (this new sibling * becoming part of another group-sibling): */ if (group_leader->group_leader != group_leader) goto err_put_context; /* * Do not allow to attach to a group in a different * task or CPU context: */ if (group_leader->ctx != ctx) goto err_put_context; } ret = -EINVAL; counter = perf_counter_alloc(&hw_event, cpu, group_leader, GFP_KERNEL); if (!counter) goto err_put_context; ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0); if (ret < 0) goto err_free_put_context; counter_file = fget_light(ret, &fput_needed2); if (!counter_file) goto err_free_put_context; counter->filp = counter_file; perf_install_in_context(ctx, counter, cpu); fput_light(counter_file, fput_needed2); out_fput: fput_light(group_file, fput_needed); return ret; err_free_put_context: kfree(counter); err_put_context: put_context(ctx); goto out_fput; } /* * Initialize the perf_counter context in a task_struct: */ static void __perf_counter_init_context(struct perf_counter_context *ctx, struct task_struct *task) { memset(ctx, 0, sizeof(*ctx)); spin_lock_init(&ctx->lock); INIT_LIST_HEAD(&ctx->counter_list); ctx->task = task; } /* * inherit a counter from parent task to child task: */ static int inherit_counter(struct perf_counter *parent_counter, struct task_struct *parent, struct perf_counter_context *parent_ctx, struct task_struct *child, struct perf_counter_context *child_ctx) { struct perf_counter *child_counter; child_counter = perf_counter_alloc(&parent_counter->hw_event, parent_counter->cpu, NULL, GFP_ATOMIC); if (!child_counter) return -ENOMEM; /* * Link it up in the child's context: */ child_counter->ctx = child_ctx; child_counter->task = child; list_add_counter(child_counter, child_ctx); child_ctx->nr_counters++; child_counter->parent = parent_counter; parent_counter->nr_inherited++; /* * inherit into child's child as well: */ child_counter->hw_event.inherit = 1; /* * Get a reference to the parent filp - we will fput it * when the child counter exits. This is safe to do because * we are in the parent and we know that the filp still * exists and has a nonzero count: */ atomic_long_inc(&parent_counter->filp->f_count); return 0; } static void __perf_counter_exit_task(struct task_struct *child, struct perf_counter *child_counter, struct perf_counter_context *child_ctx) { struct perf_counter *parent_counter; u64 parent_val, child_val; unsigned long flags; u64 perf_flags; /* * Disable and unlink this counter. * * Be careful about zapping the list - IRQ/NMI context * could still be processing it: */ curr_rq_lock_irq_save(&flags); perf_flags = hw_perf_save_disable(); if (child_counter->state == PERF_COUNTER_STATE_ACTIVE) { struct perf_cpu_context *cpuctx; cpuctx = &__get_cpu_var(perf_cpu_context); child_counter->hw_ops->disable(child_counter); child_counter->state = PERF_COUNTER_STATE_INACTIVE; child_counter->oncpu = -1; cpuctx->active_oncpu--; child_ctx->nr_active--; } list_del_init(&child_counter->list_entry); hw_perf_restore(perf_flags); curr_rq_unlock_irq_restore(&flags); parent_counter = child_counter->parent; /* * It can happen that parent exits first, and has counters * that are still around due to the child reference. These * counters need to be zapped - but otherwise linger. */ if (!parent_counter) return; parent_val = atomic64_read(&parent_counter->count); child_val = atomic64_read(&child_counter->count); /* * Add back the child's count to the parent's count: */ atomic64_add(child_val, &parent_counter->count); fput(parent_counter->filp); kfree(child_counter); } /* * When a child task exist, feed back counter values to parent counters. * * Note: we are running in child context, but the PID is not hashed * anymore so new counters will not be added. */ void perf_counter_exit_task(struct task_struct *child) { struct perf_counter *child_counter, *tmp; struct perf_counter_context *child_ctx; child_ctx = &child->perf_counter_ctx; if (likely(!child_ctx->nr_counters)) return; list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list, list_entry) __perf_counter_exit_task(child, child_counter, child_ctx); } /* * Initialize the perf_counter context in task_struct */ void perf_counter_init_task(struct task_struct *child) { struct perf_counter_context *child_ctx, *parent_ctx; struct perf_counter *counter, *parent_counter; struct task_struct *parent = current; unsigned long flags; child_ctx = &child->perf_counter_ctx; parent_ctx = &parent->perf_counter_ctx; __perf_counter_init_context(child_ctx, child); /* * This is executed from the parent task context, so inherit * counters that have been marked for cloning: */ if (likely(!parent_ctx->nr_counters)) return; /* * Lock the parent list. No need to lock the child - not PID * hashed yet and not running, so nobody can access it. */ spin_lock_irqsave(&parent_ctx->lock, flags); /* * We dont have to disable NMIs - we are only looking at * the list, not manipulating it: */ list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) { if (!counter->hw_event.inherit || counter->group_leader != counter) continue; /* * Instead of creating recursive hierarchies of counters, * we link inheritd counters back to the original parent, * which has a filp for sure, which we use as the reference * count: */ parent_counter = counter; if (counter->parent) parent_counter = counter->parent; if (inherit_counter(parent_counter, parent, parent_ctx, child, child_ctx)) break; } spin_unlock_irqrestore(&parent_ctx->lock, flags); } static void __cpuinit perf_counter_init_cpu(int cpu) { struct perf_cpu_context *cpuctx; cpuctx = &per_cpu(perf_cpu_context, cpu); __perf_counter_init_context(&cpuctx->ctx, NULL); mutex_lock(&perf_resource_mutex); cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu; mutex_unlock(&perf_resource_mutex); hw_perf_counter_setup(); } #ifdef CONFIG_HOTPLUG_CPU static void __perf_counter_exit_cpu(void *info) { struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context); struct perf_counter_context *ctx = &cpuctx->ctx; struct perf_counter *counter, *tmp; list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry) __perf_counter_remove_from_context(counter); } static void perf_counter_exit_cpu(int cpu) { smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1); } #else static inline void perf_counter_exit_cpu(int cpu) { } #endif static int __cpuinit perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { unsigned int cpu = (long)hcpu; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: perf_counter_init_cpu(cpu); break; case CPU_DOWN_PREPARE: case CPU_DOWN_PREPARE_FROZEN: perf_counter_exit_cpu(cpu); break; default: break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata perf_cpu_nb = { .notifier_call = perf_cpu_notify, }; static int __init perf_counter_init(void) { perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE, (void *)(long)smp_processor_id()); register_cpu_notifier(&perf_cpu_nb); return 0; } early_initcall(perf_counter_init); static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf) { return sprintf(buf, "%d\n", perf_reserved_percpu); } static ssize_t perf_set_reserve_percpu(struct sysdev_class *class, const char *buf, size_t count) { struct perf_cpu_context *cpuctx; unsigned long val; int err, cpu, mpt; err = strict_strtoul(buf, 10, &val); if (err) return err; if (val > perf_max_counters) return -EINVAL; mutex_lock(&perf_resource_mutex); perf_reserved_percpu = val; for_each_online_cpu(cpu) { cpuctx = &per_cpu(perf_cpu_context, cpu); spin_lock_irq(&cpuctx->ctx.lock); mpt = min(perf_max_counters - cpuctx->ctx.nr_counters, perf_max_counters - perf_reserved_percpu); cpuctx->max_pertask = mpt; spin_unlock_irq(&cpuctx->ctx.lock); } mutex_unlock(&perf_resource_mutex); return count; } static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf) { return sprintf(buf, "%d\n", perf_overcommit); } static ssize_t perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count) { unsigned long val; int err; err = strict_strtoul(buf, 10, &val); if (err) return err; if (val > 1) return -EINVAL; mutex_lock(&perf_resource_mutex); perf_overcommit = val; mutex_unlock(&perf_resource_mutex); return count; } static SYSDEV_CLASS_ATTR( reserve_percpu, 0644, perf_show_reserve_percpu, perf_set_reserve_percpu ); static SYSDEV_CLASS_ATTR( overcommit, 0644, perf_show_overcommit, perf_set_overcommit ); static struct attribute *perfclass_attrs[] = { &attr_reserve_percpu.attr, &attr_overcommit.attr, NULL }; static struct attribute_group perfclass_attr_group = { .attrs = perfclass_attrs, .name = "perf_counters", }; static int __init perf_counter_sysfs_init(void) { return sysfs_create_group(&cpu_sysdev_class.kset.kobj, &perfclass_attr_group); } device_initcall(perf_counter_sysfs_init);