/* * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo * * Parts came from builtin-{top,stat,record}.c, see those files for further * copyright notes. * * Released under the GPL v2. (and only v2, not any later version) */ #include "util.h" #include #include #include "cpumap.h" #include "thread_map.h" #include "target.h" #include "evlist.h" #include "evsel.h" #include #include "parse-events.h" #include #include #include #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y)) #define SID(e, x, y) xyarray__entry(e->sample_id, x, y) void perf_evlist__init(struct perf_evlist *evlist, struct cpu_map *cpus, struct thread_map *threads) { int i; for (i = 0; i < PERF_EVLIST__HLIST_SIZE; ++i) INIT_HLIST_HEAD(&evlist->heads[i]); INIT_LIST_HEAD(&evlist->entries); perf_evlist__set_maps(evlist, cpus, threads); evlist->workload.pid = -1; } struct perf_evlist *perf_evlist__new(void) { struct perf_evlist *evlist = zalloc(sizeof(*evlist)); if (evlist != NULL) perf_evlist__init(evlist, NULL, NULL); return evlist; } void perf_evlist__config(struct perf_evlist *evlist, struct perf_record_opts *opts) { struct perf_evsel *evsel; /* * Set the evsel leader links before we configure attributes, * since some might depend on this info. */ if (opts->group) perf_evlist__set_leader(evlist); if (evlist->cpus->map[0] < 0) opts->no_inherit = true; list_for_each_entry(evsel, &evlist->entries, node) { perf_evsel__config(evsel, opts); if (evlist->nr_entries > 1) perf_evsel__set_sample_id(evsel); } } static void perf_evlist__purge(struct perf_evlist *evlist) { struct perf_evsel *pos, *n; list_for_each_entry_safe(pos, n, &evlist->entries, node) { list_del_init(&pos->node); perf_evsel__delete(pos); } evlist->nr_entries = 0; } void perf_evlist__exit(struct perf_evlist *evlist) { free(evlist->mmap); free(evlist->pollfd); evlist->mmap = NULL; evlist->pollfd = NULL; } void perf_evlist__delete(struct perf_evlist *evlist) { perf_evlist__purge(evlist); perf_evlist__exit(evlist); free(evlist); } void perf_evlist__add(struct perf_evlist *evlist, struct perf_evsel *entry) { list_add_tail(&entry->node, &evlist->entries); ++evlist->nr_entries; } void perf_evlist__splice_list_tail(struct perf_evlist *evlist, struct list_head *list, int nr_entries) { list_splice_tail(list, &evlist->entries); evlist->nr_entries += nr_entries; } void __perf_evlist__set_leader(struct list_head *list) { struct perf_evsel *evsel, *leader; leader = list_entry(list->next, struct perf_evsel, node); evsel = list_entry(list->prev, struct perf_evsel, node); leader->nr_members = evsel->idx - leader->idx + 1; list_for_each_entry(evsel, list, node) { evsel->leader = leader; } } void perf_evlist__set_leader(struct perf_evlist *evlist) { if (evlist->nr_entries) { evlist->nr_groups = evlist->nr_entries > 1 ? 1 : 0; __perf_evlist__set_leader(&evlist->entries); } } int perf_evlist__add_default(struct perf_evlist *evlist) { struct perf_event_attr attr = { .type = PERF_TYPE_HARDWARE, .config = PERF_COUNT_HW_CPU_CYCLES, }; struct perf_evsel *evsel; event_attr_init(&attr); evsel = perf_evsel__new(&attr, 0); if (evsel == NULL) goto error; /* use strdup() because free(evsel) assumes name is allocated */ evsel->name = strdup("cycles"); if (!evsel->name) goto error_free; perf_evlist__add(evlist, evsel); return 0; error_free: perf_evsel__delete(evsel); error: return -ENOMEM; } static int perf_evlist__add_attrs(struct perf_evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { struct perf_evsel *evsel, *n; LIST_HEAD(head); size_t i; for (i = 0; i < nr_attrs; i++) { evsel = perf_evsel__new(attrs + i, evlist->nr_entries + i); if (evsel == NULL) goto out_delete_partial_list; list_add_tail(&evsel->node, &head); } perf_evlist__splice_list_tail(evlist, &head, nr_attrs); return 0; out_delete_partial_list: list_for_each_entry_safe(evsel, n, &head, node) perf_evsel__delete(evsel); return -1; } int __perf_evlist__add_default_attrs(struct perf_evlist *evlist, struct perf_event_attr *attrs, size_t nr_attrs) { size_t i; for (i = 0; i < nr_attrs; i++) event_attr_init(attrs + i); return perf_evlist__add_attrs(evlist, attrs, nr_attrs); } struct perf_evsel * perf_evlist__find_tracepoint_by_id(struct perf_evlist *evlist, int id) { struct perf_evsel *evsel; list_for_each_entry(evsel, &evlist->entries, node) { if (evsel->attr.type == PERF_TYPE_TRACEPOINT && (int)evsel->attr.config == id) return evsel; } return NULL; } int perf_evlist__add_newtp(struct perf_evlist *evlist, const char *sys, const char *name, void *handler) { struct perf_evsel *evsel; evsel = perf_evsel__newtp(sys, name, evlist->nr_entries); if (evsel == NULL) return -1; evsel->handler.func = handler; perf_evlist__add(evlist, evsel); return 0; } void perf_evlist__disable(struct perf_evlist *evlist) { int cpu, thread; struct perf_evsel *pos; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); for (cpu = 0; cpu < nr_cpus; cpu++) { list_for_each_entry(pos, &evlist->entries, node) { if (!perf_evsel__is_group_leader(pos)) continue; for (thread = 0; thread < nr_threads; thread++) ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_DISABLE, 0); } } } void perf_evlist__enable(struct perf_evlist *evlist) { int cpu, thread; struct perf_evsel *pos; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); for (cpu = 0; cpu < nr_cpus; cpu++) { list_for_each_entry(pos, &evlist->entries, node) { if (!perf_evsel__is_group_leader(pos)) continue; for (thread = 0; thread < nr_threads; thread++) ioctl(FD(pos, cpu, thread), PERF_EVENT_IOC_ENABLE, 0); } } } static int perf_evlist__alloc_pollfd(struct perf_evlist *evlist) { int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); int nfds = nr_cpus * nr_threads * evlist->nr_entries; evlist->pollfd = malloc(sizeof(struct pollfd) * nfds); return evlist->pollfd != NULL ? 0 : -ENOMEM; } void perf_evlist__add_pollfd(struct perf_evlist *evlist, int fd) { fcntl(fd, F_SETFL, O_NONBLOCK); evlist->pollfd[evlist->nr_fds].fd = fd; evlist->pollfd[evlist->nr_fds].events = POLLIN; evlist->nr_fds++; } static void perf_evlist__id_hash(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, u64 id) { int hash; struct perf_sample_id *sid = SID(evsel, cpu, thread); sid->id = id; sid->evsel = evsel; hash = hash_64(sid->id, PERF_EVLIST__HLIST_BITS); hlist_add_head(&sid->node, &evlist->heads[hash]); } void perf_evlist__id_add(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, u64 id) { perf_evlist__id_hash(evlist, evsel, cpu, thread, id); evsel->id[evsel->ids++] = id; } static int perf_evlist__id_add_fd(struct perf_evlist *evlist, struct perf_evsel *evsel, int cpu, int thread, int fd) { u64 read_data[4] = { 0, }; int id_idx = 1; /* The first entry is the counter value */ if (!(evsel->attr.read_format & PERF_FORMAT_ID) || read(fd, &read_data, sizeof(read_data)) == -1) return -1; if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) ++id_idx; if (evsel->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) ++id_idx; perf_evlist__id_add(evlist, evsel, cpu, thread, read_data[id_idx]); return 0; } struct perf_evsel *perf_evlist__id2evsel(struct perf_evlist *evlist, u64 id) { struct hlist_head *head; struct hlist_node *pos; struct perf_sample_id *sid; int hash; if (evlist->nr_entries == 1) return perf_evlist__first(evlist); hash = hash_64(id, PERF_EVLIST__HLIST_BITS); head = &evlist->heads[hash]; hlist_for_each_entry(sid, pos, head, node) if (sid->id == id) return sid->evsel; if (!perf_evlist__sample_id_all(evlist)) return perf_evlist__first(evlist); return NULL; } union perf_event *perf_evlist__mmap_read(struct perf_evlist *evlist, int idx) { struct perf_mmap *md = &evlist->mmap[idx]; unsigned int head = perf_mmap__read_head(md); unsigned int old = md->prev; unsigned char *data = md->base + page_size; union perf_event *event = NULL; if (evlist->overwrite) { /* * If we're further behind than half the buffer, there's a chance * the writer will bite our tail and mess up the samples under us. * * If we somehow ended up ahead of the head, we got messed up. * * In either case, truncate and restart at head. */ int diff = head - old; if (diff > md->mask / 2 || diff < 0) { fprintf(stderr, "WARNING: failed to keep up with mmap data.\n"); /* * head points to a known good entry, start there. */ old = head; } } if (old != head) { size_t size; event = (union perf_event *)&data[old & md->mask]; size = event->header.size; /* * Event straddles the mmap boundary -- header should always * be inside due to u64 alignment of output. */ if ((old & md->mask) + size != ((old + size) & md->mask)) { unsigned int offset = old; unsigned int len = min(sizeof(*event), size), cpy; void *dst = &md->event_copy; do { cpy = min(md->mask + 1 - (offset & md->mask), len); memcpy(dst, &data[offset & md->mask], cpy); offset += cpy; dst += cpy; len -= cpy; } while (len); event = &md->event_copy; } old += size; } md->prev = old; if (!evlist->overwrite) perf_mmap__write_tail(md, old); return event; } void perf_evlist__munmap(struct perf_evlist *evlist) { int i; for (i = 0; i < evlist->nr_mmaps; i++) { if (evlist->mmap[i].base != NULL) { munmap(evlist->mmap[i].base, evlist->mmap_len); evlist->mmap[i].base = NULL; } } free(evlist->mmap); evlist->mmap = NULL; } static int perf_evlist__alloc_mmap(struct perf_evlist *evlist) { evlist->nr_mmaps = cpu_map__nr(evlist->cpus); if (cpu_map__all(evlist->cpus)) evlist->nr_mmaps = thread_map__nr(evlist->threads); evlist->mmap = zalloc(evlist->nr_mmaps * sizeof(struct perf_mmap)); return evlist->mmap != NULL ? 0 : -ENOMEM; } static int __perf_evlist__mmap(struct perf_evlist *evlist, int idx, int prot, int mask, int fd) { evlist->mmap[idx].prev = 0; evlist->mmap[idx].mask = mask; evlist->mmap[idx].base = mmap(NULL, evlist->mmap_len, prot, MAP_SHARED, fd, 0); if (evlist->mmap[idx].base == MAP_FAILED) { evlist->mmap[idx].base = NULL; return -1; } perf_evlist__add_pollfd(evlist, fd); return 0; } static int perf_evlist__mmap_per_cpu(struct perf_evlist *evlist, int prot, int mask) { struct perf_evsel *evsel; int cpu, thread; int nr_cpus = cpu_map__nr(evlist->cpus); int nr_threads = thread_map__nr(evlist->threads); for (cpu = 0; cpu < nr_cpus; cpu++) { int output = -1; for (thread = 0; thread < nr_threads; thread++) { list_for_each_entry(evsel, &evlist->entries, node) { int fd = FD(evsel, cpu, thread); if (output == -1) { output = fd; if (__perf_evlist__mmap(evlist, cpu, prot, mask, output) < 0) goto out_unmap; } else { if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0) goto out_unmap; } if ((evsel->attr.read_format & PERF_FORMAT_ID) && perf_evlist__id_add_fd(evlist, evsel, cpu, thread, fd) < 0) goto out_unmap; } } } return 0; out_unmap: for (cpu = 0; cpu < nr_cpus; cpu++) { if (evlist->mmap[cpu].base != NULL) { munmap(evlist->mmap[cpu].base, evlist->mmap_len); evlist->mmap[cpu].base = NULL; } } return -1; } static int perf_evlist__mmap_per_thread(struct perf_evlist *evlist, int prot, int mask) { struct perf_evsel *evsel; int thread; int nr_threads = thread_map__nr(evlist->threads); for (thread = 0; thread < nr_threads; thread++) { int output = -1; list_for_each_entry(evsel, &evlist->entries, node) { int fd = FD(evsel, 0, thread); if (output == -1) { output = fd; if (__perf_evlist__mmap(evlist, thread, prot, mask, output) < 0) goto out_unmap; } else { if (ioctl(fd, PERF_EVENT_IOC_SET_OUTPUT, output) != 0) goto out_unmap; } if ((evsel->attr.read_format & PERF_FORMAT_ID) && perf_evlist__id_add_fd(evlist, evsel, 0, thread, fd) < 0) goto out_unmap; } } return 0; out_unmap: for (thread = 0; thread < nr_threads; thread++) { if (evlist->mmap[thread].base != NULL) { munmap(evlist->mmap[thread].base, evlist->mmap_len); evlist->mmap[thread].base = NULL; } } return -1; } /** perf_evlist__mmap - Create per cpu maps to receive events * * @evlist - list of events * @pages - map length in pages * @overwrite - overwrite older events? * * If overwrite is false the user needs to signal event consuption using: * * struct perf_mmap *m = &evlist->mmap[cpu]; * unsigned int head = perf_mmap__read_head(m); * * perf_mmap__write_tail(m, head) * * Using perf_evlist__read_on_cpu does this automatically. */ int perf_evlist__mmap(struct perf_evlist *evlist, unsigned int pages, bool overwrite) { struct perf_evsel *evsel; const struct cpu_map *cpus = evlist->cpus; const struct thread_map *threads = evlist->threads; int prot = PROT_READ | (overwrite ? 0 : PROT_WRITE), mask; /* 512 kiB: default amount of unprivileged mlocked memory */ if (pages == UINT_MAX) pages = (512 * 1024) / page_size; else if (!is_power_of_2(pages)) return -EINVAL; mask = pages * page_size - 1; if (evlist->mmap == NULL && perf_evlist__alloc_mmap(evlist) < 0) return -ENOMEM; if (evlist->pollfd == NULL && perf_evlist__alloc_pollfd(evlist) < 0) return -ENOMEM; evlist->overwrite = overwrite; evlist->mmap_len = (pages + 1) * page_size; list_for_each_entry(evsel, &evlist->entries, node) { if ((evsel->attr.read_format & PERF_FORMAT_ID) && evsel->sample_id == NULL && perf_evsel__alloc_id(evsel, cpu_map__nr(cpus), threads->nr) < 0) return -ENOMEM; } if (cpu_map__all(cpus)) return perf_evlist__mmap_per_thread(evlist, prot, mask); return perf_evlist__mmap_per_cpu(evlist, prot, mask); } int perf_evlist__create_maps(struct perf_evlist *evlist, struct perf_target *target) { evlist->threads = thread_map__new_str(target->pid, target->tid, target->uid); if (evlist->threads == NULL) return -1; if (perf_target__has_task(target)) evlist->cpus = cpu_map__dummy_new(); else if (!perf_target__has_cpu(target) && !target->uses_mmap) evlist->cpus = cpu_map__dummy_new(); else evlist->cpus = cpu_map__new(target->cpu_list); if (evlist->cpus == NULL) goto out_delete_threads; return 0; out_delete_threads: thread_map__delete(evlist->threads); return -1; } void perf_evlist__delete_maps(struct perf_evlist *evlist) { cpu_map__delete(evlist->cpus); thread_map__delete(evlist->threads); evlist->cpus = NULL; evlist->threads = NULL; } int perf_evlist__apply_filters(struct perf_evlist *evlist) { struct perf_evsel *evsel; int err = 0; const int ncpus = cpu_map__nr(evlist->cpus), nthreads = thread_map__nr(evlist->threads); list_for_each_entry(evsel, &evlist->entries, node) { if (evsel->filter == NULL) continue; err = perf_evsel__set_filter(evsel, ncpus, nthreads, evsel->filter); if (err) break; } return err; } int perf_evlist__set_filter(struct perf_evlist *evlist, const char *filter) { struct perf_evsel *evsel; int err = 0; const int ncpus = cpu_map__nr(evlist->cpus), nthreads = thread_map__nr(evlist->threads); list_for_each_entry(evsel, &evlist->entries, node) { err = perf_evsel__set_filter(evsel, ncpus, nthreads, filter); if (err) break; } return err; } bool perf_evlist__valid_sample_type(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; list_for_each_entry_continue(pos, &evlist->entries, node) { if (first->attr.sample_type != pos->attr.sample_type) return false; } return true; } u64 perf_evlist__sample_type(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); return first->attr.sample_type; } u16 perf_evlist__id_hdr_size(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); struct perf_sample *data; u64 sample_type; u16 size = 0; if (!first->attr.sample_id_all) goto out; sample_type = first->attr.sample_type; if (sample_type & PERF_SAMPLE_TID) size += sizeof(data->tid) * 2; if (sample_type & PERF_SAMPLE_TIME) size += sizeof(data->time); if (sample_type & PERF_SAMPLE_ID) size += sizeof(data->id); if (sample_type & PERF_SAMPLE_STREAM_ID) size += sizeof(data->stream_id); if (sample_type & PERF_SAMPLE_CPU) size += sizeof(data->cpu) * 2; out: return size; } bool perf_evlist__valid_sample_id_all(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist), *pos = first; list_for_each_entry_continue(pos, &evlist->entries, node) { if (first->attr.sample_id_all != pos->attr.sample_id_all) return false; } return true; } bool perf_evlist__sample_id_all(struct perf_evlist *evlist) { struct perf_evsel *first = perf_evlist__first(evlist); return first->attr.sample_id_all; } void perf_evlist__set_selected(struct perf_evlist *evlist, struct perf_evsel *evsel) { evlist->selected = evsel; } void perf_evlist__close(struct perf_evlist *evlist) { struct perf_evsel *evsel; int ncpus = cpu_map__nr(evlist->cpus); int nthreads = thread_map__nr(evlist->threads); list_for_each_entry_reverse(evsel, &evlist->entries, node) perf_evsel__close(evsel, ncpus, nthreads); } int perf_evlist__open(struct perf_evlist *evlist) { struct perf_evsel *evsel; int err; list_for_each_entry(evsel, &evlist->entries, node) { err = perf_evsel__open(evsel, evlist->cpus, evlist->threads); if (err < 0) goto out_err; } return 0; out_err: perf_evlist__close(evlist); errno = -err; return err; } int perf_evlist__prepare_workload(struct perf_evlist *evlist, struct perf_target *target, const char *argv[], bool pipe_output, bool want_signal) { int child_ready_pipe[2], go_pipe[2]; char bf; if (pipe(child_ready_pipe) < 0) { perror("failed to create 'ready' pipe"); return -1; } if (pipe(go_pipe) < 0) { perror("failed to create 'go' pipe"); goto out_close_ready_pipe; } evlist->workload.pid = fork(); if (evlist->workload.pid < 0) { perror("failed to fork"); goto out_close_pipes; } if (!evlist->workload.pid) { if (pipe_output) dup2(2, 1); close(child_ready_pipe[0]); close(go_pipe[1]); fcntl(go_pipe[0], F_SETFD, FD_CLOEXEC); /* * Do a dummy execvp to get the PLT entry resolved, * so we avoid the resolver overhead on the real * execvp call. */ execvp("", (char **)argv); /* * Tell the parent we're ready to go */ close(child_ready_pipe[1]); /* * Wait until the parent tells us to go. */ if (read(go_pipe[0], &bf, 1) == -1) perror("unable to read pipe"); execvp(argv[0], (char **)argv); perror(argv[0]); if (want_signal) kill(getppid(), SIGUSR1); exit(-1); } if (perf_target__none(target)) evlist->threads->map[0] = evlist->workload.pid; close(child_ready_pipe[1]); close(go_pipe[0]); /* * wait for child to settle */ if (read(child_ready_pipe[0], &bf, 1) == -1) { perror("unable to read pipe"); goto out_close_pipes; } evlist->workload.cork_fd = go_pipe[1]; close(child_ready_pipe[0]); return 0; out_close_pipes: close(go_pipe[0]); close(go_pipe[1]); out_close_ready_pipe: close(child_ready_pipe[0]); close(child_ready_pipe[1]); return -1; } int perf_evlist__start_workload(struct perf_evlist *evlist) { if (evlist->workload.cork_fd > 0) { /* * Remove the cork, let it rip! */ return close(evlist->workload.cork_fd); } return 0; } int perf_evlist__parse_sample(struct perf_evlist *evlist, union perf_event *event, struct perf_sample *sample) { struct perf_evsel *evsel = perf_evlist__first(evlist); return perf_evsel__parse_sample(evsel, event, sample); } size_t perf_evlist__fprintf(struct perf_evlist *evlist, FILE *fp) { struct perf_evsel *evsel; size_t printed = 0; list_for_each_entry(evsel, &evlist->entries, node) { printed += fprintf(fp, "%s%s", evsel->idx ? ", " : "", perf_evsel__name(evsel)); } return printed + fprintf(fp, "\n");; }