/* * drivers/mtd/nand/pxa3xx_nand.c * * Copyright © 2005 Intel Corporation * Copyright © 2006 Marvell International Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CHIP_DELAY_TIMEOUT (2 * HZ/10) /* registers and bit definitions */ #define NDCR (0x00) /* Control register */ #define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */ #define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */ #define NDSR (0x14) /* Status Register */ #define NDPCR (0x18) /* Page Count Register */ #define NDBDR0 (0x1C) /* Bad Block Register 0 */ #define NDBDR1 (0x20) /* Bad Block Register 1 */ #define NDDB (0x40) /* Data Buffer */ #define NDCB0 (0x48) /* Command Buffer0 */ #define NDCB1 (0x4C) /* Command Buffer1 */ #define NDCB2 (0x50) /* Command Buffer2 */ #define NDCR_SPARE_EN (0x1 << 31) #define NDCR_ECC_EN (0x1 << 30) #define NDCR_DMA_EN (0x1 << 29) #define NDCR_ND_RUN (0x1 << 28) #define NDCR_DWIDTH_C (0x1 << 27) #define NDCR_DWIDTH_M (0x1 << 26) #define NDCR_PAGE_SZ (0x1 << 24) #define NDCR_NCSX (0x1 << 23) #define NDCR_ND_MODE (0x3 << 21) #define NDCR_NAND_MODE (0x0) #define NDCR_CLR_PG_CNT (0x1 << 20) #define NDCR_CLR_ECC (0x1 << 19) #define NDCR_RD_ID_CNT_MASK (0x7 << 16) #define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) #define NDCR_RA_START (0x1 << 15) #define NDCR_PG_PER_BLK (0x1 << 14) #define NDCR_ND_ARB_EN (0x1 << 12) #define NDSR_MASK (0xfff) #define NDSR_RDY (0x1 << 11) #define NDSR_CS0_PAGED (0x1 << 10) #define NDSR_CS1_PAGED (0x1 << 9) #define NDSR_CS0_CMDD (0x1 << 8) #define NDSR_CS1_CMDD (0x1 << 7) #define NDSR_CS0_BBD (0x1 << 6) #define NDSR_CS1_BBD (0x1 << 5) #define NDSR_DBERR (0x1 << 4) #define NDSR_SBERR (0x1 << 3) #define NDSR_WRDREQ (0x1 << 2) #define NDSR_RDDREQ (0x1 << 1) #define NDSR_WRCMDREQ (0x1) #define NDCB0_AUTO_RS (0x1 << 25) #define NDCB0_CSEL (0x1 << 24) #define NDCB0_CMD_TYPE_MASK (0x7 << 21) #define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) #define NDCB0_NC (0x1 << 20) #define NDCB0_DBC (0x1 << 19) #define NDCB0_ADDR_CYC_MASK (0x7 << 16) #define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK) #define NDCB0_CMD2_MASK (0xff << 8) #define NDCB0_CMD1_MASK (0xff) #define NDCB0_ADDR_CYC_SHIFT (16) /* dma-able I/O address for the NAND data and commands */ #define NDCB0_DMA_ADDR (0x43100048) #define NDDB_DMA_ADDR (0x43100040) /* macros for registers read/write */ #define nand_writel(info, off, val) \ __raw_writel((val), (info)->mmio_base + (off)) #define nand_readl(info, off) \ __raw_readl((info)->mmio_base + (off)) /* error code and state */ enum { ERR_NONE = 0, ERR_DMABUSERR = -1, ERR_SENDCMD = -2, ERR_DBERR = -3, ERR_BBERR = -4, ERR_SBERR = -5, }; enum { STATE_READY = 0, STATE_CMD_HANDLE, STATE_DMA_READING, STATE_DMA_WRITING, STATE_DMA_DONE, STATE_PIO_READING, STATE_PIO_WRITING, }; struct pxa3xx_nand_info { struct nand_chip nand_chip; struct platform_device *pdev; const struct pxa3xx_nand_flash *flash_info; struct clk *clk; void __iomem *mmio_base; unsigned int buf_start; unsigned int buf_count; /* DMA information */ int drcmr_dat; int drcmr_cmd; unsigned char *data_buff; dma_addr_t data_buff_phys; size_t data_buff_size; int data_dma_ch; struct pxa_dma_desc *data_desc; dma_addr_t data_desc_addr; uint32_t reg_ndcr; /* saved column/page_addr during CMD_SEQIN */ int seqin_column; int seqin_page_addr; /* relate to the command */ unsigned int state; int use_ecc; /* use HW ECC ? */ int use_dma; /* use DMA ? */ size_t data_size; /* data size in FIFO */ int retcode; struct completion cmd_complete; /* generated NDCBx register values */ uint32_t ndcb0; uint32_t ndcb1; uint32_t ndcb2; /* calculated from pxa3xx_nand_flash data */ size_t oob_size; size_t read_id_bytes; unsigned int col_addr_cycles; unsigned int row_addr_cycles; }; static int use_dma = 1; module_param(use_dma, bool, 0444); MODULE_PARM_DESC(use_dma, "enable DMA for data transfering to/from NAND HW"); /* * Default NAND flash controller configuration setup by the * bootloader. This configuration is used only when pdata->keep_config is set */ static struct pxa3xx_nand_timing default_timing; static struct pxa3xx_nand_flash default_flash; static struct pxa3xx_nand_cmdset smallpage_cmdset = { .read1 = 0x0000, .read2 = 0x0050, .program = 0x1080, .read_status = 0x0070, .read_id = 0x0090, .erase = 0xD060, .reset = 0x00FF, .lock = 0x002A, .unlock = 0x2423, .lock_status = 0x007A, }; static struct pxa3xx_nand_cmdset largepage_cmdset = { .read1 = 0x3000, .read2 = 0x0050, .program = 0x1080, .read_status = 0x0070, .read_id = 0x0090, .erase = 0xD060, .reset = 0x00FF, .lock = 0x002A, .unlock = 0x2423, .lock_status = 0x007A, }; #ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN static struct pxa3xx_nand_timing samsung512MbX16_timing = { .tCH = 10, .tCS = 0, .tWH = 20, .tWP = 40, .tRH = 30, .tRP = 40, .tR = 11123, .tWHR = 110, .tAR = 10, }; static struct pxa3xx_nand_flash samsung512MbX16 = { .timing = &samsung512MbX16_timing, .cmdset = &smallpage_cmdset, .page_per_block = 32, .page_size = 512, .flash_width = 16, .dfc_width = 16, .num_blocks = 4096, .chip_id = 0x46ec, }; static struct pxa3xx_nand_timing micron_timing = { .tCH = 10, .tCS = 25, .tWH = 15, .tWP = 25, .tRH = 15, .tRP = 25, .tR = 25000, .tWHR = 60, .tAR = 10, }; static struct pxa3xx_nand_flash micron1GbX8 = { .timing = µn_timing, .cmdset = &largepage_cmdset, .page_per_block = 64, .page_size = 2048, .flash_width = 8, .dfc_width = 8, .num_blocks = 1024, .chip_id = 0xa12c, }; static struct pxa3xx_nand_flash micron1GbX16 = { .timing = µn_timing, .cmdset = &largepage_cmdset, .page_per_block = 64, .page_size = 2048, .flash_width = 16, .dfc_width = 16, .num_blocks = 1024, .chip_id = 0xb12c, }; static struct pxa3xx_nand_timing stm2GbX16_timing = { .tCH = 10, .tCS = 35, .tWH = 15, .tWP = 25, .tRH = 15, .tRP = 25, .tR = 25000, .tWHR = 60, .tAR = 10, }; static struct pxa3xx_nand_flash stm2GbX16 = { .timing = &stm2GbX16_timing, .cmdset = &largepage_cmdset, .page_per_block = 64, .page_size = 2048, .flash_width = 16, .dfc_width = 16, .num_blocks = 2048, .chip_id = 0xba20, }; static struct pxa3xx_nand_flash *builtin_flash_types[] = { &samsung512MbX16, µn1GbX8, µn1GbX16, &stm2GbX16, }; #endif /* CONFIG_MTD_NAND_PXA3xx_BUILTIN */ #define NDTR0_tCH(c) (min((c), 7) << 19) #define NDTR0_tCS(c) (min((c), 7) << 16) #define NDTR0_tWH(c) (min((c), 7) << 11) #define NDTR0_tWP(c) (min((c), 7) << 8) #define NDTR0_tRH(c) (min((c), 7) << 3) #define NDTR0_tRP(c) (min((c), 7) << 0) #define NDTR1_tR(c) (min((c), 65535) << 16) #define NDTR1_tWHR(c) (min((c), 15) << 4) #define NDTR1_tAR(c) (min((c), 15) << 0) #define tCH_NDTR0(r) (((r) >> 19) & 0x7) #define tCS_NDTR0(r) (((r) >> 16) & 0x7) #define tWH_NDTR0(r) (((r) >> 11) & 0x7) #define tWP_NDTR0(r) (((r) >> 8) & 0x7) #define tRH_NDTR0(r) (((r) >> 3) & 0x7) #define tRP_NDTR0(r) (((r) >> 0) & 0x7) #define tR_NDTR1(r) (((r) >> 16) & 0xffff) #define tWHR_NDTR1(r) (((r) >> 4) & 0xf) #define tAR_NDTR1(r) (((r) >> 0) & 0xf) /* convert nano-seconds to nand flash controller clock cycles */ #define ns2cycle(ns, clk) (int)(((ns) * (clk / 1000000) / 1000) - 1) /* convert nand flash controller clock cycles to nano-seconds */ #define cycle2ns(c, clk) ((((c) + 1) * 1000000 + clk / 500) / (clk / 1000)) static void pxa3xx_nand_set_timing(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_timing *t) { unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0, ndtr1; ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) | NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) | NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) | NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) | NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) | NDTR0_tRP(ns2cycle(t->tRP, nand_clk)); ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) | NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); nand_writel(info, NDTR0CS0, ndtr0); nand_writel(info, NDTR1CS0, ndtr1); } #define WAIT_EVENT_TIMEOUT 10 static int wait_for_event(struct pxa3xx_nand_info *info, uint32_t event) { int timeout = WAIT_EVENT_TIMEOUT; uint32_t ndsr; while (timeout--) { ndsr = nand_readl(info, NDSR) & NDSR_MASK; if (ndsr & event) { nand_writel(info, NDSR, ndsr); return 0; } udelay(10); } return -ETIMEDOUT; } static int prepare_read_prog_cmd(struct pxa3xx_nand_info *info, uint16_t cmd, int column, int page_addr) { const struct pxa3xx_nand_flash *f = info->flash_info; const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; /* calculate data size */ switch (f->page_size) { case 2048: info->data_size = (info->use_ecc) ? 2088 : 2112; break; case 512: info->data_size = (info->use_ecc) ? 520 : 528; break; default: return -EINVAL; } /* generate values for NDCBx registers */ info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); info->ndcb1 = 0; info->ndcb2 = 0; info->ndcb0 |= NDCB0_ADDR_CYC(info->row_addr_cycles + info->col_addr_cycles); if (info->col_addr_cycles == 2) { /* large block, 2 cycles for column address * row address starts from 3rd cycle */ info->ndcb1 |= page_addr << 16; if (info->row_addr_cycles == 3) info->ndcb2 = (page_addr >> 16) & 0xff; } else /* small block, 1 cycles for column address * row address starts from 2nd cycle */ info->ndcb1 = page_addr << 8; if (cmd == cmdset->program) info->ndcb0 |= NDCB0_CMD_TYPE(1) | NDCB0_AUTO_RS; return 0; } static int prepare_erase_cmd(struct pxa3xx_nand_info *info, uint16_t cmd, int page_addr) { info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); info->ndcb0 |= NDCB0_CMD_TYPE(2) | NDCB0_AUTO_RS | NDCB0_ADDR_CYC(3); info->ndcb1 = page_addr; info->ndcb2 = 0; return 0; } static int prepare_other_cmd(struct pxa3xx_nand_info *info, uint16_t cmd) { const struct pxa3xx_nand_cmdset *cmdset = info->flash_info->cmdset; info->ndcb0 = cmd | ((cmd & 0xff00) ? NDCB0_DBC : 0); info->ndcb1 = 0; info->ndcb2 = 0; if (cmd == cmdset->read_id) { info->ndcb0 |= NDCB0_CMD_TYPE(3); info->data_size = 8; } else if (cmd == cmdset->read_status) { info->ndcb0 |= NDCB0_CMD_TYPE(4); info->data_size = 8; } else if (cmd == cmdset->reset || cmd == cmdset->lock || cmd == cmdset->unlock) { info->ndcb0 |= NDCB0_CMD_TYPE(5); } else return -EINVAL; return 0; } static void enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr & ~int_mask); } static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) { uint32_t ndcr; ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr | int_mask); } /* NOTE: it is a must to set ND_RUN firstly, then write command buffer * otherwise, it does not work */ static int write_cmd(struct pxa3xx_nand_info *info) { uint32_t ndcr; /* clear status bits and run */ nand_writel(info, NDSR, NDSR_MASK); ndcr = info->reg_ndcr; ndcr |= info->use_ecc ? NDCR_ECC_EN : 0; ndcr |= info->use_dma ? NDCR_DMA_EN : 0; ndcr |= NDCR_ND_RUN; nand_writel(info, NDCR, ndcr); if (wait_for_event(info, NDSR_WRCMDREQ)) { printk(KERN_ERR "timed out writing command\n"); return -ETIMEDOUT; } nand_writel(info, NDCB0, info->ndcb0); nand_writel(info, NDCB0, info->ndcb1); nand_writel(info, NDCB0, info->ndcb2); return 0; } static int handle_data_pio(struct pxa3xx_nand_info *info) { int ret, timeout = CHIP_DELAY_TIMEOUT; switch (info->state) { case STATE_PIO_WRITING: __raw_writesl(info->mmio_base + NDDB, info->data_buff, DIV_ROUND_UP(info->data_size, 4)); enable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); ret = wait_for_completion_timeout(&info->cmd_complete, timeout); if (!ret) { printk(KERN_ERR "program command time out\n"); return -1; } break; case STATE_PIO_READING: __raw_readsl(info->mmio_base + NDDB, info->data_buff, DIV_ROUND_UP(info->data_size, 4)); break; default: printk(KERN_ERR "%s: invalid state %d\n", __func__, info->state); return -EINVAL; } info->state = STATE_READY; return 0; } static void start_data_dma(struct pxa3xx_nand_info *info, int dir_out) { struct pxa_dma_desc *desc = info->data_desc; int dma_len = ALIGN(info->data_size, 32); desc->ddadr = DDADR_STOP; desc->dcmd = DCMD_ENDIRQEN | DCMD_WIDTH4 | DCMD_BURST32 | dma_len; if (dir_out) { desc->dsadr = info->data_buff_phys; desc->dtadr = NDDB_DMA_ADDR; desc->dcmd |= DCMD_INCSRCADDR | DCMD_FLOWTRG; } else { desc->dtadr = info->data_buff_phys; desc->dsadr = NDDB_DMA_ADDR; desc->dcmd |= DCMD_INCTRGADDR | DCMD_FLOWSRC; } DRCMR(info->drcmr_dat) = DRCMR_MAPVLD | info->data_dma_ch; DDADR(info->data_dma_ch) = info->data_desc_addr; DCSR(info->data_dma_ch) |= DCSR_RUN; } static void pxa3xx_nand_data_dma_irq(int channel, void *data) { struct pxa3xx_nand_info *info = data; uint32_t dcsr; dcsr = DCSR(channel); DCSR(channel) = dcsr; if (dcsr & DCSR_BUSERR) { info->retcode = ERR_DMABUSERR; complete(&info->cmd_complete); } if (info->state == STATE_DMA_WRITING) { info->state = STATE_DMA_DONE; enable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); } else { info->state = STATE_READY; complete(&info->cmd_complete); } } static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) { struct pxa3xx_nand_info *info = devid; unsigned int status; status = nand_readl(info, NDSR); if (status & (NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR)) { if (status & NDSR_DBERR) info->retcode = ERR_DBERR; else if (status & NDSR_SBERR) info->retcode = ERR_SBERR; disable_int(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); if (info->use_dma) { info->state = STATE_DMA_READING; start_data_dma(info, 0); } else { info->state = STATE_PIO_READING; complete(&info->cmd_complete); } } else if (status & NDSR_WRDREQ) { disable_int(info, NDSR_WRDREQ); if (info->use_dma) { info->state = STATE_DMA_WRITING; start_data_dma(info, 1); } else { info->state = STATE_PIO_WRITING; complete(&info->cmd_complete); } } else if (status & (NDSR_CS0_BBD | NDSR_CS0_CMDD)) { if (status & NDSR_CS0_BBD) info->retcode = ERR_BBERR; disable_int(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); info->state = STATE_READY; complete(&info->cmd_complete); } nand_writel(info, NDSR, status); return IRQ_HANDLED; } static int pxa3xx_nand_do_cmd(struct pxa3xx_nand_info *info, uint32_t event) { uint32_t ndcr; int ret, timeout = CHIP_DELAY_TIMEOUT; if (write_cmd(info)) { info->retcode = ERR_SENDCMD; goto fail_stop; } info->state = STATE_CMD_HANDLE; enable_int(info, event); ret = wait_for_completion_timeout(&info->cmd_complete, timeout); if (!ret) { printk(KERN_ERR "command execution timed out\n"); info->retcode = ERR_SENDCMD; goto fail_stop; } if (info->use_dma == 0 && info->data_size > 0) if (handle_data_pio(info)) goto fail_stop; return 0; fail_stop: ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); udelay(10); return -ETIMEDOUT; } static int pxa3xx_nand_dev_ready(struct mtd_info *mtd) { struct pxa3xx_nand_info *info = mtd->priv; return (nand_readl(info, NDSR) & NDSR_RDY) ? 1 : 0; } static inline int is_buf_blank(uint8_t *buf, size_t len) { for (; len > 0; len--) if (*buf++ != 0xff) return 0; return 1; } static void pxa3xx_nand_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct pxa3xx_nand_info *info = mtd->priv; const struct pxa3xx_nand_flash *flash_info = info->flash_info; const struct pxa3xx_nand_cmdset *cmdset = flash_info->cmdset; int ret; info->use_dma = (use_dma) ? 1 : 0; info->use_ecc = 0; info->data_size = 0; info->state = STATE_READY; init_completion(&info->cmd_complete); switch (command) { case NAND_CMD_READOOB: /* disable HW ECC to get all the OOB data */ info->buf_count = mtd->writesize + mtd->oobsize; info->buf_start = mtd->writesize + column; if (prepare_read_prog_cmd(info, cmdset->read1, column, page_addr)) break; pxa3xx_nand_do_cmd(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); /* We only are OOB, so if the data has error, does not matter */ if (info->retcode == ERR_DBERR) info->retcode = ERR_NONE; break; case NAND_CMD_READ0: info->use_ecc = 1; info->retcode = ERR_NONE; info->buf_start = column; info->buf_count = mtd->writesize + mtd->oobsize; memset(info->data_buff, 0xFF, info->buf_count); if (prepare_read_prog_cmd(info, cmdset->read1, column, page_addr)) break; pxa3xx_nand_do_cmd(info, NDSR_RDDREQ | NDSR_DBERR | NDSR_SBERR); if (info->retcode == ERR_DBERR) { /* for blank page (all 0xff), HW will calculate its ECC as * 0, which is different from the ECC information within * OOB, ignore such double bit errors */ if (is_buf_blank(info->data_buff, mtd->writesize)) info->retcode = ERR_NONE; } break; case NAND_CMD_SEQIN: info->buf_start = column; info->buf_count = mtd->writesize + mtd->oobsize; memset(info->data_buff, 0xff, info->buf_count); /* save column/page_addr for next CMD_PAGEPROG */ info->seqin_column = column; info->seqin_page_addr = page_addr; break; case NAND_CMD_PAGEPROG: info->use_ecc = (info->seqin_column >= mtd->writesize) ? 0 : 1; if (prepare_read_prog_cmd(info, cmdset->program, info->seqin_column, info->seqin_page_addr)) break; pxa3xx_nand_do_cmd(info, NDSR_WRDREQ); break; case NAND_CMD_ERASE1: if (prepare_erase_cmd(info, cmdset->erase, page_addr)) break; pxa3xx_nand_do_cmd(info, NDSR_CS0_BBD | NDSR_CS0_CMDD); break; case NAND_CMD_ERASE2: break; case NAND_CMD_READID: case NAND_CMD_STATUS: info->use_dma = 0; /* force PIO read */ info->buf_start = 0; info->buf_count = (command == NAND_CMD_READID) ? info->read_id_bytes : 1; if (prepare_other_cmd(info, (command == NAND_CMD_READID) ? cmdset->read_id : cmdset->read_status)) break; pxa3xx_nand_do_cmd(info, NDSR_RDDREQ); break; case NAND_CMD_RESET: if (prepare_other_cmd(info, cmdset->reset)) break; ret = pxa3xx_nand_do_cmd(info, NDSR_CS0_CMDD); if (ret == 0) { int timeout = 2; uint32_t ndcr; while (timeout--) { if (nand_readl(info, NDSR) & NDSR_RDY) break; msleep(10); } ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); } break; default: printk(KERN_ERR "non-supported command.\n"); break; } if (info->retcode == ERR_DBERR) { printk(KERN_ERR "double bit error @ page %08x\n", page_addr); info->retcode = ERR_NONE; } } static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) { struct pxa3xx_nand_info *info = mtd->priv; char retval = 0xFF; if (info->buf_start < info->buf_count) /* Has just send a new command? */ retval = info->data_buff[info->buf_start++]; return retval; } static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) { struct pxa3xx_nand_info *info = mtd->priv; u16 retval = 0xFFFF; if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { retval = *((u16 *)(info->data_buff+info->buf_start)); info->buf_start += 2; } return retval; } static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct pxa3xx_nand_info *info = mtd->priv; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(buf, info->data_buff + info->buf_start, real_len); info->buf_start += real_len; } static void pxa3xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct pxa3xx_nand_info *info = mtd->priv; int real_len = min_t(size_t, len, info->buf_count - info->buf_start); memcpy(info->data_buff + info->buf_start, buf, real_len); info->buf_start += real_len; } static int pxa3xx_nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { return 0; } static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) { return; } static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) { struct pxa3xx_nand_info *info = mtd->priv; /* pxa3xx_nand_send_command has waited for command complete */ if (this->state == FL_WRITING || this->state == FL_ERASING) { if (info->retcode == ERR_NONE) return 0; else { /* * any error make it return 0x01 which will tell * the caller the erase and write fail */ return 0x01; } } return 0; } static void pxa3xx_nand_ecc_hwctl(struct mtd_info *mtd, int mode) { return; } static int pxa3xx_nand_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, uint8_t *ecc_code) { return 0; } static int pxa3xx_nand_ecc_correct(struct mtd_info *mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { struct pxa3xx_nand_info *info = mtd->priv; /* * Any error include ERR_SEND_CMD, ERR_DBERR, ERR_BUSERR, we * consider it as a ecc error which will tell the caller the * read fail We have distinguish all the errors, but the * nand_read_ecc only check this function return value * * Corrected (single-bit) errors must also be noted. */ if (info->retcode == ERR_SBERR) return 1; else if (info->retcode != ERR_NONE) return -1; return 0; } static int __readid(struct pxa3xx_nand_info *info, uint32_t *id) { const struct pxa3xx_nand_flash *f = info->flash_info; const struct pxa3xx_nand_cmdset *cmdset = f->cmdset; uint32_t ndcr; uint8_t id_buff[8]; if (prepare_other_cmd(info, cmdset->read_id)) { printk(KERN_ERR "failed to prepare command\n"); return -EINVAL; } /* Send command */ if (write_cmd(info)) goto fail_timeout; /* Wait for CMDDM(command done successfully) */ if (wait_for_event(info, NDSR_RDDREQ)) goto fail_timeout; __raw_readsl(info->mmio_base + NDDB, id_buff, 2); *id = id_buff[0] | (id_buff[1] << 8); return 0; fail_timeout: ndcr = nand_readl(info, NDCR); nand_writel(info, NDCR, ndcr & ~NDCR_ND_RUN); udelay(10); return -ETIMEDOUT; } static int pxa3xx_nand_config_flash(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_flash *f) { struct platform_device *pdev = info->pdev; struct pxa3xx_nand_platform_data *pdata = pdev->dev.platform_data; uint32_t ndcr = 0x00000FFF; /* disable all interrupts */ if (f->page_size != 2048 && f->page_size != 512) return -EINVAL; if (f->flash_width != 16 && f->flash_width != 8) return -EINVAL; /* calculate flash information */ info->oob_size = (f->page_size == 2048) ? 64 : 16; info->read_id_bytes = (f->page_size == 2048) ? 4 : 2; /* calculate addressing information */ info->col_addr_cycles = (f->page_size == 2048) ? 2 : 1; if (f->num_blocks * f->page_per_block > 65536) info->row_addr_cycles = 3; else info->row_addr_cycles = 2; ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; ndcr |= (info->col_addr_cycles == 2) ? NDCR_RA_START : 0; ndcr |= (f->page_per_block == 64) ? NDCR_PG_PER_BLK : 0; ndcr |= (f->page_size == 2048) ? NDCR_PAGE_SZ : 0; ndcr |= (f->flash_width == 16) ? NDCR_DWIDTH_M : 0; ndcr |= (f->dfc_width == 16) ? NDCR_DWIDTH_C : 0; ndcr |= NDCR_RD_ID_CNT(info->read_id_bytes); ndcr |= NDCR_SPARE_EN; /* enable spare by default */ info->reg_ndcr = ndcr; pxa3xx_nand_set_timing(info, f->timing); info->flash_info = f; return 0; } static void pxa3xx_nand_detect_timing(struct pxa3xx_nand_info *info, struct pxa3xx_nand_timing *t) { unsigned long nand_clk = clk_get_rate(info->clk); uint32_t ndtr0 = nand_readl(info, NDTR0CS0); uint32_t ndtr1 = nand_readl(info, NDTR1CS0); t->tCH = cycle2ns(tCH_NDTR0(ndtr0), nand_clk); t->tCS = cycle2ns(tCS_NDTR0(ndtr0), nand_clk); t->tWH = cycle2ns(tWH_NDTR0(ndtr0), nand_clk); t->tWP = cycle2ns(tWP_NDTR0(ndtr0), nand_clk); t->tRH = cycle2ns(tRH_NDTR0(ndtr0), nand_clk); t->tRP = cycle2ns(tRP_NDTR0(ndtr0), nand_clk); t->tR = cycle2ns(tR_NDTR1(ndtr1), nand_clk); t->tWHR = cycle2ns(tWHR_NDTR1(ndtr1), nand_clk); t->tAR = cycle2ns(tAR_NDTR1(ndtr1), nand_clk); } static int pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) { uint32_t ndcr = nand_readl(info, NDCR); struct nand_flash_dev *type = NULL; uint32_t id = -1; int i; default_flash.page_per_block = ndcr & NDCR_PG_PER_BLK ? 64 : 32; default_flash.page_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; default_flash.flash_width = ndcr & NDCR_DWIDTH_M ? 16 : 8; default_flash.dfc_width = ndcr & NDCR_DWIDTH_C ? 16 : 8; if (default_flash.page_size == 2048) default_flash.cmdset = &largepage_cmdset; else default_flash.cmdset = &smallpage_cmdset; /* set info fields needed to __readid */ info->flash_info = &default_flash; info->read_id_bytes = (default_flash.page_size == 2048) ? 4 : 2; info->reg_ndcr = ndcr; if (__readid(info, &id)) return -ENODEV; /* Lookup the flash id */ id = (id >> 8) & 0xff; /* device id is byte 2 */ for (i = 0; nand_flash_ids[i].name != NULL; i++) { if (id == nand_flash_ids[i].id) { type = &nand_flash_ids[i]; break; } } if (!type) return -ENODEV; /* fill the missing flash information */ i = __ffs(default_flash.page_per_block * default_flash.page_size); default_flash.num_blocks = type->chipsize << (20 - i); info->oob_size = (default_flash.page_size == 2048) ? 64 : 16; /* calculate addressing information */ info->col_addr_cycles = (default_flash.page_size == 2048) ? 2 : 1; if (default_flash.num_blocks * default_flash.page_per_block > 65536) info->row_addr_cycles = 3; else info->row_addr_cycles = 2; pxa3xx_nand_detect_timing(info, &default_timing); default_flash.timing = &default_timing; return 0; } static int pxa3xx_nand_detect_flash(struct pxa3xx_nand_info *info, const struct pxa3xx_nand_platform_data *pdata) { const struct pxa3xx_nand_flash *f; uint32_t id = -1; int i; if (pdata->keep_config) if (pxa3xx_nand_detect_config(info) == 0) return 0; for (i = 0; inum_flash; ++i) { f = pdata->flash + i; if (pxa3xx_nand_config_flash(info, f)) continue; if (__readid(info, &id)) continue; if (id == f->chip_id) return 0; } #ifdef CONFIG_MTD_NAND_PXA3xx_BUILTIN for (i = 0; i < ARRAY_SIZE(builtin_flash_types); i++) { f = builtin_flash_types[i]; if (pxa3xx_nand_config_flash(info, f)) continue; if (__readid(info, &id)) continue; if (id == f->chip_id) return 0; } #endif dev_warn(&info->pdev->dev, "failed to detect configured nand flash; found %04x instead of\n", id); return -ENODEV; } /* the maximum possible buffer size for large page with OOB data * is: 2048 + 64 = 2112 bytes, allocate a page here for both the * data buffer and the DMA descriptor */ #define MAX_BUFF_SIZE PAGE_SIZE static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) { struct platform_device *pdev = info->pdev; int data_desc_offset = MAX_BUFF_SIZE - sizeof(struct pxa_dma_desc); if (use_dma == 0) { info->data_buff = kmalloc(MAX_BUFF_SIZE, GFP_KERNEL); if (info->data_buff == NULL) return -ENOMEM; return 0; } info->data_buff = dma_alloc_coherent(&pdev->dev, MAX_BUFF_SIZE, &info->data_buff_phys, GFP_KERNEL); if (info->data_buff == NULL) { dev_err(&pdev->dev, "failed to allocate dma buffer\n"); return -ENOMEM; } info->data_buff_size = MAX_BUFF_SIZE; info->data_desc = (void *)info->data_buff + data_desc_offset; info->data_desc_addr = info->data_buff_phys + data_desc_offset; info->data_dma_ch = pxa_request_dma("nand-data", DMA_PRIO_LOW, pxa3xx_nand_data_dma_irq, info); if (info->data_dma_ch < 0) { dev_err(&pdev->dev, "failed to request data dma\n"); dma_free_coherent(&pdev->dev, info->data_buff_size, info->data_buff, info->data_buff_phys); return info->data_dma_ch; } return 0; } static struct nand_ecclayout hw_smallpage_ecclayout = { .eccbytes = 6, .eccpos = {8, 9, 10, 11, 12, 13 }, .oobfree = { {2, 6} } }; static struct nand_ecclayout hw_largepage_ecclayout = { .eccbytes = 24, .eccpos = { 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {2, 38} } }; static void pxa3xx_nand_init_mtd(struct mtd_info *mtd, struct pxa3xx_nand_info *info) { const struct pxa3xx_nand_flash *f = info->flash_info; struct nand_chip *this = &info->nand_chip; this->options = (f->flash_width == 16) ? NAND_BUSWIDTH_16: 0; this->waitfunc = pxa3xx_nand_waitfunc; this->select_chip = pxa3xx_nand_select_chip; this->dev_ready = pxa3xx_nand_dev_ready; this->cmdfunc = pxa3xx_nand_cmdfunc; this->read_word = pxa3xx_nand_read_word; this->read_byte = pxa3xx_nand_read_byte; this->read_buf = pxa3xx_nand_read_buf; this->write_buf = pxa3xx_nand_write_buf; this->verify_buf = pxa3xx_nand_verify_buf; this->ecc.mode = NAND_ECC_HW; this->ecc.hwctl = pxa3xx_nand_ecc_hwctl; this->ecc.calculate = pxa3xx_nand_ecc_calculate; this->ecc.correct = pxa3xx_nand_ecc_correct; this->ecc.size = f->page_size; if (f->page_size == 2048) this->ecc.layout = &hw_largepage_ecclayout; else this->ecc.layout = &hw_smallpage_ecclayout; this->chip_delay = 25; } static int pxa3xx_nand_probe(struct platform_device *pdev) { struct pxa3xx_nand_platform_data *pdata; struct pxa3xx_nand_info *info; struct nand_chip *this; struct mtd_info *mtd; struct resource *r; int ret = 0, irq; pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "no platform data defined\n"); return -ENODEV; } mtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct pxa3xx_nand_info), GFP_KERNEL); if (!mtd) { dev_err(&pdev->dev, "failed to allocate memory\n"); return -ENOMEM; } info = (struct pxa3xx_nand_info *)(&mtd[1]); info->pdev = pdev; this = &info->nand_chip; mtd->priv = info; mtd->owner = THIS_MODULE; info->clk = clk_get(&pdev->dev, NULL); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get nand clock\n"); ret = PTR_ERR(info->clk); goto fail_free_mtd; } clk_enable(info->clk); r = platform_get_resource(pdev, IORESOURCE_DMA, 0); if (r == NULL) { dev_err(&pdev->dev, "no resource defined for data DMA\n"); ret = -ENXIO; goto fail_put_clk; } info->drcmr_dat = r->start; r = platform_get_resource(pdev, IORESOURCE_DMA, 1); if (r == NULL) { dev_err(&pdev->dev, "no resource defined for command DMA\n"); ret = -ENXIO; goto fail_put_clk; } info->drcmr_cmd = r->start; irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no IRQ resource defined\n"); ret = -ENXIO; goto fail_put_clk; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { dev_err(&pdev->dev, "no IO memory resource defined\n"); ret = -ENODEV; goto fail_put_clk; } r = request_mem_region(r->start, resource_size(r), pdev->name); if (r == NULL) { dev_err(&pdev->dev, "failed to request memory resource\n"); ret = -EBUSY; goto fail_put_clk; } info->mmio_base = ioremap(r->start, resource_size(r)); if (info->mmio_base == NULL) { dev_err(&pdev->dev, "ioremap() failed\n"); ret = -ENODEV; goto fail_free_res; } ret = pxa3xx_nand_init_buff(info); if (ret) goto fail_free_io; ret = request_irq(IRQ_NAND, pxa3xx_nand_irq, IRQF_DISABLED, pdev->name, info); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ\n"); goto fail_free_buf; } ret = pxa3xx_nand_detect_flash(info, pdata); if (ret) { dev_err(&pdev->dev, "failed to detect flash\n"); ret = -ENODEV; goto fail_free_irq; } pxa3xx_nand_init_mtd(mtd, info); platform_set_drvdata(pdev, mtd); if (nand_scan(mtd, 1)) { dev_err(&pdev->dev, "failed to scan nand\n"); ret = -ENXIO; goto fail_free_irq; } return add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts); fail_free_irq: free_irq(IRQ_NAND, info); fail_free_buf: if (use_dma) { pxa_free_dma(info->data_dma_ch); dma_free_coherent(&pdev->dev, info->data_buff_size, info->data_buff, info->data_buff_phys); } else kfree(info->data_buff); fail_free_io: iounmap(info->mmio_base); fail_free_res: release_mem_region(r->start, resource_size(r)); fail_put_clk: clk_disable(info->clk); clk_put(info->clk); fail_free_mtd: kfree(mtd); return ret; } static int pxa3xx_nand_remove(struct platform_device *pdev) { struct mtd_info *mtd = platform_get_drvdata(pdev); struct pxa3xx_nand_info *info = mtd->priv; struct resource *r; platform_set_drvdata(pdev, NULL); del_mtd_device(mtd); del_mtd_partitions(mtd); free_irq(IRQ_NAND, info); if (use_dma) { pxa_free_dma(info->data_dma_ch); dma_free_writecombine(&pdev->dev, info->data_buff_size, info->data_buff, info->data_buff_phys); } else kfree(info->data_buff); iounmap(info->mmio_base); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(r->start, resource_size(r)); clk_disable(info->clk); clk_put(info->clk); kfree(mtd); return 0; } #ifdef CONFIG_PM static int pxa3xx_nand_suspend(struct platform_device *pdev, pm_message_t state) { struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(pdev); struct pxa3xx_nand_info *info = mtd->priv; if (info->state != STATE_READY) { dev_err(&pdev->dev, "driver busy, state = %d\n", info->state); return -EAGAIN; } return 0; } static int pxa3xx_nand_resume(struct platform_device *pdev) { struct mtd_info *mtd = (struct mtd_info *)platform_get_drvdata(pdev); struct pxa3xx_nand_info *info = mtd->priv; clk_enable(info->clk); return pxa3xx_nand_config_flash(info, info->flash_info); } #else #define pxa3xx_nand_suspend NULL #define pxa3xx_nand_resume NULL #endif static struct platform_driver pxa3xx_nand_driver = { .driver = { .name = "pxa3xx-nand", }, .probe = pxa3xx_nand_probe, .remove = pxa3xx_nand_remove, .suspend = pxa3xx_nand_suspend, .resume = pxa3xx_nand_resume, }; static int __init pxa3xx_nand_init(void) { return platform_driver_register(&pxa3xx_nand_driver); } module_init(pxa3xx_nand_init); static void __exit pxa3xx_nand_exit(void) { platform_driver_unregister(&pxa3xx_nand_driver); } module_exit(pxa3xx_nand_exit); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("PXA3xx NAND controller driver");