/* * User interface for Resource Alloction in Resource Director Technology(RDT) * * Copyright (C) 2016 Intel Corporation * * Author: Fenghua Yu * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * More information about RDT be found in the Intel (R) x86 Architecture * Software Developer Manual. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include "intel_rdt.h" DEFINE_STATIC_KEY_FALSE(rdt_enable_key); DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key); DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key); static struct kernfs_root *rdt_root; struct rdtgroup rdtgroup_default; LIST_HEAD(rdt_all_groups); /* Kernel fs node for "info" directory under root */ static struct kernfs_node *kn_info; /* Kernel fs node for "mon_groups" directory under root */ static struct kernfs_node *kn_mongrp; /* Kernel fs node for "mon_data" directory under root */ static struct kernfs_node *kn_mondata; /* * Trivial allocator for CLOSIDs. Since h/w only supports a small number, * we can keep a bitmap of free CLOSIDs in a single integer. * * Using a global CLOSID across all resources has some advantages and * some drawbacks: * + We can simply set "current->closid" to assign a task to a resource * group. * + Context switch code can avoid extra memory references deciding which * CLOSID to load into the PQR_ASSOC MSR * - We give up some options in configuring resource groups across multi-socket * systems. * - Our choices on how to configure each resource become progressively more * limited as the number of resources grows. */ static int closid_free_map; static void closid_init(void) { struct rdt_resource *r; int rdt_min_closid = 32; /* Compute rdt_min_closid across all resources */ for_each_alloc_enabled_rdt_resource(r) rdt_min_closid = min(rdt_min_closid, r->num_closid); closid_free_map = BIT_MASK(rdt_min_closid) - 1; /* CLOSID 0 is always reserved for the default group */ closid_free_map &= ~1; } static int closid_alloc(void) { u32 closid = ffs(closid_free_map); if (closid == 0) return -ENOSPC; closid--; closid_free_map &= ~(1 << closid); return closid; } static void closid_free(int closid) { closid_free_map |= 1 << closid; } /* set uid and gid of rdtgroup dirs and files to that of the creator */ static int rdtgroup_kn_set_ugid(struct kernfs_node *kn) { struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, .ia_uid = current_fsuid(), .ia_gid = current_fsgid(), }; if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) return 0; return kernfs_setattr(kn, &iattr); } static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft) { struct kernfs_node *kn; int ret; kn = __kernfs_create_file(parent_kn, rft->name, rft->mode, 0, rft->kf_ops, rft, NULL, NULL); if (IS_ERR(kn)) return PTR_ERR(kn); ret = rdtgroup_kn_set_ugid(kn); if (ret) { kernfs_remove(kn); return ret; } return 0; } static int rdtgroup_seqfile_show(struct seq_file *m, void *arg) { struct kernfs_open_file *of = m->private; struct rftype *rft = of->kn->priv; if (rft->seq_show) return rft->seq_show(of, m, arg); return 0; } static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct rftype *rft = of->kn->priv; if (rft->write) return rft->write(of, buf, nbytes, off); return -EINVAL; } static struct kernfs_ops rdtgroup_kf_single_ops = { .atomic_write_len = PAGE_SIZE, .write = rdtgroup_file_write, .seq_show = rdtgroup_seqfile_show, }; static struct kernfs_ops kf_mondata_ops = { .atomic_write_len = PAGE_SIZE, .seq_show = rdtgroup_mondata_show, }; static bool is_cpu_list(struct kernfs_open_file *of) { struct rftype *rft = of->kn->priv; return rft->flags & RFTYPE_FLAGS_CPUS_LIST; } static int rdtgroup_cpus_show(struct kernfs_open_file *of, struct seq_file *s, void *v) { struct rdtgroup *rdtgrp; int ret = 0; rdtgrp = rdtgroup_kn_lock_live(of->kn); if (rdtgrp) { seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n", cpumask_pr_args(&rdtgrp->cpu_mask)); } else { ret = -ENOENT; } rdtgroup_kn_unlock(of->kn); return ret; } /* * This is safe against intel_rdt_sched_in() called from __switch_to() * because __switch_to() is executed with interrupts disabled. A local call * from update_closid_rmid() is proteced against __switch_to() because * preemption is disabled. */ static void update_cpu_closid_rmid(void *info) { struct rdtgroup *r = info; if (r) { this_cpu_write(pqr_state.default_closid, r->closid); this_cpu_write(pqr_state.default_rmid, r->mon.rmid); } /* * We cannot unconditionally write the MSR because the current * executing task might have its own closid selected. Just reuse * the context switch code. */ intel_rdt_sched_in(); } /* * Update the PGR_ASSOC MSR on all cpus in @cpu_mask, * * Per task closids/rmids must have been set up before calling this function. */ static void update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r) { int cpu = get_cpu(); if (cpumask_test_cpu(cpu, cpu_mask)) update_cpu_closid_rmid(r); smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1); put_cpu(); } static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, cpumask_var_t tmpmask) { struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp; struct list_head *head; /* Check whether cpus belong to parent ctrl group */ cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask); if (cpumask_weight(tmpmask)) return -EINVAL; /* Check whether cpus are dropped from this group */ cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); if (cpumask_weight(tmpmask)) { /* Give any dropped cpus to parent rdtgroup */ cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask); update_closid_rmid(tmpmask, prgrp); } /* * If we added cpus, remove them from previous group that owned them * and update per-cpu rmid */ cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); if (cpumask_weight(tmpmask)) { head = &prgrp->mon.crdtgrp_list; list_for_each_entry(crgrp, head, mon.crdtgrp_list) { if (crgrp == rdtgrp) continue; cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask, tmpmask); } update_closid_rmid(tmpmask, rdtgrp); } /* Done pushing/pulling - update this group with new mask */ cpumask_copy(&rdtgrp->cpu_mask, newmask); return 0; } static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m) { struct rdtgroup *crgrp; cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m); /* update the child mon group masks as well*/ list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list) cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask); } static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask, cpumask_var_t tmpmask, cpumask_var_t tmpmask1) { struct rdtgroup *r, *crgrp; struct list_head *head; /* Check whether cpus are dropped from this group */ cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask); if (cpumask_weight(tmpmask)) { /* Can't drop from default group */ if (rdtgrp == &rdtgroup_default) return -EINVAL; /* Give any dropped cpus to rdtgroup_default */ cpumask_or(&rdtgroup_default.cpu_mask, &rdtgroup_default.cpu_mask, tmpmask); update_closid_rmid(tmpmask, &rdtgroup_default); } /* * If we added cpus, remove them from previous group and * the prev group's child groups that owned them * and update per-cpu closid/rmid. */ cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask); if (cpumask_weight(tmpmask)) { list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) { if (r == rdtgrp) continue; cpumask_and(tmpmask1, &r->cpu_mask, tmpmask); if (cpumask_weight(tmpmask1)) cpumask_rdtgrp_clear(r, tmpmask1); } update_closid_rmid(tmpmask, rdtgrp); } /* Done pushing/pulling - update this group with new mask */ cpumask_copy(&rdtgrp->cpu_mask, newmask); /* * Clear child mon group masks since there is a new parent mask * now and update the rmid for the cpus the child lost. */ head = &rdtgrp->mon.crdtgrp_list; list_for_each_entry(crgrp, head, mon.crdtgrp_list) { cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask); update_closid_rmid(tmpmask, rdtgrp); cpumask_clear(&crgrp->cpu_mask); } return 0; } static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { cpumask_var_t tmpmask, newmask, tmpmask1; struct rdtgroup *rdtgrp; int ret; if (!buf) return -EINVAL; if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) { free_cpumask_var(tmpmask); return -ENOMEM; } if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) { free_cpumask_var(tmpmask); free_cpumask_var(newmask); return -ENOMEM; } rdtgrp = rdtgroup_kn_lock_live(of->kn); if (!rdtgrp) { ret = -ENOENT; goto unlock; } if (is_cpu_list(of)) ret = cpulist_parse(buf, newmask); else ret = cpumask_parse(buf, newmask); if (ret) goto unlock; /* check that user didn't specify any offline cpus */ cpumask_andnot(tmpmask, newmask, cpu_online_mask); if (cpumask_weight(tmpmask)) { ret = -EINVAL; goto unlock; } if (rdtgrp->type == RDTCTRL_GROUP) ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1); else if (rdtgrp->type == RDTMON_GROUP) ret = cpus_mon_write(rdtgrp, newmask, tmpmask); else ret = -EINVAL; unlock: rdtgroup_kn_unlock(of->kn); free_cpumask_var(tmpmask); free_cpumask_var(newmask); free_cpumask_var(tmpmask1); return ret ?: nbytes; } struct task_move_callback { struct callback_head work; struct rdtgroup *rdtgrp; }; static void move_myself(struct callback_head *head) { struct task_move_callback *callback; struct rdtgroup *rdtgrp; callback = container_of(head, struct task_move_callback, work); rdtgrp = callback->rdtgrp; /* * If resource group was deleted before this task work callback * was invoked, then assign the task to root group and free the * resource group. */ if (atomic_dec_and_test(&rdtgrp->waitcount) && (rdtgrp->flags & RDT_DELETED)) { current->closid = 0; current->rmid = 0; kfree(rdtgrp); } preempt_disable(); /* update PQR_ASSOC MSR to make resource group go into effect */ intel_rdt_sched_in(); preempt_enable(); kfree(callback); } static int __rdtgroup_move_task(struct task_struct *tsk, struct rdtgroup *rdtgrp) { struct task_move_callback *callback; int ret; callback = kzalloc(sizeof(*callback), GFP_KERNEL); if (!callback) return -ENOMEM; callback->work.func = move_myself; callback->rdtgrp = rdtgrp; /* * Take a refcount, so rdtgrp cannot be freed before the * callback has been invoked. */ atomic_inc(&rdtgrp->waitcount); ret = task_work_add(tsk, &callback->work, true); if (ret) { /* * Task is exiting. Drop the refcount and free the callback. * No need to check the refcount as the group cannot be * deleted before the write function unlocks rdtgroup_mutex. */ atomic_dec(&rdtgrp->waitcount); kfree(callback); } else { /* * For ctrl_mon groups move both closid and rmid. * For monitor groups, can move the tasks only from * their parent CTRL group. */ if (rdtgrp->type == RDTCTRL_GROUP) { tsk->closid = rdtgrp->closid; tsk->rmid = rdtgrp->mon.rmid; } else if (rdtgrp->type == RDTMON_GROUP) { if (rdtgrp->mon.parent->closid == tsk->closid) tsk->rmid = rdtgrp->mon.rmid; else ret = -EINVAL; } } return ret; } static int rdtgroup_task_write_permission(struct task_struct *task, struct kernfs_open_file *of) { const struct cred *tcred = get_task_cred(task); const struct cred *cred = current_cred(); int ret = 0; /* * Even if we're attaching all tasks in the thread group, we only * need to check permissions on one of them. */ if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && !uid_eq(cred->euid, tcred->uid) && !uid_eq(cred->euid, tcred->suid)) ret = -EPERM; put_cred(tcred); return ret; } static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp, struct kernfs_open_file *of) { struct task_struct *tsk; int ret; rcu_read_lock(); if (pid) { tsk = find_task_by_vpid(pid); if (!tsk) { rcu_read_unlock(); return -ESRCH; } } else { tsk = current; } get_task_struct(tsk); rcu_read_unlock(); ret = rdtgroup_task_write_permission(tsk, of); if (!ret) ret = __rdtgroup_move_task(tsk, rdtgrp); put_task_struct(tsk); return ret; } static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct rdtgroup *rdtgrp; int ret = 0; pid_t pid; if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) return -EINVAL; rdtgrp = rdtgroup_kn_lock_live(of->kn); if (rdtgrp) ret = rdtgroup_move_task(pid, rdtgrp, of); else ret = -ENOENT; rdtgroup_kn_unlock(of->kn); return ret ?: nbytes; } static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s) { struct task_struct *p, *t; rcu_read_lock(); for_each_process_thread(p, t) { if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) || (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) seq_printf(s, "%d\n", t->pid); } rcu_read_unlock(); } static int rdtgroup_tasks_show(struct kernfs_open_file *of, struct seq_file *s, void *v) { struct rdtgroup *rdtgrp; int ret = 0; rdtgrp = rdtgroup_kn_lock_live(of->kn); if (rdtgrp) show_rdt_tasks(rdtgrp, s); else ret = -ENOENT; rdtgroup_kn_unlock(of->kn); return ret; } static int rdt_num_closids_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%d\n", r->num_closid); return 0; } static int rdt_default_ctrl_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%x\n", r->default_ctrl); return 0; } static int rdt_min_cbm_bits_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%u\n", r->cache.min_cbm_bits); return 0; } static int rdt_shareable_bits_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%x\n", r->cache.shareable_bits); return 0; } static int rdt_min_bw_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%u\n", r->membw.min_bw); return 0; } static int rdt_num_rmids_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%d\n", r->num_rmid); return 0; } static int rdt_mon_features_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; struct mon_evt *mevt; list_for_each_entry(mevt, &r->evt_list, list) seq_printf(seq, "%s\n", mevt->name); return 0; } static int rdt_bw_gran_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%u\n", r->membw.bw_gran); return 0; } static int rdt_delay_linear_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%u\n", r->membw.delay_linear); return 0; } static int max_threshold_occ_show(struct kernfs_open_file *of, struct seq_file *seq, void *v) { struct rdt_resource *r = of->kn->parent->priv; seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale); return 0; } static ssize_t max_threshold_occ_write(struct kernfs_open_file *of, char *buf, size_t nbytes, loff_t off) { struct rdt_resource *r = of->kn->parent->priv; unsigned int bytes; int ret; ret = kstrtouint(buf, 0, &bytes); if (ret) return ret; if (bytes > (boot_cpu_data.x86_cache_size * 1024)) return -EINVAL; intel_cqm_threshold = bytes / r->mon_scale; return ret ?: nbytes; } /* rdtgroup information files for one cache resource. */ static struct rftype res_common_files[] = { { .name = "num_closids", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_num_closids_show, .fflags = RF_CTRL_INFO, }, { .name = "mon_features", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_mon_features_show, .fflags = RF_MON_INFO, }, { .name = "num_rmids", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_num_rmids_show, .fflags = RF_MON_INFO, }, { .name = "cbm_mask", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_default_ctrl_show, .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, }, { .name = "min_cbm_bits", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_min_cbm_bits_show, .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, }, { .name = "shareable_bits", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_shareable_bits_show, .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE, }, { .name = "min_bandwidth", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_min_bw_show, .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, }, { .name = "bandwidth_gran", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_bw_gran_show, .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, }, { .name = "delay_linear", .mode = 0444, .kf_ops = &rdtgroup_kf_single_ops, .seq_show = rdt_delay_linear_show, .fflags = RF_CTRL_INFO | RFTYPE_RES_MB, }, { .name = "max_threshold_occupancy", .mode = 0644, .kf_ops = &rdtgroup_kf_single_ops, .write = max_threshold_occ_write, .seq_show = max_threshold_occ_show, .fflags = RF_MON_INFO | RFTYPE_RES_CACHE, }, { .name = "cpus", .mode = 0644, .kf_ops = &rdtgroup_kf_single_ops, .write = rdtgroup_cpus_write, .seq_show = rdtgroup_cpus_show, .fflags = RFTYPE_BASE, }, { .name = "cpus_list", .mode = 0644, .kf_ops = &rdtgroup_kf_single_ops, .write = rdtgroup_cpus_write, .seq_show = rdtgroup_cpus_show, .flags = RFTYPE_FLAGS_CPUS_LIST, .fflags = RFTYPE_BASE, }, { .name = "tasks", .mode = 0644, .kf_ops = &rdtgroup_kf_single_ops, .write = rdtgroup_tasks_write, .seq_show = rdtgroup_tasks_show, .fflags = RFTYPE_BASE, }, { .name = "schemata", .mode = 0644, .kf_ops = &rdtgroup_kf_single_ops, .write = rdtgroup_schemata_write, .seq_show = rdtgroup_schemata_show, .fflags = RF_CTRL_BASE, }, }; static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags) { struct rftype *rfts, *rft; int ret, len; rfts = res_common_files; len = ARRAY_SIZE(res_common_files); lockdep_assert_held(&rdtgroup_mutex); for (rft = rfts; rft < rfts + len; rft++) { if ((fflags & rft->fflags) == rft->fflags) { ret = rdtgroup_add_file(kn, rft); if (ret) goto error; } } return 0; error: pr_warn("Failed to add %s, err=%d\n", rft->name, ret); while (--rft >= rfts) { if ((fflags & rft->fflags) == rft->fflags) kernfs_remove_by_name(kn, rft->name); } return ret; } static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name, unsigned long fflags) { struct kernfs_node *kn_subdir; int ret; kn_subdir = kernfs_create_dir(kn_info, name, kn_info->mode, r); if (IS_ERR(kn_subdir)) return PTR_ERR(kn_subdir); kernfs_get(kn_subdir); ret = rdtgroup_kn_set_ugid(kn_subdir); if (ret) return ret; ret = rdtgroup_add_files(kn_subdir, fflags); if (!ret) kernfs_activate(kn_subdir); return ret; } static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn) { struct rdt_resource *r; unsigned long fflags; char name[32]; int ret; /* create the directory */ kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL); if (IS_ERR(kn_info)) return PTR_ERR(kn_info); kernfs_get(kn_info); for_each_alloc_enabled_rdt_resource(r) { fflags = r->fflags | RF_CTRL_INFO; ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags); if (ret) goto out_destroy; } for_each_mon_enabled_rdt_resource(r) { fflags = r->fflags | RF_MON_INFO; sprintf(name, "%s_MON", r->name); ret = rdtgroup_mkdir_info_resdir(r, name, fflags); if (ret) goto out_destroy; } /* * This extra ref will be put in kernfs_remove() and guarantees * that @rdtgrp->kn is always accessible. */ kernfs_get(kn_info); ret = rdtgroup_kn_set_ugid(kn_info); if (ret) goto out_destroy; kernfs_activate(kn_info); return 0; out_destroy: kernfs_remove(kn_info); return ret; } static int mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, char *name, struct kernfs_node **dest_kn) { struct kernfs_node *kn; int ret; /* create the directory */ kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); if (IS_ERR(kn)) return PTR_ERR(kn); if (dest_kn) *dest_kn = kn; /* * This extra ref will be put in kernfs_remove() and guarantees * that @rdtgrp->kn is always accessible. */ kernfs_get(kn); ret = rdtgroup_kn_set_ugid(kn); if (ret) goto out_destroy; kernfs_activate(kn); return 0; out_destroy: kernfs_remove(kn); return ret; } static void l3_qos_cfg_update(void *arg) { bool *enable = arg; wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL); } static int set_l3_qos_cfg(struct rdt_resource *r, bool enable) { cpumask_var_t cpu_mask; struct rdt_domain *d; int cpu; if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) return -ENOMEM; list_for_each_entry(d, &r->domains, list) { /* Pick one CPU from each domain instance to update MSR */ cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); } cpu = get_cpu(); /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */ if (cpumask_test_cpu(cpu, cpu_mask)) l3_qos_cfg_update(&enable); /* Update QOS_CFG MSR on all other cpus in cpu_mask. */ smp_call_function_many(cpu_mask, l3_qos_cfg_update, &enable, 1); put_cpu(); free_cpumask_var(cpu_mask); return 0; } static int cdp_enable(void) { struct rdt_resource *r_l3data = &rdt_resources_all[RDT_RESOURCE_L3DATA]; struct rdt_resource *r_l3code = &rdt_resources_all[RDT_RESOURCE_L3CODE]; struct rdt_resource *r_l3 = &rdt_resources_all[RDT_RESOURCE_L3]; int ret; if (!r_l3->alloc_capable || !r_l3data->alloc_capable || !r_l3code->alloc_capable) return -EINVAL; ret = set_l3_qos_cfg(r_l3, true); if (!ret) { r_l3->alloc_enabled = false; r_l3data->alloc_enabled = true; r_l3code->alloc_enabled = true; } return ret; } static void cdp_disable(void) { struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3]; r->alloc_enabled = r->alloc_capable; if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) { rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled = false; rdt_resources_all[RDT_RESOURCE_L3CODE].alloc_enabled = false; set_l3_qos_cfg(r, false); } } static int parse_rdtgroupfs_options(char *data) { char *token, *o = data; int ret = 0; while ((token = strsep(&o, ",")) != NULL) { if (!*token) return -EINVAL; if (!strcmp(token, "cdp")) ret = cdp_enable(); } return ret; } /* * We don't allow rdtgroup directories to be created anywhere * except the root directory. Thus when looking for the rdtgroup * structure for a kernfs node we are either looking at a directory, * in which case the rdtgroup structure is pointed at by the "priv" * field, otherwise we have a file, and need only look to the parent * to find the rdtgroup. */ static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn) { if (kernfs_type(kn) == KERNFS_DIR) { /* * All the resource directories use "kn->priv" * to point to the "struct rdtgroup" for the * resource. "info" and its subdirectories don't * have rdtgroup structures, so return NULL here. */ if (kn == kn_info || kn->parent == kn_info) return NULL; else return kn->priv; } else { return kn->parent->priv; } } struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn) { struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); if (!rdtgrp) return NULL; atomic_inc(&rdtgrp->waitcount); kernfs_break_active_protection(kn); mutex_lock(&rdtgroup_mutex); /* Was this group deleted while we waited? */ if (rdtgrp->flags & RDT_DELETED) return NULL; return rdtgrp; } void rdtgroup_kn_unlock(struct kernfs_node *kn) { struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn); if (!rdtgrp) return; mutex_unlock(&rdtgroup_mutex); if (atomic_dec_and_test(&rdtgrp->waitcount) && (rdtgrp->flags & RDT_DELETED)) { kernfs_unbreak_active_protection(kn); kernfs_put(rdtgrp->kn); kfree(rdtgrp); } else { kernfs_unbreak_active_protection(kn); } } static int mkdir_mondata_all(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, struct kernfs_node **mon_data_kn); static struct dentry *rdt_mount(struct file_system_type *fs_type, int flags, const char *unused_dev_name, void *data) { struct rdt_domain *dom; struct rdt_resource *r; struct dentry *dentry; int ret; mutex_lock(&rdtgroup_mutex); /* * resctrl file system can only be mounted once. */ if (static_branch_unlikely(&rdt_enable_key)) { dentry = ERR_PTR(-EBUSY); goto out; } ret = parse_rdtgroupfs_options(data); if (ret) { dentry = ERR_PTR(ret); goto out_cdp; } closid_init(); ret = rdtgroup_create_info_dir(rdtgroup_default.kn); if (ret) { dentry = ERR_PTR(ret); goto out_cdp; } if (rdt_mon_capable) { ret = mongroup_create_dir(rdtgroup_default.kn, NULL, "mon_groups", &kn_mongrp); if (ret) { dentry = ERR_PTR(ret); goto out_info; } kernfs_get(kn_mongrp); ret = mkdir_mondata_all(rdtgroup_default.kn, &rdtgroup_default, &kn_mondata); if (ret) { dentry = ERR_PTR(ret); goto out_mongrp; } kernfs_get(kn_mondata); rdtgroup_default.mon.mon_data_kn = kn_mondata; } dentry = kernfs_mount(fs_type, flags, rdt_root, RDTGROUP_SUPER_MAGIC, NULL); if (IS_ERR(dentry)) goto out_mondata; if (rdt_alloc_capable) static_branch_enable(&rdt_alloc_enable_key); if (rdt_mon_capable) static_branch_enable(&rdt_mon_enable_key); if (rdt_alloc_capable || rdt_mon_capable) static_branch_enable(&rdt_enable_key); if (is_mbm_enabled()) { r = &rdt_resources_all[RDT_RESOURCE_L3]; list_for_each_entry(dom, &r->domains, list) mbm_setup_overflow_handler(dom); } goto out; out_mondata: if (rdt_mon_capable) kernfs_remove(kn_mondata); out_mongrp: if (rdt_mon_capable) kernfs_remove(kn_mongrp); out_info: kernfs_remove(kn_info); out_cdp: cdp_disable(); out: mutex_unlock(&rdtgroup_mutex); return dentry; } static int reset_all_ctrls(struct rdt_resource *r) { struct msr_param msr_param; cpumask_var_t cpu_mask; struct rdt_domain *d; int i, cpu; if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL)) return -ENOMEM; msr_param.res = r; msr_param.low = 0; msr_param.high = r->num_closid; /* * Disable resource control for this resource by setting all * CBMs in all domains to the maximum mask value. Pick one CPU * from each domain to update the MSRs below. */ list_for_each_entry(d, &r->domains, list) { cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask); for (i = 0; i < r->num_closid; i++) d->ctrl_val[i] = r->default_ctrl; } cpu = get_cpu(); /* Update CBM on this cpu if it's in cpu_mask. */ if (cpumask_test_cpu(cpu, cpu_mask)) rdt_ctrl_update(&msr_param); /* Update CBM on all other cpus in cpu_mask. */ smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1); put_cpu(); free_cpumask_var(cpu_mask); return 0; } static bool is_closid_match(struct task_struct *t, struct rdtgroup *r) { return (rdt_alloc_capable && (r->type == RDTCTRL_GROUP) && (t->closid == r->closid)); } static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r) { return (rdt_mon_capable && (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid)); } /* * Move tasks from one to the other group. If @from is NULL, then all tasks * in the systems are moved unconditionally (used for teardown). * * If @mask is not NULL the cpus on which moved tasks are running are set * in that mask so the update smp function call is restricted to affected * cpus. */ static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to, struct cpumask *mask) { struct task_struct *p, *t; read_lock(&tasklist_lock); for_each_process_thread(p, t) { if (!from || is_closid_match(t, from) || is_rmid_match(t, from)) { t->closid = to->closid; t->rmid = to->mon.rmid; #ifdef CONFIG_SMP /* * This is safe on x86 w/o barriers as the ordering * of writing to task_cpu() and t->on_cpu is * reverse to the reading here. The detection is * inaccurate as tasks might move or schedule * before the smp function call takes place. In * such a case the function call is pointless, but * there is no other side effect. */ if (mask && t->on_cpu) cpumask_set_cpu(task_cpu(t), mask); #endif } } read_unlock(&tasklist_lock); } static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp) { struct rdtgroup *sentry, *stmp; struct list_head *head; head = &rdtgrp->mon.crdtgrp_list; list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) { free_rmid(sentry->mon.rmid); list_del(&sentry->mon.crdtgrp_list); kfree(sentry); } } /* * Forcibly remove all of subdirectories under root. */ static void rmdir_all_sub(void) { struct rdtgroup *rdtgrp, *tmp; /* Move all tasks to the default resource group */ rdt_move_group_tasks(NULL, &rdtgroup_default, NULL); list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) { /* Free any child rmids */ free_all_child_rdtgrp(rdtgrp); /* Remove each rdtgroup other than root */ if (rdtgrp == &rdtgroup_default) continue; /* * Give any CPUs back to the default group. We cannot copy * cpu_online_mask because a CPU might have executed the * offline callback already, but is still marked online. */ cpumask_or(&rdtgroup_default.cpu_mask, &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); free_rmid(rdtgrp->mon.rmid); kernfs_remove(rdtgrp->kn); list_del(&rdtgrp->rdtgroup_list); kfree(rdtgrp); } /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */ get_online_cpus(); update_closid_rmid(cpu_online_mask, &rdtgroup_default); put_online_cpus(); kernfs_remove(kn_info); kernfs_remove(kn_mongrp); kernfs_remove(kn_mondata); } static void rdt_kill_sb(struct super_block *sb) { struct rdt_resource *r; mutex_lock(&rdtgroup_mutex); /*Put everything back to default values. */ for_each_alloc_enabled_rdt_resource(r) reset_all_ctrls(r); cdp_disable(); rmdir_all_sub(); static_branch_disable(&rdt_alloc_enable_key); static_branch_disable(&rdt_mon_enable_key); static_branch_disable(&rdt_enable_key); kernfs_kill_sb(sb); mutex_unlock(&rdtgroup_mutex); } static struct file_system_type rdt_fs_type = { .name = "resctrl", .mount = rdt_mount, .kill_sb = rdt_kill_sb, }; static int mon_addfile(struct kernfs_node *parent_kn, const char *name, void *priv) { struct kernfs_node *kn; int ret = 0; kn = __kernfs_create_file(parent_kn, name, 0444, 0, &kf_mondata_ops, priv, NULL, NULL); if (IS_ERR(kn)) return PTR_ERR(kn); ret = rdtgroup_kn_set_ugid(kn); if (ret) { kernfs_remove(kn); return ret; } return ret; } /* * Remove all subdirectories of mon_data of ctrl_mon groups * and monitor groups with given domain id. */ void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id) { struct rdtgroup *prgrp, *crgrp; char name[32]; if (!r->mon_enabled) return; list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { sprintf(name, "mon_%s_%02d", r->name, dom_id); kernfs_remove_by_name(prgrp->mon.mon_data_kn, name); list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list) kernfs_remove_by_name(crgrp->mon.mon_data_kn, name); } } static int mkdir_mondata_subdir(struct kernfs_node *parent_kn, struct rdt_domain *d, struct rdt_resource *r, struct rdtgroup *prgrp) { union mon_data_bits priv; struct kernfs_node *kn; struct mon_evt *mevt; struct rmid_read rr; char name[32]; int ret; sprintf(name, "mon_%s_%02d", r->name, d->id); /* create the directory */ kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp); if (IS_ERR(kn)) return PTR_ERR(kn); /* * This extra ref will be put in kernfs_remove() and guarantees * that kn is always accessible. */ kernfs_get(kn); ret = rdtgroup_kn_set_ugid(kn); if (ret) goto out_destroy; if (WARN_ON(list_empty(&r->evt_list))) { ret = -EPERM; goto out_destroy; } priv.u.rid = r->rid; priv.u.domid = d->id; list_for_each_entry(mevt, &r->evt_list, list) { priv.u.evtid = mevt->evtid; ret = mon_addfile(kn, mevt->name, priv.priv); if (ret) goto out_destroy; if (is_mbm_event(mevt->evtid)) mon_event_read(&rr, d, prgrp, mevt->evtid, true); } kernfs_activate(kn); return 0; out_destroy: kernfs_remove(kn); return ret; } /* * Add all subdirectories of mon_data for "ctrl_mon" groups * and "monitor" groups with given domain id. */ void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, struct rdt_domain *d) { struct kernfs_node *parent_kn; struct rdtgroup *prgrp, *crgrp; struct list_head *head; if (!r->mon_enabled) return; list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) { parent_kn = prgrp->mon.mon_data_kn; mkdir_mondata_subdir(parent_kn, d, r, prgrp); head = &prgrp->mon.crdtgrp_list; list_for_each_entry(crgrp, head, mon.crdtgrp_list) { parent_kn = crgrp->mon.mon_data_kn; mkdir_mondata_subdir(parent_kn, d, r, crgrp); } } } static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn, struct rdt_resource *r, struct rdtgroup *prgrp) { struct rdt_domain *dom; int ret; list_for_each_entry(dom, &r->domains, list) { ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp); if (ret) return ret; } return 0; } /* * This creates a directory mon_data which contains the monitored data. * * mon_data has one directory for each domain whic are named * in the format mon__. For ex: A mon_data * with L3 domain looks as below: * ./mon_data: * mon_L3_00 * mon_L3_01 * mon_L3_02 * ... * * Each domain directory has one file per event: * ./mon_L3_00/: * llc_occupancy * */ static int mkdir_mondata_all(struct kernfs_node *parent_kn, struct rdtgroup *prgrp, struct kernfs_node **dest_kn) { struct rdt_resource *r; struct kernfs_node *kn; int ret; /* * Create the mon_data directory first. */ ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn); if (ret) return ret; if (dest_kn) *dest_kn = kn; /* * Create the subdirectories for each domain. Note that all events * in a domain like L3 are grouped into a resource whose domain is L3 */ for_each_mon_enabled_rdt_resource(r) { ret = mkdir_mondata_subdir_alldom(kn, r, prgrp); if (ret) goto out_destroy; } return 0; out_destroy: kernfs_remove(kn); return ret; } static int mkdir_rdt_prepare(struct kernfs_node *parent_kn, struct kernfs_node *prgrp_kn, const char *name, umode_t mode, enum rdt_group_type rtype, struct rdtgroup **r) { struct rdtgroup *prdtgrp, *rdtgrp; struct kernfs_node *kn; uint files = 0; int ret; prdtgrp = rdtgroup_kn_lock_live(prgrp_kn); if (!prdtgrp) { ret = -ENODEV; goto out_unlock; } /* allocate the rdtgroup. */ rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL); if (!rdtgrp) { ret = -ENOSPC; goto out_unlock; } *r = rdtgrp; rdtgrp->mon.parent = prdtgrp; rdtgrp->type = rtype; INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list); /* kernfs creates the directory for rdtgrp */ kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp); if (IS_ERR(kn)) { ret = PTR_ERR(kn); goto out_free_rgrp; } rdtgrp->kn = kn; /* * kernfs_remove() will drop the reference count on "kn" which * will free it. But we still need it to stick around for the * rdtgroup_kn_unlock(kn} call below. Take one extra reference * here, which will be dropped inside rdtgroup_kn_unlock(). */ kernfs_get(kn); ret = rdtgroup_kn_set_ugid(kn); if (ret) goto out_destroy; files = RFTYPE_BASE | RFTYPE_CTRL; files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype); ret = rdtgroup_add_files(kn, files); if (ret) goto out_destroy; if (rdt_mon_capable) { ret = alloc_rmid(); if (ret < 0) goto out_destroy; rdtgrp->mon.rmid = ret; ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn); if (ret) goto out_idfree; } kernfs_activate(kn); /* * The caller unlocks the prgrp_kn upon success. */ return 0; out_idfree: free_rmid(rdtgrp->mon.rmid); out_destroy: kernfs_remove(rdtgrp->kn); out_free_rgrp: kfree(rdtgrp); out_unlock: rdtgroup_kn_unlock(prgrp_kn); return ret; } static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp) { kernfs_remove(rgrp->kn); free_rmid(rgrp->mon.rmid); kfree(rgrp); } /* * Create a monitor group under "mon_groups" directory of a control * and monitor group(ctrl_mon). This is a resource group * to monitor a subset of tasks and cpus in its parent ctrl_mon group. */ static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn, struct kernfs_node *prgrp_kn, const char *name, umode_t mode) { struct rdtgroup *rdtgrp, *prgrp; int ret; ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP, &rdtgrp); if (ret) return ret; prgrp = rdtgrp->mon.parent; rdtgrp->closid = prgrp->closid; /* * Add the rdtgrp to the list of rdtgrps the parent * ctrl_mon group has to track. */ list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list); rdtgroup_kn_unlock(prgrp_kn); return ret; } /* * These are rdtgroups created under the root directory. Can be used * to allocate and monitor resources. */ static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn, struct kernfs_node *prgrp_kn, const char *name, umode_t mode) { struct rdtgroup *rdtgrp; struct kernfs_node *kn; u32 closid; int ret; ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP, &rdtgrp); if (ret) return ret; kn = rdtgrp->kn; ret = closid_alloc(); if (ret < 0) goto out_common_fail; closid = ret; rdtgrp->closid = closid; list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups); if (rdt_mon_capable) { /* * Create an empty mon_groups directory to hold the subset * of tasks and cpus to monitor. */ ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL); if (ret) goto out_id_free; } goto out_unlock; out_id_free: closid_free(closid); list_del(&rdtgrp->rdtgroup_list); out_common_fail: mkdir_rdt_prepare_clean(rdtgrp); out_unlock: rdtgroup_kn_unlock(prgrp_kn); return ret; } /* * We allow creating mon groups only with in a directory called "mon_groups" * which is present in every ctrl_mon group. Check if this is a valid * "mon_groups" directory. * * 1. The directory should be named "mon_groups". * 2. The mon group itself should "not" be named "mon_groups". * This makes sure "mon_groups" directory always has a ctrl_mon group * as parent. */ static bool is_mon_groups(struct kernfs_node *kn, const char *name) { return (!strcmp(kn->name, "mon_groups") && strcmp(name, "mon_groups")); } static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) { /* Do not accept '\n' to avoid unparsable situation. */ if (strchr(name, '\n')) return -EINVAL; /* * If the parent directory is the root directory and RDT * allocation is supported, add a control and monitoring * subdirectory */ if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn) return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode); /* * If RDT monitoring is supported and the parent directory is a valid * "mon_groups" directory, add a monitoring subdirectory. */ if (rdt_mon_capable && is_mon_groups(parent_kn, name)) return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode); return -EPERM; } static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) { struct rdtgroup *prdtgrp = rdtgrp->mon.parent; int cpu; /* Give any tasks back to the parent group */ rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask); /* Update per cpu rmid of the moved CPUs first */ for_each_cpu(cpu, &rdtgrp->cpu_mask) per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid; /* * Update the MSR on moved CPUs and CPUs which have moved * task running on them. */ cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); update_closid_rmid(tmpmask, NULL); rdtgrp->flags = RDT_DELETED; free_rmid(rdtgrp->mon.rmid); /* * Remove the rdtgrp from the parent ctrl_mon group's list */ WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list)); list_del(&rdtgrp->mon.crdtgrp_list); /* * one extra hold on this, will drop when we kfree(rdtgrp) * in rdtgroup_kn_unlock() */ kernfs_get(kn); kernfs_remove(rdtgrp->kn); return 0; } static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp, cpumask_var_t tmpmask) { int cpu; /* Give any tasks back to the default group */ rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask); /* Give any CPUs back to the default group */ cpumask_or(&rdtgroup_default.cpu_mask, &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask); /* Update per cpu closid and rmid of the moved CPUs first */ for_each_cpu(cpu, &rdtgrp->cpu_mask) { per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid; per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid; } /* * Update the MSR on moved CPUs and CPUs which have moved * task running on them. */ cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask); update_closid_rmid(tmpmask, NULL); rdtgrp->flags = RDT_DELETED; closid_free(rdtgrp->closid); free_rmid(rdtgrp->mon.rmid); /* * Free all the child monitor group rmids. */ free_all_child_rdtgrp(rdtgrp); list_del(&rdtgrp->rdtgroup_list); /* * one extra hold on this, will drop when we kfree(rdtgrp) * in rdtgroup_kn_unlock() */ kernfs_get(kn); kernfs_remove(rdtgrp->kn); return 0; } static int rdtgroup_rmdir(struct kernfs_node *kn) { struct kernfs_node *parent_kn = kn->parent; struct rdtgroup *rdtgrp; cpumask_var_t tmpmask; int ret = 0; if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL)) return -ENOMEM; rdtgrp = rdtgroup_kn_lock_live(kn); if (!rdtgrp) { ret = -EPERM; goto out; } /* * If the rdtgroup is a ctrl_mon group and parent directory * is the root directory, remove the ctrl_mon group. * * If the rdtgroup is a mon group and parent directory * is a valid "mon_groups" directory, remove the mon group. */ if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask); else if (rdtgrp->type == RDTMON_GROUP && is_mon_groups(parent_kn, kn->name)) ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask); else ret = -EPERM; out: rdtgroup_kn_unlock(kn); free_cpumask_var(tmpmask); return ret; } static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf) { if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled) seq_puts(seq, ",cdp"); return 0; } static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = { .mkdir = rdtgroup_mkdir, .rmdir = rdtgroup_rmdir, .show_options = rdtgroup_show_options, }; static int __init rdtgroup_setup_root(void) { int ret; rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops, KERNFS_ROOT_CREATE_DEACTIVATED, &rdtgroup_default); if (IS_ERR(rdt_root)) return PTR_ERR(rdt_root); mutex_lock(&rdtgroup_mutex); rdtgroup_default.closid = 0; rdtgroup_default.mon.rmid = 0; rdtgroup_default.type = RDTCTRL_GROUP; INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list); list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups); ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE); if (ret) { kernfs_destroy_root(rdt_root); goto out; } rdtgroup_default.kn = rdt_root->kn; kernfs_activate(rdtgroup_default.kn); out: mutex_unlock(&rdtgroup_mutex); return ret; } /* * rdtgroup_init - rdtgroup initialization * * Setup resctrl file system including set up root, create mount point, * register rdtgroup filesystem, and initialize files under root directory. * * Return: 0 on success or -errno */ int __init rdtgroup_init(void) { int ret = 0; ret = rdtgroup_setup_root(); if (ret) return ret; ret = sysfs_create_mount_point(fs_kobj, "resctrl"); if (ret) goto cleanup_root; ret = register_filesystem(&rdt_fs_type); if (ret) goto cleanup_mountpoint; return 0; cleanup_mountpoint: sysfs_remove_mount_point(fs_kobj, "resctrl"); cleanup_root: kernfs_destroy_root(rdt_root); return ret; }