/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1992 Ross Biro * Copyright (C) Linus Torvalds * Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle * Copyright (C) 1996 David S. Miller * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com * Copyright (C) 1999 MIPS Technologies, Inc. * Copyright (C) 2000 Ulf Carlsson * * At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit * binaries. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include /* * Called by kernel/ptrace.c when detaching.. * * Make sure single step bits etc are not set. */ void ptrace_disable(struct task_struct *child) { /* Don't load the watchpoint registers for the ex-child. */ clear_tsk_thread_flag(child, TIF_LOAD_WATCH); } /* * Read a general register set. We always use the 64-bit format, even * for 32-bit kernels and for 32-bit processes on a 64-bit kernel. * Registers are sign extended to fill the available space. */ int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data) { struct pt_regs *regs; int i; if (!access_ok(VERIFY_WRITE, data, 38 * 8)) return -EIO; regs = task_pt_regs(child); for (i = 0; i < 32; i++) __put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]); __put_user((long)regs->lo, (__s64 __user *)&data->lo); __put_user((long)regs->hi, (__s64 __user *)&data->hi); __put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc); __put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr); __put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status); __put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause); return 0; } /* * Write a general register set. As for PTRACE_GETREGS, we always use * the 64-bit format. On a 32-bit kernel only the lower order half * (according to endianness) will be used. */ int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data) { struct pt_regs *regs; int i; if (!access_ok(VERIFY_READ, data, 38 * 8)) return -EIO; regs = task_pt_regs(child); for (i = 0; i < 32; i++) __get_user(regs->regs[i], (__s64 __user *)&data->regs[i]); __get_user(regs->lo, (__s64 __user *)&data->lo); __get_user(regs->hi, (__s64 __user *)&data->hi); __get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc); /* badvaddr, status, and cause may not be written. */ return 0; } int ptrace_getfpregs(struct task_struct *child, __u32 __user *data) { int i; if (!access_ok(VERIFY_WRITE, data, 33 * 8)) return -EIO; if (tsk_used_math(child)) { union fpureg *fregs = get_fpu_regs(child); for (i = 0; i < 32; i++) __put_user(get_fpr64(&fregs[i], 0), i + (__u64 __user *)data); } else { for (i = 0; i < 32; i++) __put_user((__u64) -1, i + (__u64 __user *) data); } __put_user(child->thread.fpu.fcr31, data + 64); __put_user(boot_cpu_data.fpu_id, data + 65); return 0; } int ptrace_setfpregs(struct task_struct *child, __u32 __user *data) { union fpureg *fregs; u64 fpr_val; int i; if (!access_ok(VERIFY_READ, data, 33 * 8)) return -EIO; fregs = get_fpu_regs(child); for (i = 0; i < 32; i++) { __get_user(fpr_val, i + (__u64 __user *)data); set_fpr64(&fregs[i], 0, fpr_val); } __get_user(child->thread.fpu.fcr31, data + 64); /* FIR may not be written. */ return 0; } int ptrace_get_watch_regs(struct task_struct *child, struct pt_watch_regs __user *addr) { enum pt_watch_style style; int i; if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0) return -EIO; if (!access_ok(VERIFY_WRITE, addr, sizeof(struct pt_watch_regs))) return -EIO; #ifdef CONFIG_32BIT style = pt_watch_style_mips32; #define WATCH_STYLE mips32 #else style = pt_watch_style_mips64; #define WATCH_STYLE mips64 #endif __put_user(style, &addr->style); __put_user(boot_cpu_data.watch_reg_use_cnt, &addr->WATCH_STYLE.num_valid); for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) { __put_user(child->thread.watch.mips3264.watchlo[i], &addr->WATCH_STYLE.watchlo[i]); __put_user(child->thread.watch.mips3264.watchhi[i] & 0xfff, &addr->WATCH_STYLE.watchhi[i]); __put_user(boot_cpu_data.watch_reg_masks[i], &addr->WATCH_STYLE.watch_masks[i]); } for (; i < 8; i++) { __put_user(0, &addr->WATCH_STYLE.watchlo[i]); __put_user(0, &addr->WATCH_STYLE.watchhi[i]); __put_user(0, &addr->WATCH_STYLE.watch_masks[i]); } return 0; } int ptrace_set_watch_regs(struct task_struct *child, struct pt_watch_regs __user *addr) { int i; int watch_active = 0; unsigned long lt[NUM_WATCH_REGS]; u16 ht[NUM_WATCH_REGS]; if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0) return -EIO; if (!access_ok(VERIFY_READ, addr, sizeof(struct pt_watch_regs))) return -EIO; /* Check the values. */ for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) { __get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]); #ifdef CONFIG_32BIT if (lt[i] & __UA_LIMIT) return -EINVAL; #else if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) { if (lt[i] & 0xffffffff80000000UL) return -EINVAL; } else { if (lt[i] & __UA_LIMIT) return -EINVAL; } #endif __get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]); if (ht[i] & ~0xff8) return -EINVAL; } /* Install them. */ for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) { if (lt[i] & 7) watch_active = 1; child->thread.watch.mips3264.watchlo[i] = lt[i]; /* Set the G bit. */ child->thread.watch.mips3264.watchhi[i] = ht[i]; } if (watch_active) set_tsk_thread_flag(child, TIF_LOAD_WATCH); else clear_tsk_thread_flag(child, TIF_LOAD_WATCH); return 0; } /* regset get/set implementations */ #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32) static int gpr32_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { struct pt_regs *regs = task_pt_regs(target); u32 uregs[ELF_NGREG] = {}; unsigned i; for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) { /* k0/k1 are copied as zero. */ if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27) continue; uregs[i] = regs->regs[i - MIPS32_EF_R0]; } uregs[MIPS32_EF_LO] = regs->lo; uregs[MIPS32_EF_HI] = regs->hi; uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc; uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr; uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status; uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause; return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, sizeof(uregs)); } static int gpr32_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct pt_regs *regs = task_pt_regs(target); u32 uregs[ELF_NGREG]; unsigned start, num_regs, i; int err; start = pos / sizeof(u32); num_regs = count / sizeof(u32); if (start + num_regs > ELF_NGREG) return -EIO; err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, sizeof(uregs)); if (err) return err; for (i = start; i < num_regs; i++) { /* * Cast all values to signed here so that if this is a 64-bit * kernel, the supplied 32-bit values will be sign extended. */ switch (i) { case MIPS32_EF_R1 ... MIPS32_EF_R25: /* k0/k1 are ignored. */ case MIPS32_EF_R28 ... MIPS32_EF_R31: regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i]; break; case MIPS32_EF_LO: regs->lo = (s32)uregs[i]; break; case MIPS32_EF_HI: regs->hi = (s32)uregs[i]; break; case MIPS32_EF_CP0_EPC: regs->cp0_epc = (s32)uregs[i]; break; } } return 0; } #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */ #ifdef CONFIG_64BIT static int gpr64_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { struct pt_regs *regs = task_pt_regs(target); u64 uregs[ELF_NGREG] = {}; unsigned i; for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) { /* k0/k1 are copied as zero. */ if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27) continue; uregs[i] = regs->regs[i - MIPS64_EF_R0]; } uregs[MIPS64_EF_LO] = regs->lo; uregs[MIPS64_EF_HI] = regs->hi; uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc; uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr; uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status; uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause; return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0, sizeof(uregs)); } static int gpr64_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { struct pt_regs *regs = task_pt_regs(target); u64 uregs[ELF_NGREG]; unsigned start, num_regs, i; int err; start = pos / sizeof(u64); num_regs = count / sizeof(u64); if (start + num_regs > ELF_NGREG) return -EIO; err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0, sizeof(uregs)); if (err) return err; for (i = start; i < num_regs; i++) { switch (i) { case MIPS64_EF_R1 ... MIPS64_EF_R25: /* k0/k1 are ignored. */ case MIPS64_EF_R28 ... MIPS64_EF_R31: regs->regs[i - MIPS64_EF_R0] = uregs[i]; break; case MIPS64_EF_LO: regs->lo = uregs[i]; break; case MIPS64_EF_HI: regs->hi = uregs[i]; break; case MIPS64_EF_CP0_EPC: regs->cp0_epc = uregs[i]; break; } } return 0; } #endif /* CONFIG_64BIT */ static int fpr_get(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, void *kbuf, void __user *ubuf) { unsigned i; int err; u64 fpr_val; /* XXX fcr31 */ if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t)) return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &target->thread.fpu, 0, sizeof(elf_fpregset_t)); for (i = 0; i < NUM_FPU_REGS; i++) { fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0); err = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fpr_val, i * sizeof(elf_fpreg_t), (i + 1) * sizeof(elf_fpreg_t)); if (err) return err; } return 0; } static int fpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { unsigned i; int err; u64 fpr_val; /* XXX fcr31 */ if (sizeof(target->thread.fpu.fpr[i]) == sizeof(elf_fpreg_t)) return user_regset_copyin(&pos, &count, &kbuf, &ubuf, &target->thread.fpu, 0, sizeof(elf_fpregset_t)); for (i = 0; i < NUM_FPU_REGS; i++) { err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpr_val, i * sizeof(elf_fpreg_t), (i + 1) * sizeof(elf_fpreg_t)); if (err) return err; set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val); } return 0; } enum mips_regset { REGSET_GPR, REGSET_FPR, }; #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32) static const struct user_regset mips_regsets[] = { [REGSET_GPR] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(unsigned int), .align = sizeof(unsigned int), .get = gpr32_get, .set = gpr32_set, }, [REGSET_FPR] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), .get = fpr_get, .set = fpr_set, }, }; static const struct user_regset_view user_mips_view = { .name = "mips", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, .regsets = mips_regsets, .n = ARRAY_SIZE(mips_regsets), }; #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */ #ifdef CONFIG_64BIT static const struct user_regset mips64_regsets[] = { [REGSET_GPR] = { .core_note_type = NT_PRSTATUS, .n = ELF_NGREG, .size = sizeof(unsigned long), .align = sizeof(unsigned long), .get = gpr64_get, .set = gpr64_set, }, [REGSET_FPR] = { .core_note_type = NT_PRFPREG, .n = ELF_NFPREG, .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t), .get = fpr_get, .set = fpr_set, }, }; static const struct user_regset_view user_mips64_view = { .name = "mips64", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI, .regsets = mips64_regsets, .n = ARRAY_SIZE(mips64_regsets), }; #endif /* CONFIG_64BIT */ const struct user_regset_view *task_user_regset_view(struct task_struct *task) { #ifdef CONFIG_32BIT return &user_mips_view; #else #ifdef CONFIG_MIPS32_O32 if (test_tsk_thread_flag(task, TIF_32BIT_REGS)) return &user_mips_view; #endif return &user_mips64_view; #endif } long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { int ret; void __user *addrp = (void __user *) addr; void __user *datavp = (void __user *) data; unsigned long __user *datalp = (void __user *) data; switch (request) { /* when I and D space are separate, these will need to be fixed. */ case PTRACE_PEEKTEXT: /* read word at location addr. */ case PTRACE_PEEKDATA: ret = generic_ptrace_peekdata(child, addr, data); break; /* Read the word at location addr in the USER area. */ case PTRACE_PEEKUSR: { struct pt_regs *regs; union fpureg *fregs; unsigned long tmp = 0; regs = task_pt_regs(child); ret = 0; /* Default return value. */ switch (addr) { case 0 ... 31: tmp = regs->regs[addr]; break; case FPR_BASE ... FPR_BASE + 31: if (!tsk_used_math(child)) { /* FP not yet used */ tmp = -1; break; } fregs = get_fpu_regs(child); #ifdef CONFIG_32BIT if (test_thread_flag(TIF_32BIT_FPREGS)) { /* * The odd registers are actually the high * order bits of the values stored in the even * registers - unless we're using r2k_switch.S. */ tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE], addr & 1); break; } #endif tmp = get_fpr32(&fregs[addr - FPR_BASE], 0); break; case PC: tmp = regs->cp0_epc; break; case CAUSE: tmp = regs->cp0_cause; break; case BADVADDR: tmp = regs->cp0_badvaddr; break; case MMHI: tmp = regs->hi; break; case MMLO: tmp = regs->lo; break; #ifdef CONFIG_CPU_HAS_SMARTMIPS case ACX: tmp = regs->acx; break; #endif case FPC_CSR: tmp = child->thread.fpu.fcr31; break; case FPC_EIR: /* implementation / version register */ tmp = boot_cpu_data.fpu_id; break; case DSP_BASE ... DSP_BASE + 5: { dspreg_t *dregs; if (!cpu_has_dsp) { tmp = 0; ret = -EIO; goto out; } dregs = __get_dsp_regs(child); tmp = (unsigned long) (dregs[addr - DSP_BASE]); break; } case DSP_CONTROL: if (!cpu_has_dsp) { tmp = 0; ret = -EIO; goto out; } tmp = child->thread.dsp.dspcontrol; break; default: tmp = 0; ret = -EIO; goto out; } ret = put_user(tmp, datalp); break; } /* when I and D space are separate, this will have to be fixed. */ case PTRACE_POKETEXT: /* write the word at location addr. */ case PTRACE_POKEDATA: ret = generic_ptrace_pokedata(child, addr, data); break; case PTRACE_POKEUSR: { struct pt_regs *regs; ret = 0; regs = task_pt_regs(child); switch (addr) { case 0 ... 31: regs->regs[addr] = data; break; case FPR_BASE ... FPR_BASE + 31: { union fpureg *fregs = get_fpu_regs(child); if (!tsk_used_math(child)) { /* FP not yet used */ memset(&child->thread.fpu, ~0, sizeof(child->thread.fpu)); child->thread.fpu.fcr31 = 0; } #ifdef CONFIG_32BIT if (test_thread_flag(TIF_32BIT_FPREGS)) { /* * The odd registers are actually the high * order bits of the values stored in the even * registers - unless we're using r2k_switch.S. */ set_fpr32(&fregs[(addr & ~1) - FPR_BASE], addr & 1, data); break; } #endif set_fpr64(&fregs[addr - FPR_BASE], 0, data); break; } case PC: regs->cp0_epc = data; break; case MMHI: regs->hi = data; break; case MMLO: regs->lo = data; break; #ifdef CONFIG_CPU_HAS_SMARTMIPS case ACX: regs->acx = data; break; #endif case FPC_CSR: child->thread.fpu.fcr31 = data; break; case DSP_BASE ... DSP_BASE + 5: { dspreg_t *dregs; if (!cpu_has_dsp) { ret = -EIO; break; } dregs = __get_dsp_regs(child); dregs[addr - DSP_BASE] = data; break; } case DSP_CONTROL: if (!cpu_has_dsp) { ret = -EIO; break; } child->thread.dsp.dspcontrol = data; break; default: /* The rest are not allowed. */ ret = -EIO; break; } break; } case PTRACE_GETREGS: ret = ptrace_getregs(child, datavp); break; case PTRACE_SETREGS: ret = ptrace_setregs(child, datavp); break; case PTRACE_GETFPREGS: ret = ptrace_getfpregs(child, datavp); break; case PTRACE_SETFPREGS: ret = ptrace_setfpregs(child, datavp); break; case PTRACE_GET_THREAD_AREA: ret = put_user(task_thread_info(child)->tp_value, datalp); break; case PTRACE_GET_WATCH_REGS: ret = ptrace_get_watch_regs(child, addrp); break; case PTRACE_SET_WATCH_REGS: ret = ptrace_set_watch_regs(child, addrp); break; default: ret = ptrace_request(child, request, addr, data); break; } out: return ret; } /* * Notification of system call entry/exit * - triggered by current->work.syscall_trace */ asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall) { long ret = 0; user_exit(); if (secure_computing(syscall) == -1) return -1; if (test_thread_flag(TIF_SYSCALL_TRACE) && tracehook_report_syscall_entry(regs)) ret = -1; if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_enter(regs, regs->regs[2]); audit_syscall_entry(syscall_get_arch(), syscall, regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]); return syscall; } /* * Notification of system call entry/exit * - triggered by current->work.syscall_trace */ asmlinkage void syscall_trace_leave(struct pt_regs *regs) { /* * We may come here right after calling schedule_user() * or do_notify_resume(), in which case we can be in RCU * user mode. */ user_exit(); audit_syscall_exit(regs); if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT))) trace_sys_exit(regs, regs->regs[2]); if (test_thread_flag(TIF_SYSCALL_TRACE)) tracehook_report_syscall_exit(regs, 0); user_enter(); }