/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Author: Jani Nikula */ #include #include #include #include #include #include "i915_drv.h" #include "intel_drv.h" #include "intel_dsi.h" #include "intel_dsi_cmd.h" /* the sub-encoders aka panel drivers */ static const struct intel_dsi_device intel_dsi_devices[] = { }; static void band_gap_reset(struct drm_i915_private *dev_priv) { mutex_lock(&dev_priv->dpio_lock); vlv_flisdsi_write(dev_priv, 0x08, 0x0001); vlv_flisdsi_write(dev_priv, 0x0F, 0x0005); vlv_flisdsi_write(dev_priv, 0x0F, 0x0025); udelay(150); vlv_flisdsi_write(dev_priv, 0x0F, 0x0000); vlv_flisdsi_write(dev_priv, 0x08, 0x0000); mutex_unlock(&dev_priv->dpio_lock); } static struct intel_dsi *intel_attached_dsi(struct drm_connector *connector) { return container_of(intel_attached_encoder(connector), struct intel_dsi, base); } static inline bool is_vid_mode(struct intel_dsi *intel_dsi) { return intel_dsi->dev.type == INTEL_DSI_VIDEO_MODE; } static inline bool is_cmd_mode(struct intel_dsi *intel_dsi) { return intel_dsi->dev.type == INTEL_DSI_COMMAND_MODE; } static void intel_dsi_hot_plug(struct intel_encoder *encoder) { DRM_DEBUG_KMS("\n"); } static bool intel_dsi_compute_config(struct intel_encoder *encoder, struct intel_crtc_config *config) { struct intel_dsi *intel_dsi = container_of(encoder, struct intel_dsi, base); struct intel_connector *intel_connector = intel_dsi->attached_connector; struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; struct drm_display_mode *adjusted_mode = &config->adjusted_mode; struct drm_display_mode *mode = &config->requested_mode; DRM_DEBUG_KMS("\n"); if (fixed_mode) intel_fixed_panel_mode(fixed_mode, adjusted_mode); if (intel_dsi->dev.dev_ops->mode_fixup) return intel_dsi->dev.dev_ops->mode_fixup(&intel_dsi->dev, mode, adjusted_mode); return true; } static void intel_dsi_pre_pll_enable(struct intel_encoder *encoder) { DRM_DEBUG_KMS("\n"); vlv_enable_dsi_pll(encoder); } static void intel_dsi_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); int pipe = intel_crtc->pipe; u32 val; DRM_DEBUG_KMS("\n"); val = I915_READ(MIPI_PORT_CTRL(pipe)); I915_WRITE(MIPI_PORT_CTRL(pipe), val | LP_OUTPUT_HOLD); usleep_range(1000, 1500); I915_WRITE(MIPI_DEVICE_READY(pipe), DEVICE_READY | ULPS_STATE_EXIT); usleep_range(2000, 2500); I915_WRITE(MIPI_DEVICE_READY(pipe), DEVICE_READY); usleep_range(2000, 2500); I915_WRITE(MIPI_DEVICE_READY(pipe), 0x00); usleep_range(2000, 2500); I915_WRITE(MIPI_DEVICE_READY(pipe), DEVICE_READY); usleep_range(2000, 2500); } static void intel_dsi_pre_enable(struct intel_encoder *encoder) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); DRM_DEBUG_KMS("\n"); if (intel_dsi->dev.dev_ops->panel_reset) intel_dsi->dev.dev_ops->panel_reset(&intel_dsi->dev); /* put device in ready state */ intel_dsi_device_ready(encoder); if (intel_dsi->dev.dev_ops->send_otp_cmds) intel_dsi->dev.dev_ops->send_otp_cmds(&intel_dsi->dev); } static void intel_dsi_enable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); int pipe = intel_crtc->pipe; u32 temp; DRM_DEBUG_KMS("\n"); if (is_cmd_mode(intel_dsi)) I915_WRITE(MIPI_MAX_RETURN_PKT_SIZE(pipe), 8 * 4); else { msleep(20); /* XXX */ dpi_send_cmd(intel_dsi, TURN_ON); msleep(100); /* assert ip_tg_enable signal */ temp = I915_READ(MIPI_PORT_CTRL(pipe)); I915_WRITE(MIPI_PORT_CTRL(pipe), temp | DPI_ENABLE); POSTING_READ(MIPI_PORT_CTRL(pipe)); } if (intel_dsi->dev.dev_ops->enable) intel_dsi->dev.dev_ops->enable(&intel_dsi->dev); } static void intel_dsi_disable(struct intel_encoder *encoder) { struct drm_device *dev = encoder->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); int pipe = intel_crtc->pipe; u32 temp; DRM_DEBUG_KMS("\n"); if (is_vid_mode(intel_dsi)) { dpi_send_cmd(intel_dsi, SHUTDOWN); msleep(10); /* de-assert ip_tg_enable signal */ temp = I915_READ(MIPI_PORT_CTRL(pipe)); I915_WRITE(MIPI_PORT_CTRL(pipe), temp & ~DPI_ENABLE); POSTING_READ(MIPI_PORT_CTRL(pipe)); msleep(2); } /* if disable packets are sent before sending shutdown packet then in * some next enable sequence send turn on packet error is observed */ if (intel_dsi->dev.dev_ops->disable) intel_dsi->dev.dev_ops->disable(&intel_dsi->dev); } static void intel_dsi_clear_device_ready(struct intel_encoder *encoder) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc); int pipe = intel_crtc->pipe; u32 val; DRM_DEBUG_KMS("\n"); I915_WRITE(MIPI_DEVICE_READY(pipe), ULPS_STATE_ENTER); usleep_range(2000, 2500); I915_WRITE(MIPI_DEVICE_READY(pipe), ULPS_STATE_EXIT); usleep_range(2000, 2500); I915_WRITE(MIPI_DEVICE_READY(pipe), ULPS_STATE_ENTER); usleep_range(2000, 2500); val = I915_READ(MIPI_PORT_CTRL(pipe)); I915_WRITE(MIPI_PORT_CTRL(pipe), val & ~LP_OUTPUT_HOLD); usleep_range(1000, 1500); if (wait_for(((I915_READ(MIPI_PORT_CTRL(pipe)) & AFE_LATCHOUT) == 0x00000), 30)) DRM_ERROR("DSI LP not going Low\n"); I915_WRITE(MIPI_DEVICE_READY(pipe), 0x00); usleep_range(2000, 2500); vlv_disable_dsi_pll(encoder); } static void intel_dsi_post_disable(struct intel_encoder *encoder) { struct intel_dsi *intel_dsi = enc_to_intel_dsi(&encoder->base); DRM_DEBUG_KMS("\n"); intel_dsi_clear_device_ready(encoder); if (intel_dsi->dev.dev_ops->disable_panel_power) intel_dsi->dev.dev_ops->disable_panel_power(&intel_dsi->dev); } static bool intel_dsi_get_hw_state(struct intel_encoder *encoder, enum pipe *pipe) { struct drm_i915_private *dev_priv = encoder->base.dev->dev_private; u32 port, func; enum pipe p; DRM_DEBUG_KMS("\n"); /* XXX: this only works for one DSI output */ for (p = PIPE_A; p <= PIPE_B; p++) { port = I915_READ(MIPI_PORT_CTRL(p)); func = I915_READ(MIPI_DSI_FUNC_PRG(p)); if ((port & DPI_ENABLE) || (func & CMD_MODE_DATA_WIDTH_MASK)) { if (I915_READ(MIPI_DEVICE_READY(p)) & DEVICE_READY) { *pipe = p; return true; } } } return false; } static void intel_dsi_get_config(struct intel_encoder *encoder, struct intel_crtc_config *pipe_config) { DRM_DEBUG_KMS("\n"); /* XXX: read flags, set to adjusted_mode */ } static enum drm_mode_status intel_dsi_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode; struct intel_dsi *intel_dsi = intel_attached_dsi(connector); DRM_DEBUG_KMS("\n"); if (mode->flags & DRM_MODE_FLAG_DBLSCAN) { DRM_DEBUG_KMS("MODE_NO_DBLESCAN\n"); return MODE_NO_DBLESCAN; } if (fixed_mode) { if (mode->hdisplay > fixed_mode->hdisplay) return MODE_PANEL; if (mode->vdisplay > fixed_mode->vdisplay) return MODE_PANEL; } return intel_dsi->dev.dev_ops->mode_valid(&intel_dsi->dev, mode); } /* return txclkesc cycles in terms of divider and duration in us */ static u16 txclkesc(u32 divider, unsigned int us) { switch (divider) { case ESCAPE_CLOCK_DIVIDER_1: default: return 20 * us; case ESCAPE_CLOCK_DIVIDER_2: return 10 * us; case ESCAPE_CLOCK_DIVIDER_4: return 5 * us; } } /* return pixels in terms of txbyteclkhs */ static u16 txbyteclkhs(u16 pixels, int bpp, int lane_count) { return DIV_ROUND_UP(DIV_ROUND_UP(pixels * bpp, 8), lane_count); } static void set_dsi_timings(struct drm_encoder *encoder, const struct drm_display_mode *mode) { struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); int pipe = intel_crtc->pipe; unsigned int bpp = intel_crtc->config.pipe_bpp; unsigned int lane_count = intel_dsi->lane_count; u16 hactive, hfp, hsync, hbp, vfp, vsync, vbp; hactive = mode->hdisplay; hfp = mode->hsync_start - mode->hdisplay; hsync = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; vfp = mode->vsync_start - mode->vdisplay; vsync = mode->vsync_end - mode->vsync_start; vbp = mode->vtotal - mode->vsync_end; /* horizontal values are in terms of high speed byte clock */ hactive = txbyteclkhs(hactive, bpp, lane_count); hfp = txbyteclkhs(hfp, bpp, lane_count); hsync = txbyteclkhs(hsync, bpp, lane_count); hbp = txbyteclkhs(hbp, bpp, lane_count); I915_WRITE(MIPI_HACTIVE_AREA_COUNT(pipe), hactive); I915_WRITE(MIPI_HFP_COUNT(pipe), hfp); /* meaningful for video mode non-burst sync pulse mode only, can be zero * for non-burst sync events and burst modes */ I915_WRITE(MIPI_HSYNC_PADDING_COUNT(pipe), hsync); I915_WRITE(MIPI_HBP_COUNT(pipe), hbp); /* vertical values are in terms of lines */ I915_WRITE(MIPI_VFP_COUNT(pipe), vfp); I915_WRITE(MIPI_VSYNC_PADDING_COUNT(pipe), vsync); I915_WRITE(MIPI_VBP_COUNT(pipe), vbp); } static void intel_dsi_mode_set(struct intel_encoder *intel_encoder) { struct drm_encoder *encoder = &intel_encoder->base; struct drm_device *dev = encoder->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc); struct intel_dsi *intel_dsi = enc_to_intel_dsi(encoder); struct drm_display_mode *adjusted_mode = &intel_crtc->config.adjusted_mode; int pipe = intel_crtc->pipe; unsigned int bpp = intel_crtc->config.pipe_bpp; u32 val, tmp; DRM_DEBUG_KMS("pipe %c\n", pipe_name(pipe)); /* XXX: Location of the call */ band_gap_reset(dev_priv); /* escape clock divider, 20MHz, shared for A and C. device ready must be * off when doing this! txclkesc? */ tmp = I915_READ(MIPI_CTRL(0)); tmp &= ~ESCAPE_CLOCK_DIVIDER_MASK; I915_WRITE(MIPI_CTRL(0), tmp | ESCAPE_CLOCK_DIVIDER_1); /* read request priority is per pipe */ tmp = I915_READ(MIPI_CTRL(pipe)); tmp &= ~READ_REQUEST_PRIORITY_MASK; I915_WRITE(MIPI_CTRL(pipe), tmp | READ_REQUEST_PRIORITY_HIGH); /* XXX: why here, why like this? handling in irq handler?! */ I915_WRITE(MIPI_INTR_STAT(pipe), 0xffffffff); I915_WRITE(MIPI_INTR_EN(pipe), 0xffffffff); I915_WRITE(MIPI_DPHY_PARAM(pipe), 0x3c << EXIT_ZERO_COUNT_SHIFT | 0x1f << TRAIL_COUNT_SHIFT | 0xc5 << CLK_ZERO_COUNT_SHIFT | 0x1f << PREPARE_COUNT_SHIFT); I915_WRITE(MIPI_DPI_RESOLUTION(pipe), adjusted_mode->vdisplay << VERTICAL_ADDRESS_SHIFT | adjusted_mode->hdisplay << HORIZONTAL_ADDRESS_SHIFT); set_dsi_timings(encoder, adjusted_mode); val = intel_dsi->lane_count << DATA_LANES_PRG_REG_SHIFT; if (is_cmd_mode(intel_dsi)) { val |= intel_dsi->channel << CMD_MODE_CHANNEL_NUMBER_SHIFT; val |= CMD_MODE_DATA_WIDTH_8_BIT; /* XXX */ } else { val |= intel_dsi->channel << VID_MODE_CHANNEL_NUMBER_SHIFT; /* XXX: cross-check bpp vs. pixel format? */ val |= intel_dsi->pixel_format; } I915_WRITE(MIPI_DSI_FUNC_PRG(pipe), val); /* timeouts for recovery. one frame IIUC. if counter expires, EOT and * stop state. */ /* * In burst mode, value greater than one DPI line Time in byte clock * (txbyteclkhs) To timeout this timer 1+ of the above said value is * recommended. * * In non-burst mode, Value greater than one DPI frame time in byte * clock(txbyteclkhs) To timeout this timer 1+ of the above said value * is recommended. * * In DBI only mode, value greater than one DBI frame time in byte * clock(txbyteclkhs) To timeout this timer 1+ of the above said value * is recommended. */ if (is_vid_mode(intel_dsi) && intel_dsi->video_mode_format == VIDEO_MODE_BURST) { I915_WRITE(MIPI_HS_TX_TIMEOUT(pipe), txbyteclkhs(adjusted_mode->htotal, bpp, intel_dsi->lane_count) + 1); } else { I915_WRITE(MIPI_HS_TX_TIMEOUT(pipe), txbyteclkhs(adjusted_mode->vtotal * adjusted_mode->htotal, bpp, intel_dsi->lane_count) + 1); } I915_WRITE(MIPI_LP_RX_TIMEOUT(pipe), 8309); /* max */ I915_WRITE(MIPI_TURN_AROUND_TIMEOUT(pipe), 0x14); /* max */ I915_WRITE(MIPI_DEVICE_RESET_TIMER(pipe), 0xffff); /* max */ /* dphy stuff */ /* in terms of low power clock */ I915_WRITE(MIPI_INIT_COUNT(pipe), txclkesc(ESCAPE_CLOCK_DIVIDER_1, 100)); /* recovery disables */ I915_WRITE(MIPI_EOT_DISABLE(pipe), intel_dsi->eot_disable); /* in terms of txbyteclkhs. actual high to low switch + * MIPI_STOP_STATE_STALL * MIPI_LP_BYTECLK. * * XXX: write MIPI_STOP_STATE_STALL? */ I915_WRITE(MIPI_HIGH_LOW_SWITCH_COUNT(pipe), 0x46); /* XXX: low power clock equivalence in terms of byte clock. the number * of byte clocks occupied in one low power clock. based on txbyteclkhs * and txclkesc. txclkesc time / txbyteclk time * (105 + * MIPI_STOP_STATE_STALL) / 105.??? */ I915_WRITE(MIPI_LP_BYTECLK(pipe), 4); /* the bw essential for transmitting 16 long packets containing 252 * bytes meant for dcs write memory command is programmed in this * register in terms of byte clocks. based on dsi transfer rate and the * number of lanes configured the time taken to transmit 16 long packets * in a dsi stream varies. */ I915_WRITE(MIPI_DBI_BW_CTRL(pipe), 0x820); I915_WRITE(MIPI_CLK_LANE_SWITCH_TIME_CNT(pipe), 0xa << LP_HS_SSW_CNT_SHIFT | 0x14 << HS_LP_PWR_SW_CNT_SHIFT); if (is_vid_mode(intel_dsi)) I915_WRITE(MIPI_VIDEO_MODE_FORMAT(pipe), intel_dsi->video_mode_format); } static enum drm_connector_status intel_dsi_detect(struct drm_connector *connector, bool force) { struct intel_dsi *intel_dsi = intel_attached_dsi(connector); DRM_DEBUG_KMS("\n"); return intel_dsi->dev.dev_ops->detect(&intel_dsi->dev); } static int intel_dsi_get_modes(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); struct drm_display_mode *mode; DRM_DEBUG_KMS("\n"); if (!intel_connector->panel.fixed_mode) { DRM_DEBUG_KMS("no fixed mode\n"); return 0; } mode = drm_mode_duplicate(connector->dev, intel_connector->panel.fixed_mode); if (!mode) { DRM_DEBUG_KMS("drm_mode_duplicate failed\n"); return 0; } drm_mode_probed_add(connector, mode); return 1; } static void intel_dsi_destroy(struct drm_connector *connector) { struct intel_connector *intel_connector = to_intel_connector(connector); DRM_DEBUG_KMS("\n"); intel_panel_fini(&intel_connector->panel); drm_connector_cleanup(connector); kfree(connector); } static const struct drm_encoder_funcs intel_dsi_funcs = { .destroy = intel_encoder_destroy, }; static const struct drm_connector_helper_funcs intel_dsi_connector_helper_funcs = { .get_modes = intel_dsi_get_modes, .mode_valid = intel_dsi_mode_valid, .best_encoder = intel_best_encoder, }; static const struct drm_connector_funcs intel_dsi_connector_funcs = { .dpms = intel_connector_dpms, .detect = intel_dsi_detect, .destroy = intel_dsi_destroy, .fill_modes = drm_helper_probe_single_connector_modes, }; bool intel_dsi_init(struct drm_device *dev) { struct intel_dsi *intel_dsi; struct intel_encoder *intel_encoder; struct drm_encoder *encoder; struct intel_connector *intel_connector; struct drm_connector *connector; struct drm_display_mode *fixed_mode = NULL; const struct intel_dsi_device *dsi; unsigned int i; DRM_DEBUG_KMS("\n"); intel_dsi = kzalloc(sizeof(*intel_dsi), GFP_KERNEL); if (!intel_dsi) return false; intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL); if (!intel_connector) { kfree(intel_dsi); return false; } intel_encoder = &intel_dsi->base; encoder = &intel_encoder->base; intel_dsi->attached_connector = intel_connector; connector = &intel_connector->base; drm_encoder_init(dev, encoder, &intel_dsi_funcs, DRM_MODE_ENCODER_DSI); /* XXX: very likely not all of these are needed */ intel_encoder->hot_plug = intel_dsi_hot_plug; intel_encoder->compute_config = intel_dsi_compute_config; intel_encoder->pre_pll_enable = intel_dsi_pre_pll_enable; intel_encoder->pre_enable = intel_dsi_pre_enable; intel_encoder->enable = intel_dsi_enable; intel_encoder->mode_set = intel_dsi_mode_set; intel_encoder->disable = intel_dsi_disable; intel_encoder->post_disable = intel_dsi_post_disable; intel_encoder->get_hw_state = intel_dsi_get_hw_state; intel_encoder->get_config = intel_dsi_get_config; intel_connector->get_hw_state = intel_connector_get_hw_state; for (i = 0; i < ARRAY_SIZE(intel_dsi_devices); i++) { dsi = &intel_dsi_devices[i]; intel_dsi->dev = *dsi; if (dsi->dev_ops->init(&intel_dsi->dev)) break; } if (i == ARRAY_SIZE(intel_dsi_devices)) { DRM_DEBUG_KMS("no device found\n"); goto err; } intel_encoder->type = INTEL_OUTPUT_DSI; intel_encoder->crtc_mask = (1 << 0); /* XXX */ intel_encoder->cloneable = false; drm_connector_init(dev, connector, &intel_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); drm_connector_helper_add(connector, &intel_dsi_connector_helper_funcs); connector->display_info.subpixel_order = SubPixelHorizontalRGB; /*XXX*/ connector->interlace_allowed = false; connector->doublescan_allowed = false; intel_connector_attach_encoder(intel_connector, intel_encoder); drm_sysfs_connector_add(connector); fixed_mode = dsi->dev_ops->get_modes(&intel_dsi->dev); if (!fixed_mode) { DRM_DEBUG_KMS("no fixed mode\n"); goto err; } fixed_mode->type |= DRM_MODE_TYPE_PREFERRED; intel_panel_init(&intel_connector->panel, fixed_mode); return true; err: drm_encoder_cleanup(&intel_encoder->base); kfree(intel_dsi); kfree(intel_connector); return false; }