/* * Copyright © 2006 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Eric Anholt * */ #include #include #include #include #include "i915_drv.h" #include "intel_bios.h" #define SLAVE_ADDR1 0x70 #define SLAVE_ADDR2 0x72 static int panel_type; static void * find_section(struct bdb_header *bdb, int section_id) { u8 *base = (u8 *)bdb; int index = 0; u16 total, current_size; u8 current_id; /* skip to first section */ index += bdb->header_size; total = bdb->bdb_size; /* walk the sections looking for section_id */ while (index + 3 < total) { current_id = *(base + index); index++; current_size = *((u16 *)(base + index)); index += 2; if (index + current_size > total) return NULL; if (current_id == section_id) return base + index; index += current_size; } return NULL; } static u16 get_blocksize(void *p) { u16 *block_ptr, block_size; block_ptr = (u16 *)((char *)p - 2); block_size = *block_ptr; return block_size; } static void fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode, const struct lvds_dvo_timing *dvo_timing) { panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) | dvo_timing->hactive_lo; panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay + ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo); panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start + dvo_timing->hsync_pulse_width; panel_fixed_mode->htotal = panel_fixed_mode->hdisplay + ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo); panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) | dvo_timing->vactive_lo; panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay + dvo_timing->vsync_off; panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start + dvo_timing->vsync_pulse_width; panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay + ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo); panel_fixed_mode->clock = dvo_timing->clock * 10; panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED; if (dvo_timing->hsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC; if (dvo_timing->vsync_positive) panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC; else panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC; /* Some VBTs have bogus h/vtotal values */ if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal) panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1; if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal) panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1; drm_mode_set_name(panel_fixed_mode); } static bool lvds_dvo_timing_equal_size(const struct lvds_dvo_timing *a, const struct lvds_dvo_timing *b) { if (a->hactive_hi != b->hactive_hi || a->hactive_lo != b->hactive_lo) return false; if (a->hsync_off_hi != b->hsync_off_hi || a->hsync_off_lo != b->hsync_off_lo) return false; if (a->hsync_pulse_width != b->hsync_pulse_width) return false; if (a->hblank_hi != b->hblank_hi || a->hblank_lo != b->hblank_lo) return false; if (a->vactive_hi != b->vactive_hi || a->vactive_lo != b->vactive_lo) return false; if (a->vsync_off != b->vsync_off) return false; if (a->vsync_pulse_width != b->vsync_pulse_width) return false; if (a->vblank_hi != b->vblank_hi || a->vblank_lo != b->vblank_lo) return false; return true; } static const struct lvds_dvo_timing * get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data, const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs, int index) { /* * the size of fp_timing varies on the different platform. * So calculate the DVO timing relative offset in LVDS data * entry to get the DVO timing entry */ int lfp_data_size = lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset - lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset; int dvo_timing_offset = lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset - lvds_lfp_data_ptrs->ptr[0].fp_timing_offset; char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index; return (struct lvds_dvo_timing *)(entry + dvo_timing_offset); } /* get lvds_fp_timing entry * this function may return NULL if the corresponding entry is invalid */ static const struct lvds_fp_timing * get_lvds_fp_timing(const struct bdb_header *bdb, const struct bdb_lvds_lfp_data *data, const struct bdb_lvds_lfp_data_ptrs *ptrs, int index) { size_t data_ofs = (const u8 *)data - (const u8 *)bdb; u16 data_size = ((const u16 *)data)[-1]; /* stored in header */ size_t ofs; if (index >= ARRAY_SIZE(ptrs->ptr)) return NULL; ofs = ptrs->ptr[index].fp_timing_offset; if (ofs < data_ofs || ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size) return NULL; return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs); } /* Try to find integrated panel data */ static void parse_lfp_panel_data(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { const struct bdb_lvds_options *lvds_options; const struct bdb_lvds_lfp_data *lvds_lfp_data; const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs; const struct lvds_dvo_timing *panel_dvo_timing; const struct lvds_fp_timing *fp_timing; struct drm_display_mode *panel_fixed_mode; int i, downclock, drrs_mode; lvds_options = find_section(bdb, BDB_LVDS_OPTIONS); if (!lvds_options) return; dev_priv->vbt.lvds_dither = lvds_options->pixel_dither; if (lvds_options->panel_type == 0xff) return; panel_type = lvds_options->panel_type; drrs_mode = (lvds_options->dps_panel_type_bits >> (panel_type * 2)) & MODE_MASK; /* * VBT has static DRRS = 0 and seamless DRRS = 2. * The below piece of code is required to adjust vbt.drrs_type * to match the enum drrs_support_type. */ switch (drrs_mode) { case 0: dev_priv->vbt.drrs_type = STATIC_DRRS_SUPPORT; DRM_DEBUG_KMS("DRRS supported mode is static\n"); break; case 2: dev_priv->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT; DRM_DEBUG_KMS("DRRS supported mode is seamless\n"); break; default: dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED; DRM_DEBUG_KMS("DRRS not supported (VBT input)\n"); break; } lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA); if (!lvds_lfp_data) return; lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS); if (!lvds_lfp_data_ptrs) return; dev_priv->vbt.lvds_vbt = 1; panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, lvds_lfp_data_ptrs, lvds_options->panel_type); panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing); dev_priv->vbt.lfp_lvds_vbt_mode = panel_fixed_mode; DRM_DEBUG_KMS("Found panel mode in BIOS VBT tables:\n"); drm_mode_debug_printmodeline(panel_fixed_mode); /* * Iterate over the LVDS panel timing info to find the lowest clock * for the native resolution. */ downclock = panel_dvo_timing->clock; for (i = 0; i < 16; i++) { const struct lvds_dvo_timing *dvo_timing; dvo_timing = get_lvds_dvo_timing(lvds_lfp_data, lvds_lfp_data_ptrs, i); if (lvds_dvo_timing_equal_size(dvo_timing, panel_dvo_timing) && dvo_timing->clock < downclock) downclock = dvo_timing->clock; } if (downclock < panel_dvo_timing->clock && i915.lvds_downclock) { dev_priv->lvds_downclock_avail = 1; dev_priv->lvds_downclock = downclock * 10; DRM_DEBUG_KMS("LVDS downclock is found in VBT. " "Normal Clock %dKHz, downclock %dKHz\n", panel_fixed_mode->clock, 10*downclock); } fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data, lvds_lfp_data_ptrs, lvds_options->panel_type); if (fp_timing) { /* check the resolution, just to be sure */ if (fp_timing->x_res == panel_fixed_mode->hdisplay && fp_timing->y_res == panel_fixed_mode->vdisplay) { dev_priv->vbt.bios_lvds_val = fp_timing->lvds_reg_val; DRM_DEBUG_KMS("VBT initial LVDS value %x\n", dev_priv->vbt.bios_lvds_val); } } } static void parse_lfp_backlight(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { const struct bdb_lfp_backlight_data *backlight_data; const struct bdb_lfp_backlight_data_entry *entry; backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT); if (!backlight_data) return; if (backlight_data->entry_size != sizeof(backlight_data->data[0])) { DRM_DEBUG_KMS("Unsupported backlight data entry size %u\n", backlight_data->entry_size); return; } entry = &backlight_data->data[panel_type]; dev_priv->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM; if (!dev_priv->vbt.backlight.present) { DRM_DEBUG_KMS("PWM backlight not present in VBT (type %u)\n", entry->type); return; } dev_priv->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz; dev_priv->vbt.backlight.active_low_pwm = entry->active_low_pwm; dev_priv->vbt.backlight.min_brightness = entry->min_brightness; DRM_DEBUG_KMS("VBT backlight PWM modulation frequency %u Hz, " "active %s, min brightness %u, level %u\n", dev_priv->vbt.backlight.pwm_freq_hz, dev_priv->vbt.backlight.active_low_pwm ? "low" : "high", dev_priv->vbt.backlight.min_brightness, backlight_data->level[panel_type]); } /* Try to find sdvo panel data */ static void parse_sdvo_panel_data(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct lvds_dvo_timing *dvo_timing; struct drm_display_mode *panel_fixed_mode; int index; index = i915.vbt_sdvo_panel_type; if (index == -2) { DRM_DEBUG_KMS("Ignore SDVO panel mode from BIOS VBT tables.\n"); return; } if (index == -1) { struct bdb_sdvo_lvds_options *sdvo_lvds_options; sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS); if (!sdvo_lvds_options) return; index = sdvo_lvds_options->panel_type; } dvo_timing = find_section(bdb, BDB_SDVO_PANEL_DTDS); if (!dvo_timing) return; panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL); if (!panel_fixed_mode) return; fill_detail_timing_data(panel_fixed_mode, dvo_timing + index); dev_priv->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode; DRM_DEBUG_KMS("Found SDVO panel mode in BIOS VBT tables:\n"); drm_mode_debug_printmodeline(panel_fixed_mode); } static int intel_bios_ssc_frequency(struct drm_device *dev, bool alternate) { switch (INTEL_INFO(dev)->gen) { case 2: return alternate ? 66667 : 48000; case 3: case 4: return alternate ? 100000 : 96000; default: return alternate ? 100000 : 120000; } } static void parse_general_features(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct drm_device *dev = dev_priv->dev; struct bdb_general_features *general; general = find_section(bdb, BDB_GENERAL_FEATURES); if (general) { dev_priv->vbt.int_tv_support = general->int_tv_support; dev_priv->vbt.int_crt_support = general->int_crt_support; dev_priv->vbt.lvds_use_ssc = general->enable_ssc; dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev, general->ssc_freq); dev_priv->vbt.display_clock_mode = general->display_clock_mode; dev_priv->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted; DRM_DEBUG_KMS("BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n", dev_priv->vbt.int_tv_support, dev_priv->vbt.int_crt_support, dev_priv->vbt.lvds_use_ssc, dev_priv->vbt.lvds_ssc_freq, dev_priv->vbt.display_clock_mode, dev_priv->vbt.fdi_rx_polarity_inverted); } } static void parse_general_definitions(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_general_definitions *general; general = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (general) { u16 block_size = get_blocksize(general); if (block_size >= sizeof(*general)) { int bus_pin = general->crt_ddc_gmbus_pin; DRM_DEBUG_KMS("crt_ddc_bus_pin: %d\n", bus_pin); if (intel_gmbus_is_valid_pin(dev_priv, bus_pin)) dev_priv->vbt.crt_ddc_pin = bus_pin; } else { DRM_DEBUG_KMS("BDB_GD too small (%d). Invalid.\n", block_size); } } } static void parse_sdvo_device_mapping(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct sdvo_device_mapping *p_mapping; struct bdb_general_definitions *p_defs; union child_device_config *p_child; int i, child_device_num, count; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, unable to construct sdvo mapping.\n"); return; } /* judge whether the size of child device meets the requirements. * If the child device size obtained from general definition block * is different with sizeof(struct child_device_config), skip the * parsing of sdvo device info */ if (p_defs->child_dev_size != sizeof(*p_child)) { /* different child dev size . Ignore it */ DRM_DEBUG_KMS("different child size is found. Invalid.\n"); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / sizeof(*p_child); count = 0; for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->old.device_type) { /* skip the device block if device type is invalid */ continue; } if (p_child->old.slave_addr != SLAVE_ADDR1 && p_child->old.slave_addr != SLAVE_ADDR2) { /* * If the slave address is neither 0x70 nor 0x72, * it is not a SDVO device. Skip it. */ continue; } if (p_child->old.dvo_port != DEVICE_PORT_DVOB && p_child->old.dvo_port != DEVICE_PORT_DVOC) { /* skip the incorrect SDVO port */ DRM_DEBUG_KMS("Incorrect SDVO port. Skip it\n"); continue; } DRM_DEBUG_KMS("the SDVO device with slave addr %2x is found on" " %s port\n", p_child->old.slave_addr, (p_child->old.dvo_port == DEVICE_PORT_DVOB) ? "SDVOB" : "SDVOC"); p_mapping = &(dev_priv->sdvo_mappings[p_child->old.dvo_port - 1]); if (!p_mapping->initialized) { p_mapping->dvo_port = p_child->old.dvo_port; p_mapping->slave_addr = p_child->old.slave_addr; p_mapping->dvo_wiring = p_child->old.dvo_wiring; p_mapping->ddc_pin = p_child->old.ddc_pin; p_mapping->i2c_pin = p_child->old.i2c_pin; p_mapping->initialized = 1; DRM_DEBUG_KMS("SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n", p_mapping->dvo_port, p_mapping->slave_addr, p_mapping->dvo_wiring, p_mapping->ddc_pin, p_mapping->i2c_pin); } else { DRM_DEBUG_KMS("Maybe one SDVO port is shared by " "two SDVO device.\n"); } if (p_child->old.slave2_addr) { /* Maybe this is a SDVO device with multiple inputs */ /* And the mapping info is not added */ DRM_DEBUG_KMS("there exists the slave2_addr. Maybe this" " is a SDVO device with multiple inputs.\n"); } count++; } if (!count) { /* No SDVO device info is found */ DRM_DEBUG_KMS("No SDVO device info is found in VBT\n"); } return; } static void parse_driver_features(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_driver_features *driver; driver = find_section(bdb, BDB_DRIVER_FEATURES); if (!driver) return; if (driver->lvds_config == BDB_DRIVER_FEATURE_EDP) dev_priv->vbt.edp_support = 1; if (driver->dual_frequency) dev_priv->render_reclock_avail = true; DRM_DEBUG_KMS("DRRS State Enabled:%d\n", driver->drrs_enabled); /* * If DRRS is not supported, drrs_type has to be set to 0. * This is because, VBT is configured in such a way that * static DRRS is 0 and DRRS not supported is represented by * driver->drrs_enabled=false */ if (!driver->drrs_enabled) dev_priv->vbt.drrs_type = DRRS_NOT_SUPPORTED; } static void parse_edp(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_edp *edp; struct edp_power_seq *edp_pps; struct edp_link_params *edp_link_params; edp = find_section(bdb, BDB_EDP); if (!edp) { if (dev_priv->vbt.edp_support) DRM_DEBUG_KMS("No eDP BDB found but eDP panel supported.\n"); return; } switch ((edp->color_depth >> (panel_type * 2)) & 3) { case EDP_18BPP: dev_priv->vbt.edp_bpp = 18; break; case EDP_24BPP: dev_priv->vbt.edp_bpp = 24; break; case EDP_30BPP: dev_priv->vbt.edp_bpp = 30; break; } /* Get the eDP sequencing and link info */ edp_pps = &edp->power_seqs[panel_type]; edp_link_params = &edp->link_params[panel_type]; dev_priv->vbt.edp_pps = *edp_pps; switch (edp_link_params->rate) { case EDP_RATE_1_62: dev_priv->vbt.edp_rate = DP_LINK_BW_1_62; break; case EDP_RATE_2_7: dev_priv->vbt.edp_rate = DP_LINK_BW_2_7; break; default: DRM_DEBUG_KMS("VBT has unknown eDP link rate value %u\n", edp_link_params->rate); break; } switch (edp_link_params->lanes) { case EDP_LANE_1: dev_priv->vbt.edp_lanes = 1; break; case EDP_LANE_2: dev_priv->vbt.edp_lanes = 2; break; case EDP_LANE_4: dev_priv->vbt.edp_lanes = 4; break; default: DRM_DEBUG_KMS("VBT has unknown eDP lane count value %u\n", edp_link_params->lanes); break; } switch (edp_link_params->preemphasis) { case EDP_PREEMPHASIS_NONE: dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0; break; case EDP_PREEMPHASIS_3_5dB: dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1; break; case EDP_PREEMPHASIS_6dB: dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2; break; case EDP_PREEMPHASIS_9_5dB: dev_priv->vbt.edp_preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3; break; default: DRM_DEBUG_KMS("VBT has unknown eDP pre-emphasis value %u\n", edp_link_params->preemphasis); break; } switch (edp_link_params->vswing) { case EDP_VSWING_0_4V: dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0; break; case EDP_VSWING_0_6V: dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1; break; case EDP_VSWING_0_8V: dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2; break; case EDP_VSWING_1_2V: dev_priv->vbt.edp_vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3; break; default: DRM_DEBUG_KMS("VBT has unknown eDP voltage swing value %u\n", edp_link_params->vswing); break; } if (bdb->version >= 173) { uint8_t vswing; vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF; dev_priv->vbt.edp_low_vswing = vswing == 0; } } static void parse_psr(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_psr *psr; struct psr_table *psr_table; psr = find_section(bdb, BDB_PSR); if (!psr) { DRM_DEBUG_KMS("No PSR BDB found.\n"); return; } psr_table = &psr->psr_table[panel_type]; dev_priv->vbt.psr.full_link = psr_table->full_link; dev_priv->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup; /* Allowed VBT values goes from 0 to 15 */ dev_priv->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 : psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames; switch (psr_table->lines_to_wait) { case 0: dev_priv->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT; break; case 1: dev_priv->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT; break; case 2: dev_priv->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT; break; case 3: dev_priv->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT; break; default: DRM_DEBUG_KMS("VBT has unknown PSR lines to wait %u\n", psr_table->lines_to_wait); break; } dev_priv->vbt.psr.tp1_wakeup_time = psr_table->tp1_wakeup_time; dev_priv->vbt.psr.tp2_tp3_wakeup_time = psr_table->tp2_tp3_wakeup_time; } static u8 *goto_next_sequence(u8 *data, int *size) { u16 len; int tmp = *size; if (--tmp < 0) return NULL; /* goto first element */ data++; while (1) { switch (*data) { case MIPI_SEQ_ELEM_SEND_PKT: /* * skip by this element payload size * skip elem id, command flag and data type */ tmp -= 5; if (tmp < 0) return NULL; data += 3; len = *((u16 *)data); tmp -= len; if (tmp < 0) return NULL; /* skip by len */ data = data + 2 + len; break; case MIPI_SEQ_ELEM_DELAY: /* skip by elem id, and delay is 4 bytes */ tmp -= 5; if (tmp < 0) return NULL; data += 5; break; case MIPI_SEQ_ELEM_GPIO: tmp -= 3; if (tmp < 0) return NULL; data += 3; break; default: DRM_ERROR("Unknown element\n"); return NULL; } /* end of sequence ? */ if (*data == 0) break; } /* goto next sequence or end of block byte */ if (--tmp < 0) return NULL; data++; /* update amount of data left for the sequence block to be parsed */ *size = tmp; return data; } static void parse_mipi(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_mipi_config *start; struct bdb_mipi_sequence *sequence; struct mipi_config *config; struct mipi_pps_data *pps; u8 *data, *seq_data; int i, panel_id, seq_size; u16 block_size; /* parse MIPI blocks only if LFP type is MIPI */ if (!dev_priv->vbt.has_mipi) return; /* Initialize this to undefined indicating no generic MIPI support */ dev_priv->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID; /* Block #40 is already parsed and panel_fixed_mode is * stored in dev_priv->lfp_lvds_vbt_mode * resuse this when needed */ /* Parse #52 for panel index used from panel_type already * parsed */ start = find_section(bdb, BDB_MIPI_CONFIG); if (!start) { DRM_DEBUG_KMS("No MIPI config BDB found"); return; } DRM_DEBUG_DRIVER("Found MIPI Config block, panel index = %d\n", panel_type); /* * get hold of the correct configuration block and pps data as per * the panel_type as index */ config = &start->config[panel_type]; pps = &start->pps[panel_type]; /* store as of now full data. Trim when we realise all is not needed */ dev_priv->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL); if (!dev_priv->vbt.dsi.config) return; dev_priv->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL); if (!dev_priv->vbt.dsi.pps) { kfree(dev_priv->vbt.dsi.config); return; } /* We have mandatory mipi config blocks. Initialize as generic panel */ dev_priv->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID; /* Check if we have sequence block as well */ sequence = find_section(bdb, BDB_MIPI_SEQUENCE); if (!sequence) { DRM_DEBUG_KMS("No MIPI Sequence found, parsing complete\n"); return; } DRM_DEBUG_DRIVER("Found MIPI sequence block\n"); block_size = get_blocksize(sequence); /* * parse the sequence block for individual sequences */ dev_priv->vbt.dsi.seq_version = sequence->version; seq_data = &sequence->data[0]; /* * sequence block is variable length and hence we need to parse and * get the sequence data for specific panel id */ for (i = 0; i < MAX_MIPI_CONFIGURATIONS; i++) { panel_id = *seq_data; seq_size = *((u16 *) (seq_data + 1)); if (panel_id == panel_type) break; /* skip the sequence including seq header of 3 bytes */ seq_data = seq_data + 3 + seq_size; if ((seq_data - &sequence->data[0]) > block_size) { DRM_ERROR("Sequence start is beyond sequence block size, corrupted sequence block\n"); return; } } if (i == MAX_MIPI_CONFIGURATIONS) { DRM_ERROR("Sequence block detected but no valid configuration\n"); return; } /* check if found sequence is completely within the sequence block * just being paranoid */ if (seq_size > block_size) { DRM_ERROR("Corrupted sequence/size, bailing out\n"); return; } /* skip the panel id(1 byte) and seq size(2 bytes) */ dev_priv->vbt.dsi.data = kmemdup(seq_data + 3, seq_size, GFP_KERNEL); if (!dev_priv->vbt.dsi.data) return; /* * loop into the sequence data and split into multiple sequneces * There are only 5 types of sequences as of now */ data = dev_priv->vbt.dsi.data; dev_priv->vbt.dsi.size = seq_size; /* two consecutive 0x00 indicate end of all sequences */ while (1) { int seq_id = *data; if (MIPI_SEQ_MAX > seq_id && seq_id > MIPI_SEQ_UNDEFINED) { dev_priv->vbt.dsi.sequence[seq_id] = data; DRM_DEBUG_DRIVER("Found mipi sequence - %d\n", seq_id); } else { DRM_ERROR("undefined sequence\n"); goto err; } /* partial parsing to skip elements */ data = goto_next_sequence(data, &seq_size); if (data == NULL) { DRM_ERROR("Sequence elements going beyond block itself. Sequence block parsing failed\n"); goto err; } if (*data == 0) break; /* end of sequence reached */ } DRM_DEBUG_DRIVER("MIPI related vbt parsing complete\n"); return; err: kfree(dev_priv->vbt.dsi.data); dev_priv->vbt.dsi.data = NULL; /* error during parsing so set all pointers to null * because of partial parsing */ memset(dev_priv->vbt.dsi.sequence, 0, sizeof(dev_priv->vbt.dsi.sequence)); } static void parse_ddi_port(struct drm_i915_private *dev_priv, enum port port, struct bdb_header *bdb) { union child_device_config *it, *child = NULL; struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; uint8_t hdmi_level_shift; int i, j; bool is_dvi, is_hdmi, is_dp, is_edp, is_crt; uint8_t aux_channel; /* Each DDI port can have more than one value on the "DVO Port" field, * so look for all the possible values for each port and abort if more * than one is found. */ int dvo_ports[][2] = { {DVO_PORT_HDMIA, DVO_PORT_DPA}, {DVO_PORT_HDMIB, DVO_PORT_DPB}, {DVO_PORT_HDMIC, DVO_PORT_DPC}, {DVO_PORT_HDMID, DVO_PORT_DPD}, {DVO_PORT_CRT, -1 /* Port E can only be DVO_PORT_CRT */ }, }; /* Find the child device to use, abort if more than one found. */ for (i = 0; i < dev_priv->vbt.child_dev_num; i++) { it = dev_priv->vbt.child_dev + i; for (j = 0; j < 2; j++) { if (dvo_ports[port][j] == -1) break; if (it->common.dvo_port == dvo_ports[port][j]) { if (child) { DRM_DEBUG_KMS("More than one child device for port %c in VBT.\n", port_name(port)); return; } child = it; } } } if (!child) return; aux_channel = child->raw[25]; is_dvi = child->common.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING; is_dp = child->common.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT; is_crt = child->common.device_type & DEVICE_TYPE_ANALOG_OUTPUT; is_hdmi = is_dvi && (child->common.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0; is_edp = is_dp && (child->common.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR); info->supports_dvi = is_dvi; info->supports_hdmi = is_hdmi; info->supports_dp = is_dp; DRM_DEBUG_KMS("Port %c VBT info: DP:%d HDMI:%d DVI:%d EDP:%d CRT:%d\n", port_name(port), is_dp, is_hdmi, is_dvi, is_edp, is_crt); if (is_edp && is_dvi) DRM_DEBUG_KMS("Internal DP port %c is TMDS compatible\n", port_name(port)); if (is_crt && port != PORT_E) DRM_DEBUG_KMS("Port %c is analog\n", port_name(port)); if (is_crt && (is_dvi || is_dp)) DRM_DEBUG_KMS("Analog port %c is also DP or TMDS compatible\n", port_name(port)); if (is_dvi && (port == PORT_A || port == PORT_E)) DRM_DEBUG_KMS("Port %c is TMDS compatible\n", port_name(port)); if (!is_dvi && !is_dp && !is_crt) DRM_DEBUG_KMS("Port %c is not DP/TMDS/CRT compatible\n", port_name(port)); if (is_edp && (port == PORT_B || port == PORT_C || port == PORT_E)) DRM_DEBUG_KMS("Port %c is internal DP\n", port_name(port)); if (is_dvi) { if (child->common.ddc_pin == 0x05 && port != PORT_B) DRM_DEBUG_KMS("Unexpected DDC pin for port B\n"); if (child->common.ddc_pin == 0x04 && port != PORT_C) DRM_DEBUG_KMS("Unexpected DDC pin for port C\n"); if (child->common.ddc_pin == 0x06 && port != PORT_D) DRM_DEBUG_KMS("Unexpected DDC pin for port D\n"); } if (is_dp) { if (aux_channel == 0x40 && port != PORT_A) DRM_DEBUG_KMS("Unexpected AUX channel for port A\n"); if (aux_channel == 0x10 && port != PORT_B) DRM_DEBUG_KMS("Unexpected AUX channel for port B\n"); if (aux_channel == 0x20 && port != PORT_C) DRM_DEBUG_KMS("Unexpected AUX channel for port C\n"); if (aux_channel == 0x30 && port != PORT_D) DRM_DEBUG_KMS("Unexpected AUX channel for port D\n"); } if (bdb->version >= 158) { /* The VBT HDMI level shift values match the table we have. */ hdmi_level_shift = child->raw[7] & 0xF; DRM_DEBUG_KMS("VBT HDMI level shift for port %c: %d\n", port_name(port), hdmi_level_shift); info->hdmi_level_shift = hdmi_level_shift; } } static void parse_ddi_ports(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct drm_device *dev = dev_priv->dev; enum port port; if (!HAS_DDI(dev)) return; if (!dev_priv->vbt.child_dev_num) return; if (bdb->version < 155) return; for (port = PORT_A; port < I915_MAX_PORTS; port++) parse_ddi_port(dev_priv, port, bdb); } static void parse_device_mapping(struct drm_i915_private *dev_priv, struct bdb_header *bdb) { struct bdb_general_definitions *p_defs; union child_device_config *p_child, *child_dev_ptr; int i, child_device_num, count; u16 block_size; p_defs = find_section(bdb, BDB_GENERAL_DEFINITIONS); if (!p_defs) { DRM_DEBUG_KMS("No general definition block is found, no devices defined.\n"); return; } /* judge whether the size of child device meets the requirements. * If the child device size obtained from general definition block * is different with sizeof(struct child_device_config), skip the * parsing of sdvo device info */ if (p_defs->child_dev_size != sizeof(*p_child)) { /* different child dev size . Ignore it */ DRM_DEBUG_KMS("different child size is found. Invalid.\n"); return; } /* get the block size of general definitions */ block_size = get_blocksize(p_defs); /* get the number of child device */ child_device_num = (block_size - sizeof(*p_defs)) / sizeof(*p_child); count = 0; /* get the number of child device that is present */ for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->common.device_type) { /* skip the device block if device type is invalid */ continue; } count++; } if (!count) { DRM_DEBUG_KMS("no child dev is parsed from VBT\n"); return; } dev_priv->vbt.child_dev = kcalloc(count, sizeof(*p_child), GFP_KERNEL); if (!dev_priv->vbt.child_dev) { DRM_DEBUG_KMS("No memory space for child device\n"); return; } dev_priv->vbt.child_dev_num = count; count = 0; for (i = 0; i < child_device_num; i++) { p_child = &(p_defs->devices[i]); if (!p_child->common.device_type) { /* skip the device block if device type is invalid */ continue; } if (p_child->common.dvo_port >= DVO_PORT_MIPIA && p_child->common.dvo_port <= DVO_PORT_MIPID &&p_child->common.device_type & DEVICE_TYPE_MIPI_OUTPUT) { DRM_DEBUG_KMS("Found MIPI as LFP\n"); dev_priv->vbt.has_mipi = 1; dev_priv->vbt.dsi.port = p_child->common.dvo_port; } child_dev_ptr = dev_priv->vbt.child_dev + count; count++; memcpy((void *)child_dev_ptr, (void *)p_child, sizeof(*p_child)); } return; } static void init_vbt_defaults(struct drm_i915_private *dev_priv) { struct drm_device *dev = dev_priv->dev; enum port port; dev_priv->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC; /* Default to having backlight */ dev_priv->vbt.backlight.present = true; /* LFP panel data */ dev_priv->vbt.lvds_dither = 1; dev_priv->vbt.lvds_vbt = 0; /* SDVO panel data */ dev_priv->vbt.sdvo_lvds_vbt_mode = NULL; /* general features */ dev_priv->vbt.int_tv_support = 1; dev_priv->vbt.int_crt_support = 1; /* Default to using SSC */ dev_priv->vbt.lvds_use_ssc = 1; /* * Core/SandyBridge/IvyBridge use alternative (120MHz) reference * clock for LVDS. */ dev_priv->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(dev, !HAS_PCH_SPLIT(dev)); DRM_DEBUG_KMS("Set default to SSC at %d kHz\n", dev_priv->vbt.lvds_ssc_freq); for (port = PORT_A; port < I915_MAX_PORTS; port++) { struct ddi_vbt_port_info *info = &dev_priv->vbt.ddi_port_info[port]; info->hdmi_level_shift = HDMI_LEVEL_SHIFT_UNKNOWN; info->supports_dvi = (port != PORT_A && port != PORT_E); info->supports_hdmi = info->supports_dvi; info->supports_dp = (port != PORT_E); } } static int intel_no_opregion_vbt_callback(const struct dmi_system_id *id) { DRM_DEBUG_KMS("Falling back to manually reading VBT from " "VBIOS ROM for %s\n", id->ident); return 1; } static const struct dmi_system_id intel_no_opregion_vbt[] = { { .callback = intel_no_opregion_vbt_callback, .ident = "ThinkCentre A57", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"), DMI_MATCH(DMI_PRODUCT_NAME, "97027RG"), }, }, { } }; static struct bdb_header *validate_vbt(char *base, size_t size, struct vbt_header *vbt, const char *source) { size_t offset; struct bdb_header *bdb; if (vbt == NULL) { DRM_DEBUG_DRIVER("VBT signature missing\n"); return NULL; } offset = (char *)vbt - base; if (offset + sizeof(struct vbt_header) > size) { DRM_DEBUG_DRIVER("VBT header incomplete\n"); return NULL; } if (memcmp(vbt->signature, "$VBT", 4)) { DRM_DEBUG_DRIVER("VBT invalid signature\n"); return NULL; } offset += vbt->bdb_offset; if (offset + sizeof(struct bdb_header) > size) { DRM_DEBUG_DRIVER("BDB header incomplete\n"); return NULL; } bdb = (struct bdb_header *)(base + offset); if (offset + bdb->bdb_size > size) { DRM_DEBUG_DRIVER("BDB incomplete\n"); return NULL; } DRM_DEBUG_KMS("Using VBT from %s: %20s\n", source, vbt->signature); return bdb; } /** * intel_parse_bios - find VBT and initialize settings from the BIOS * @dev: DRM device * * Loads the Video BIOS and checks that the VBT exists. Sets scratch registers * to appropriate values. * * Returns 0 on success, nonzero on failure. */ int intel_parse_bios(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct pci_dev *pdev = dev->pdev; struct bdb_header *bdb = NULL; u8 __iomem *bios = NULL; if (HAS_PCH_NOP(dev)) return -ENODEV; init_vbt_defaults(dev_priv); /* XXX Should this validation be moved to intel_opregion.c? */ if (!dmi_check_system(intel_no_opregion_vbt) && dev_priv->opregion.vbt) bdb = validate_vbt((char *)dev_priv->opregion.header, OPREGION_SIZE, (struct vbt_header *)dev_priv->opregion.vbt, "OpRegion"); if (bdb == NULL) { size_t i, size; bios = pci_map_rom(pdev, &size); if (!bios) return -1; /* Scour memory looking for the VBT signature */ for (i = 0; i + 4 < size; i++) { if (memcmp(bios + i, "$VBT", 4) == 0) { bdb = validate_vbt(bios, size, (struct vbt_header *)(bios + i), "PCI ROM"); break; } } if (!bdb) { pci_unmap_rom(pdev, bios); return -1; } } /* Grab useful general definitions */ parse_general_features(dev_priv, bdb); parse_general_definitions(dev_priv, bdb); parse_lfp_panel_data(dev_priv, bdb); parse_lfp_backlight(dev_priv, bdb); parse_sdvo_panel_data(dev_priv, bdb); parse_sdvo_device_mapping(dev_priv, bdb); parse_device_mapping(dev_priv, bdb); parse_driver_features(dev_priv, bdb); parse_edp(dev_priv, bdb); parse_psr(dev_priv, bdb); parse_mipi(dev_priv, bdb); parse_ddi_ports(dev_priv, bdb); if (bios) pci_unmap_rom(pdev, bios); return 0; } /* Ensure that vital registers have been initialised, even if the BIOS * is absent or just failing to do its job. */ void intel_setup_bios(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* Set the Panel Power On/Off timings if uninitialized. */ if (!HAS_PCH_SPLIT(dev) && I915_READ(PP_ON_DELAYS) == 0 && I915_READ(PP_OFF_DELAYS) == 0) { /* Set T2 to 40ms and T5 to 200ms */ I915_WRITE(PP_ON_DELAYS, 0x019007d0); /* Set T3 to 35ms and Tx to 200ms */ I915_WRITE(PP_OFF_DELAYS, 0x015e07d0); } }