#include #include #include #include #include #include "symbol.h" #include "dso.h" #include "machine.h" #include "auxtrace.h" #include "util.h" #include "debug.h" #include "string2.h" #include "vdso.h" static const char * const debuglink_paths[] = { "%.0s%s", "%s/%s", "%s/.debug/%s", "/usr/lib/debug%s/%s" }; char dso__symtab_origin(const struct dso *dso) { static const char origin[] = { [DSO_BINARY_TYPE__KALLSYMS] = 'k', [DSO_BINARY_TYPE__VMLINUX] = 'v', [DSO_BINARY_TYPE__JAVA_JIT] = 'j', [DSO_BINARY_TYPE__DEBUGLINK] = 'l', [DSO_BINARY_TYPE__BUILD_ID_CACHE] = 'B', [DSO_BINARY_TYPE__FEDORA_DEBUGINFO] = 'f', [DSO_BINARY_TYPE__UBUNTU_DEBUGINFO] = 'u', [DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO] = 'o', [DSO_BINARY_TYPE__BUILDID_DEBUGINFO] = 'b', [DSO_BINARY_TYPE__SYSTEM_PATH_DSO] = 'd', [DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE] = 'K', [DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP] = 'm', [DSO_BINARY_TYPE__GUEST_KALLSYMS] = 'g', [DSO_BINARY_TYPE__GUEST_KMODULE] = 'G', [DSO_BINARY_TYPE__GUEST_KMODULE_COMP] = 'M', [DSO_BINARY_TYPE__GUEST_VMLINUX] = 'V', }; if (dso == NULL || dso->symtab_type == DSO_BINARY_TYPE__NOT_FOUND) return '!'; return origin[dso->symtab_type]; } int dso__read_binary_type_filename(const struct dso *dso, enum dso_binary_type type, char *root_dir, char *filename, size_t size) { char build_id_hex[SBUILD_ID_SIZE]; int ret = 0; size_t len; switch (type) { case DSO_BINARY_TYPE__DEBUGLINK: { const char *last_slash; char dso_dir[PATH_MAX]; char symfile[PATH_MAX]; unsigned int i; len = __symbol__join_symfs(filename, size, dso->long_name); last_slash = filename + len; while (last_slash != filename && *last_slash != '/') last_slash--; strncpy(dso_dir, filename, last_slash - filename); dso_dir[last_slash-filename] = '\0'; if (!is_regular_file(filename)) { ret = -1; break; } ret = filename__read_debuglink(filename, symfile, PATH_MAX); if (ret) break; /* Check predefined locations where debug file might reside */ ret = -1; for (i = 0; i < ARRAY_SIZE(debuglink_paths); i++) { snprintf(filename, size, debuglink_paths[i], dso_dir, symfile); if (is_regular_file(filename)) { ret = 0; break; } } break; } case DSO_BINARY_TYPE__BUILD_ID_CACHE: if (dso__build_id_filename(dso, filename, size) == NULL) ret = -1; break; case DSO_BINARY_TYPE__FEDORA_DEBUGINFO: len = __symbol__join_symfs(filename, size, "/usr/lib/debug"); snprintf(filename + len, size - len, "%s.debug", dso->long_name); break; case DSO_BINARY_TYPE__UBUNTU_DEBUGINFO: len = __symbol__join_symfs(filename, size, "/usr/lib/debug"); snprintf(filename + len, size - len, "%s", dso->long_name); break; case DSO_BINARY_TYPE__OPENEMBEDDED_DEBUGINFO: { const char *last_slash; size_t dir_size; last_slash = dso->long_name + dso->long_name_len; while (last_slash != dso->long_name && *last_slash != '/') last_slash--; len = __symbol__join_symfs(filename, size, ""); dir_size = last_slash - dso->long_name + 2; if (dir_size > (size - len)) { ret = -1; break; } len += scnprintf(filename + len, dir_size, "%s", dso->long_name); len += scnprintf(filename + len , size - len, ".debug%s", last_slash); break; } case DSO_BINARY_TYPE__BUILDID_DEBUGINFO: if (!dso->has_build_id) { ret = -1; break; } build_id__sprintf(dso->build_id, sizeof(dso->build_id), build_id_hex); len = __symbol__join_symfs(filename, size, "/usr/lib/debug/.build-id/"); snprintf(filename + len, size - len, "%.2s/%s.debug", build_id_hex, build_id_hex + 2); break; case DSO_BINARY_TYPE__VMLINUX: case DSO_BINARY_TYPE__GUEST_VMLINUX: case DSO_BINARY_TYPE__SYSTEM_PATH_DSO: __symbol__join_symfs(filename, size, dso->long_name); break; case DSO_BINARY_TYPE__GUEST_KMODULE: case DSO_BINARY_TYPE__GUEST_KMODULE_COMP: path__join3(filename, size, symbol_conf.symfs, root_dir, dso->long_name); break; case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE: case DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP: __symbol__join_symfs(filename, size, dso->long_name); break; case DSO_BINARY_TYPE__KCORE: case DSO_BINARY_TYPE__GUEST_KCORE: snprintf(filename, size, "%s", dso->long_name); break; default: case DSO_BINARY_TYPE__KALLSYMS: case DSO_BINARY_TYPE__GUEST_KALLSYMS: case DSO_BINARY_TYPE__JAVA_JIT: case DSO_BINARY_TYPE__NOT_FOUND: ret = -1; break; } return ret; } static const struct { const char *fmt; int (*decompress)(const char *input, int output); } compressions[] = { #ifdef HAVE_ZLIB_SUPPORT { "gz", gzip_decompress_to_file }, #endif #ifdef HAVE_LZMA_SUPPORT { "xz", lzma_decompress_to_file }, #endif { NULL, NULL }, }; bool is_supported_compression(const char *ext) { unsigned i; for (i = 0; compressions[i].fmt; i++) { if (!strcmp(ext, compressions[i].fmt)) return true; } return false; } bool is_kernel_module(const char *pathname, int cpumode) { struct kmod_path m; int mode = cpumode & PERF_RECORD_MISC_CPUMODE_MASK; WARN_ONCE(mode != cpumode, "Internal error: passing unmasked cpumode (%x) to is_kernel_module", cpumode); switch (mode) { case PERF_RECORD_MISC_USER: case PERF_RECORD_MISC_HYPERVISOR: case PERF_RECORD_MISC_GUEST_USER: return false; /* Treat PERF_RECORD_MISC_CPUMODE_UNKNOWN as kernel */ default: if (kmod_path__parse(&m, pathname)) { pr_err("Failed to check whether %s is a kernel module or not. Assume it is.", pathname); return true; } } return m.kmod; } bool decompress_to_file(const char *ext, const char *filename, int output_fd) { unsigned i; for (i = 0; compressions[i].fmt; i++) { if (!strcmp(ext, compressions[i].fmt)) return !compressions[i].decompress(filename, output_fd); } return false; } bool dso__needs_decompress(struct dso *dso) { return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE_COMP || dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE_COMP; } /* * Parses kernel module specified in @path and updates * @m argument like: * * @comp - true if @path contains supported compression suffix, * false otherwise * @kmod - true if @path contains '.ko' suffix in right position, * false otherwise * @name - if (@alloc_name && @kmod) is true, it contains strdup-ed base name * of the kernel module without suffixes, otherwise strudup-ed * base name of @path * @ext - if (@alloc_ext && @comp) is true, it contains strdup-ed string * the compression suffix * * Returns 0 if there's no strdup error, -ENOMEM otherwise. */ int __kmod_path__parse(struct kmod_path *m, const char *path, bool alloc_name, bool alloc_ext) { const char *name = strrchr(path, '/'); const char *ext = strrchr(path, '.'); bool is_simple_name = false; memset(m, 0x0, sizeof(*m)); name = name ? name + 1 : path; /* * '.' is also a valid character for module name. For example: * [aaa.bbb] is a valid module name. '[' should have higher * priority than '.ko' suffix. * * The kernel names are from machine__mmap_name. Such * name should belong to kernel itself, not kernel module. */ if (name[0] == '[') { is_simple_name = true; if ((strncmp(name, "[kernel.kallsyms]", 17) == 0) || (strncmp(name, "[guest.kernel.kallsyms", 22) == 0) || (strncmp(name, "[vdso]", 6) == 0) || (strncmp(name, "[vsyscall]", 10) == 0)) { m->kmod = false; } else m->kmod = true; } /* No extension, just return name. */ if ((ext == NULL) || is_simple_name) { if (alloc_name) { m->name = strdup(name); return m->name ? 0 : -ENOMEM; } return 0; } if (is_supported_compression(ext + 1)) { m->comp = true; ext -= 3; } /* Check .ko extension only if there's enough name left. */ if (ext > name) m->kmod = !strncmp(ext, ".ko", 3); if (alloc_name) { if (m->kmod) { if (asprintf(&m->name, "[%.*s]", (int) (ext - name), name) == -1) return -ENOMEM; } else { if (asprintf(&m->name, "%s", name) == -1) return -ENOMEM; } strxfrchar(m->name, '-', '_'); } if (alloc_ext && m->comp) { m->ext = strdup(ext + 4); if (!m->ext) { free((void *) m->name); return -ENOMEM; } } return 0; } /* * Global list of open DSOs and the counter. */ static LIST_HEAD(dso__data_open); static long dso__data_open_cnt; static pthread_mutex_t dso__data_open_lock = PTHREAD_MUTEX_INITIALIZER; static void dso__list_add(struct dso *dso) { list_add_tail(&dso->data.open_entry, &dso__data_open); dso__data_open_cnt++; } static void dso__list_del(struct dso *dso) { list_del(&dso->data.open_entry); WARN_ONCE(dso__data_open_cnt <= 0, "DSO data fd counter out of bounds."); dso__data_open_cnt--; } static void close_first_dso(void); static int do_open(char *name) { int fd; char sbuf[STRERR_BUFSIZE]; do { fd = open(name, O_RDONLY); if (fd >= 0) return fd; pr_debug("dso open failed: %s\n", str_error_r(errno, sbuf, sizeof(sbuf))); if (!dso__data_open_cnt || errno != EMFILE) break; close_first_dso(); } while (1); return -1; } static int __open_dso(struct dso *dso, struct machine *machine) { int fd; char *root_dir = (char *)""; char *name = malloc(PATH_MAX); if (!name) return -ENOMEM; if (machine) root_dir = machine->root_dir; if (dso__read_binary_type_filename(dso, dso->binary_type, root_dir, name, PATH_MAX)) { free(name); return -EINVAL; } if (!is_regular_file(name)) return -EINVAL; fd = do_open(name); free(name); return fd; } static void check_data_close(void); /** * dso_close - Open DSO data file * @dso: dso object * * Open @dso's data file descriptor and updates * list/count of open DSO objects. */ static int open_dso(struct dso *dso, struct machine *machine) { int fd = __open_dso(dso, machine); if (fd >= 0) { dso__list_add(dso); /* * Check if we crossed the allowed number * of opened DSOs and close one if needed. */ check_data_close(); } return fd; } static void close_data_fd(struct dso *dso) { if (dso->data.fd >= 0) { close(dso->data.fd); dso->data.fd = -1; dso->data.file_size = 0; dso__list_del(dso); } } /** * dso_close - Close DSO data file * @dso: dso object * * Close @dso's data file descriptor and updates * list/count of open DSO objects. */ static void close_dso(struct dso *dso) { close_data_fd(dso); } static void close_first_dso(void) { struct dso *dso; dso = list_first_entry(&dso__data_open, struct dso, data.open_entry); close_dso(dso); } static rlim_t get_fd_limit(void) { struct rlimit l; rlim_t limit = 0; /* Allow half of the current open fd limit. */ if (getrlimit(RLIMIT_NOFILE, &l) == 0) { if (l.rlim_cur == RLIM_INFINITY) limit = l.rlim_cur; else limit = l.rlim_cur / 2; } else { pr_err("failed to get fd limit\n"); limit = 1; } return limit; } static rlim_t fd_limit; /* * Used only by tests/dso-data.c to reset the environment * for tests. I dont expect we should change this during * standard runtime. */ void reset_fd_limit(void) { fd_limit = 0; } static bool may_cache_fd(void) { if (!fd_limit) fd_limit = get_fd_limit(); if (fd_limit == RLIM_INFINITY) return true; return fd_limit > (rlim_t) dso__data_open_cnt; } /* * Check and close LRU dso if we crossed allowed limit * for opened dso file descriptors. The limit is half * of the RLIMIT_NOFILE files opened. */ static void check_data_close(void) { bool cache_fd = may_cache_fd(); if (!cache_fd) close_first_dso(); } /** * dso__data_close - Close DSO data file * @dso: dso object * * External interface to close @dso's data file descriptor. */ void dso__data_close(struct dso *dso) { pthread_mutex_lock(&dso__data_open_lock); close_dso(dso); pthread_mutex_unlock(&dso__data_open_lock); } static void try_to_open_dso(struct dso *dso, struct machine *machine) { enum dso_binary_type binary_type_data[] = { DSO_BINARY_TYPE__BUILD_ID_CACHE, DSO_BINARY_TYPE__SYSTEM_PATH_DSO, DSO_BINARY_TYPE__NOT_FOUND, }; int i = 0; if (dso->data.fd >= 0) return; if (dso->binary_type != DSO_BINARY_TYPE__NOT_FOUND) { dso->data.fd = open_dso(dso, machine); goto out; } do { dso->binary_type = binary_type_data[i++]; dso->data.fd = open_dso(dso, machine); if (dso->data.fd >= 0) goto out; } while (dso->binary_type != DSO_BINARY_TYPE__NOT_FOUND); out: if (dso->data.fd >= 0) dso->data.status = DSO_DATA_STATUS_OK; else dso->data.status = DSO_DATA_STATUS_ERROR; } /** * dso__data_get_fd - Get dso's data file descriptor * @dso: dso object * @machine: machine object * * External interface to find dso's file, open it and * returns file descriptor. It should be paired with * dso__data_put_fd() if it returns non-negative value. */ int dso__data_get_fd(struct dso *dso, struct machine *machine) { if (dso->data.status == DSO_DATA_STATUS_ERROR) return -1; if (pthread_mutex_lock(&dso__data_open_lock) < 0) return -1; try_to_open_dso(dso, machine); if (dso->data.fd < 0) pthread_mutex_unlock(&dso__data_open_lock); return dso->data.fd; } void dso__data_put_fd(struct dso *dso __maybe_unused) { pthread_mutex_unlock(&dso__data_open_lock); } bool dso__data_status_seen(struct dso *dso, enum dso_data_status_seen by) { u32 flag = 1 << by; if (dso->data.status_seen & flag) return true; dso->data.status_seen |= flag; return false; } static void dso_cache__free(struct dso *dso) { struct rb_root *root = &dso->data.cache; struct rb_node *next = rb_first(root); pthread_mutex_lock(&dso->lock); while (next) { struct dso_cache *cache; cache = rb_entry(next, struct dso_cache, rb_node); next = rb_next(&cache->rb_node); rb_erase(&cache->rb_node, root); free(cache); } pthread_mutex_unlock(&dso->lock); } static struct dso_cache *dso_cache__find(struct dso *dso, u64 offset) { const struct rb_root *root = &dso->data.cache; struct rb_node * const *p = &root->rb_node; const struct rb_node *parent = NULL; struct dso_cache *cache; while (*p != NULL) { u64 end; parent = *p; cache = rb_entry(parent, struct dso_cache, rb_node); end = cache->offset + DSO__DATA_CACHE_SIZE; if (offset < cache->offset) p = &(*p)->rb_left; else if (offset >= end) p = &(*p)->rb_right; else return cache; } return NULL; } static struct dso_cache * dso_cache__insert(struct dso *dso, struct dso_cache *new) { struct rb_root *root = &dso->data.cache; struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; struct dso_cache *cache; u64 offset = new->offset; pthread_mutex_lock(&dso->lock); while (*p != NULL) { u64 end; parent = *p; cache = rb_entry(parent, struct dso_cache, rb_node); end = cache->offset + DSO__DATA_CACHE_SIZE; if (offset < cache->offset) p = &(*p)->rb_left; else if (offset >= end) p = &(*p)->rb_right; else goto out; } rb_link_node(&new->rb_node, parent, p); rb_insert_color(&new->rb_node, root); cache = NULL; out: pthread_mutex_unlock(&dso->lock); return cache; } static ssize_t dso_cache__memcpy(struct dso_cache *cache, u64 offset, u8 *data, u64 size) { u64 cache_offset = offset - cache->offset; u64 cache_size = min(cache->size - cache_offset, size); memcpy(data, cache->data + cache_offset, cache_size); return cache_size; } static ssize_t dso_cache__read(struct dso *dso, struct machine *machine, u64 offset, u8 *data, ssize_t size) { struct dso_cache *cache; struct dso_cache *old; ssize_t ret; do { u64 cache_offset; cache = zalloc(sizeof(*cache) + DSO__DATA_CACHE_SIZE); if (!cache) return -ENOMEM; pthread_mutex_lock(&dso__data_open_lock); /* * dso->data.fd might be closed if other thread opened another * file (dso) due to open file limit (RLIMIT_NOFILE). */ try_to_open_dso(dso, machine); if (dso->data.fd < 0) { ret = -errno; dso->data.status = DSO_DATA_STATUS_ERROR; break; } cache_offset = offset & DSO__DATA_CACHE_MASK; ret = pread(dso->data.fd, cache->data, DSO__DATA_CACHE_SIZE, cache_offset); if (ret <= 0) break; cache->offset = cache_offset; cache->size = ret; } while (0); pthread_mutex_unlock(&dso__data_open_lock); if (ret > 0) { old = dso_cache__insert(dso, cache); if (old) { /* we lose the race */ free(cache); cache = old; } ret = dso_cache__memcpy(cache, offset, data, size); } if (ret <= 0) free(cache); return ret; } static ssize_t dso_cache_read(struct dso *dso, struct machine *machine, u64 offset, u8 *data, ssize_t size) { struct dso_cache *cache; cache = dso_cache__find(dso, offset); if (cache) return dso_cache__memcpy(cache, offset, data, size); else return dso_cache__read(dso, machine, offset, data, size); } /* * Reads and caches dso data DSO__DATA_CACHE_SIZE size chunks * in the rb_tree. Any read to already cached data is served * by cached data. */ static ssize_t cached_read(struct dso *dso, struct machine *machine, u64 offset, u8 *data, ssize_t size) { ssize_t r = 0; u8 *p = data; do { ssize_t ret; ret = dso_cache_read(dso, machine, offset, p, size); if (ret < 0) return ret; /* Reached EOF, return what we have. */ if (!ret) break; BUG_ON(ret > size); r += ret; p += ret; offset += ret; size -= ret; } while (size); return r; } static int data_file_size(struct dso *dso, struct machine *machine) { int ret = 0; struct stat st; char sbuf[STRERR_BUFSIZE]; if (dso->data.file_size) return 0; if (dso->data.status == DSO_DATA_STATUS_ERROR) return -1; pthread_mutex_lock(&dso__data_open_lock); /* * dso->data.fd might be closed if other thread opened another * file (dso) due to open file limit (RLIMIT_NOFILE). */ try_to_open_dso(dso, machine); if (dso->data.fd < 0) { ret = -errno; dso->data.status = DSO_DATA_STATUS_ERROR; goto out; } if (fstat(dso->data.fd, &st) < 0) { ret = -errno; pr_err("dso cache fstat failed: %s\n", str_error_r(errno, sbuf, sizeof(sbuf))); dso->data.status = DSO_DATA_STATUS_ERROR; goto out; } dso->data.file_size = st.st_size; out: pthread_mutex_unlock(&dso__data_open_lock); return ret; } /** * dso__data_size - Return dso data size * @dso: dso object * @machine: machine object * * Return: dso data size */ off_t dso__data_size(struct dso *dso, struct machine *machine) { if (data_file_size(dso, machine)) return -1; /* For now just estimate dso data size is close to file size */ return dso->data.file_size; } static ssize_t data_read_offset(struct dso *dso, struct machine *machine, u64 offset, u8 *data, ssize_t size) { if (data_file_size(dso, machine)) return -1; /* Check the offset sanity. */ if (offset > dso->data.file_size) return -1; if (offset + size < offset) return -1; return cached_read(dso, machine, offset, data, size); } /** * dso__data_read_offset - Read data from dso file offset * @dso: dso object * @machine: machine object * @offset: file offset * @data: buffer to store data * @size: size of the @data buffer * * External interface to read data from dso file offset. Open * dso data file and use cached_read to get the data. */ ssize_t dso__data_read_offset(struct dso *dso, struct machine *machine, u64 offset, u8 *data, ssize_t size) { if (dso->data.status == DSO_DATA_STATUS_ERROR) return -1; return data_read_offset(dso, machine, offset, data, size); } /** * dso__data_read_addr - Read data from dso address * @dso: dso object * @machine: machine object * @add: virtual memory address * @data: buffer to store data * @size: size of the @data buffer * * External interface to read data from dso address. */ ssize_t dso__data_read_addr(struct dso *dso, struct map *map, struct machine *machine, u64 addr, u8 *data, ssize_t size) { u64 offset = map->map_ip(map, addr); return dso__data_read_offset(dso, machine, offset, data, size); } struct map *dso__new_map(const char *name) { struct map *map = NULL; struct dso *dso = dso__new(name); if (dso) map = map__new2(0, dso, MAP__FUNCTION); return map; } struct dso *machine__findnew_kernel(struct machine *machine, const char *name, const char *short_name, int dso_type) { /* * The kernel dso could be created by build_id processing. */ struct dso *dso = machine__findnew_dso(machine, name); /* * We need to run this in all cases, since during the build_id * processing we had no idea this was the kernel dso. */ if (dso != NULL) { dso__set_short_name(dso, short_name, false); dso->kernel = dso_type; } return dso; } /* * Find a matching entry and/or link current entry to RB tree. * Either one of the dso or name parameter must be non-NULL or the * function will not work. */ static struct dso *__dso__findlink_by_longname(struct rb_root *root, struct dso *dso, const char *name) { struct rb_node **p = &root->rb_node; struct rb_node *parent = NULL; if (!name) name = dso->long_name; /* * Find node with the matching name */ while (*p) { struct dso *this = rb_entry(*p, struct dso, rb_node); int rc = strcmp(name, this->long_name); parent = *p; if (rc == 0) { /* * In case the new DSO is a duplicate of an existing * one, print a one-time warning & put the new entry * at the end of the list of duplicates. */ if (!dso || (dso == this)) return this; /* Find matching dso */ /* * The core kernel DSOs may have duplicated long name. * In this case, the short name should be different. * Comparing the short names to differentiate the DSOs. */ rc = strcmp(dso->short_name, this->short_name); if (rc == 0) { pr_err("Duplicated dso name: %s\n", name); return NULL; } } if (rc < 0) p = &parent->rb_left; else p = &parent->rb_right; } if (dso) { /* Add new node and rebalance tree */ rb_link_node(&dso->rb_node, parent, p); rb_insert_color(&dso->rb_node, root); dso->root = root; } return NULL; } static inline struct dso *__dso__find_by_longname(struct rb_root *root, const char *name) { return __dso__findlink_by_longname(root, NULL, name); } void dso__set_long_name(struct dso *dso, const char *name, bool name_allocated) { struct rb_root *root = dso->root; if (name == NULL) return; if (dso->long_name_allocated) free((char *)dso->long_name); if (root) { rb_erase(&dso->rb_node, root); /* * __dso__findlink_by_longname() isn't guaranteed to add it * back, so a clean removal is required here. */ RB_CLEAR_NODE(&dso->rb_node); dso->root = NULL; } dso->long_name = name; dso->long_name_len = strlen(name); dso->long_name_allocated = name_allocated; if (root) __dso__findlink_by_longname(root, dso, NULL); } void dso__set_short_name(struct dso *dso, const char *name, bool name_allocated) { if (name == NULL) return; if (dso->short_name_allocated) free((char *)dso->short_name); dso->short_name = name; dso->short_name_len = strlen(name); dso->short_name_allocated = name_allocated; } static void dso__set_basename(struct dso *dso) { /* * basename() may modify path buffer, so we must pass * a copy. */ char *base, *lname = strdup(dso->long_name); if (!lname) return; /* * basename() may return a pointer to internal * storage which is reused in subsequent calls * so copy the result. */ base = strdup(basename(lname)); free(lname); if (!base) return; dso__set_short_name(dso, base, true); } int dso__name_len(const struct dso *dso) { if (!dso) return strlen("[unknown]"); if (verbose > 0) return dso->long_name_len; return dso->short_name_len; } bool dso__loaded(const struct dso *dso, enum map_type type) { return dso->loaded & (1 << type); } bool dso__sorted_by_name(const struct dso *dso, enum map_type type) { return dso->sorted_by_name & (1 << type); } void dso__set_sorted_by_name(struct dso *dso, enum map_type type) { dso->sorted_by_name |= (1 << type); } struct dso *dso__new(const char *name) { struct dso *dso = calloc(1, sizeof(*dso) + strlen(name) + 1); if (dso != NULL) { int i; strcpy(dso->name, name); dso__set_long_name(dso, dso->name, false); dso__set_short_name(dso, dso->name, false); for (i = 0; i < MAP__NR_TYPES; ++i) dso->symbols[i] = dso->symbol_names[i] = RB_ROOT; dso->data.cache = RB_ROOT; dso->data.fd = -1; dso->data.status = DSO_DATA_STATUS_UNKNOWN; dso->symtab_type = DSO_BINARY_TYPE__NOT_FOUND; dso->binary_type = DSO_BINARY_TYPE__NOT_FOUND; dso->is_64_bit = (sizeof(void *) == 8); dso->loaded = 0; dso->rel = 0; dso->sorted_by_name = 0; dso->has_build_id = 0; dso->has_srcline = 1; dso->a2l_fails = 1; dso->kernel = DSO_TYPE_USER; dso->needs_swap = DSO_SWAP__UNSET; RB_CLEAR_NODE(&dso->rb_node); dso->root = NULL; INIT_LIST_HEAD(&dso->node); INIT_LIST_HEAD(&dso->data.open_entry); pthread_mutex_init(&dso->lock, NULL); refcount_set(&dso->refcnt, 1); } return dso; } void dso__delete(struct dso *dso) { int i; if (!RB_EMPTY_NODE(&dso->rb_node)) pr_err("DSO %s is still in rbtree when being deleted!\n", dso->long_name); for (i = 0; i < MAP__NR_TYPES; ++i) symbols__delete(&dso->symbols[i]); if (dso->short_name_allocated) { zfree((char **)&dso->short_name); dso->short_name_allocated = false; } if (dso->long_name_allocated) { zfree((char **)&dso->long_name); dso->long_name_allocated = false; } dso__data_close(dso); auxtrace_cache__free(dso->auxtrace_cache); dso_cache__free(dso); dso__free_a2l(dso); zfree(&dso->symsrc_filename); pthread_mutex_destroy(&dso->lock); free(dso); } struct dso *dso__get(struct dso *dso) { if (dso) refcount_inc(&dso->refcnt); return dso; } void dso__put(struct dso *dso) { if (dso && refcount_dec_and_test(&dso->refcnt)) dso__delete(dso); } void dso__set_build_id(struct dso *dso, void *build_id) { memcpy(dso->build_id, build_id, sizeof(dso->build_id)); dso->has_build_id = 1; } bool dso__build_id_equal(const struct dso *dso, u8 *build_id) { return memcmp(dso->build_id, build_id, sizeof(dso->build_id)) == 0; } void dso__read_running_kernel_build_id(struct dso *dso, struct machine *machine) { char path[PATH_MAX]; if (machine__is_default_guest(machine)) return; sprintf(path, "%s/sys/kernel/notes", machine->root_dir); if (sysfs__read_build_id(path, dso->build_id, sizeof(dso->build_id)) == 0) dso->has_build_id = true; } int dso__kernel_module_get_build_id(struct dso *dso, const char *root_dir) { char filename[PATH_MAX]; /* * kernel module short names are of the form "[module]" and * we need just "module" here. */ const char *name = dso->short_name + 1; snprintf(filename, sizeof(filename), "%s/sys/module/%.*s/notes/.note.gnu.build-id", root_dir, (int)strlen(name) - 1, name); if (sysfs__read_build_id(filename, dso->build_id, sizeof(dso->build_id)) == 0) dso->has_build_id = true; return 0; } bool __dsos__read_build_ids(struct list_head *head, bool with_hits) { bool have_build_id = false; struct dso *pos; list_for_each_entry(pos, head, node) { if (with_hits && !pos->hit && !dso__is_vdso(pos)) continue; if (pos->has_build_id) { have_build_id = true; continue; } if (filename__read_build_id(pos->long_name, pos->build_id, sizeof(pos->build_id)) > 0) { have_build_id = true; pos->has_build_id = true; } } return have_build_id; } void __dsos__add(struct dsos *dsos, struct dso *dso) { list_add_tail(&dso->node, &dsos->head); __dso__findlink_by_longname(&dsos->root, dso, NULL); /* * It is now in the linked list, grab a reference, then garbage collect * this when needing memory, by looking at LRU dso instances in the * list with atomic_read(&dso->refcnt) == 1, i.e. no references * anywhere besides the one for the list, do, under a lock for the * list: remove it from the list, then a dso__put(), that probably will * be the last and will then call dso__delete(), end of life. * * That, or at the end of the 'struct machine' lifetime, when all * 'struct dso' instances will be removed from the list, in * dsos__exit(), if they have no other reference from some other data * structure. * * E.g.: after processing a 'perf.data' file and storing references * to objects instantiated while processing events, we will have * references to the 'thread', 'map', 'dso' structs all from 'struct * hist_entry' instances, but we may not need anything not referenced, * so we might as well call machines__exit()/machines__delete() and * garbage collect it. */ dso__get(dso); } void dsos__add(struct dsos *dsos, struct dso *dso) { pthread_rwlock_wrlock(&dsos->lock); __dsos__add(dsos, dso); pthread_rwlock_unlock(&dsos->lock); } struct dso *__dsos__find(struct dsos *dsos, const char *name, bool cmp_short) { struct dso *pos; if (cmp_short) { list_for_each_entry(pos, &dsos->head, node) if (strcmp(pos->short_name, name) == 0) return pos; return NULL; } return __dso__find_by_longname(&dsos->root, name); } struct dso *dsos__find(struct dsos *dsos, const char *name, bool cmp_short) { struct dso *dso; pthread_rwlock_rdlock(&dsos->lock); dso = __dsos__find(dsos, name, cmp_short); pthread_rwlock_unlock(&dsos->lock); return dso; } struct dso *__dsos__addnew(struct dsos *dsos, const char *name) { struct dso *dso = dso__new(name); if (dso != NULL) { __dsos__add(dsos, dso); dso__set_basename(dso); /* Put dso here because __dsos_add already got it */ dso__put(dso); } return dso; } struct dso *__dsos__findnew(struct dsos *dsos, const char *name) { struct dso *dso = __dsos__find(dsos, name, false); return dso ? dso : __dsos__addnew(dsos, name); } struct dso *dsos__findnew(struct dsos *dsos, const char *name) { struct dso *dso; pthread_rwlock_wrlock(&dsos->lock); dso = dso__get(__dsos__findnew(dsos, name)); pthread_rwlock_unlock(&dsos->lock); return dso; } size_t __dsos__fprintf_buildid(struct list_head *head, FILE *fp, bool (skip)(struct dso *dso, int parm), int parm) { struct dso *pos; size_t ret = 0; list_for_each_entry(pos, head, node) { if (skip && skip(pos, parm)) continue; ret += dso__fprintf_buildid(pos, fp); ret += fprintf(fp, " %s\n", pos->long_name); } return ret; } size_t __dsos__fprintf(struct list_head *head, FILE *fp) { struct dso *pos; size_t ret = 0; list_for_each_entry(pos, head, node) { int i; for (i = 0; i < MAP__NR_TYPES; ++i) ret += dso__fprintf(pos, i, fp); } return ret; } size_t dso__fprintf_buildid(struct dso *dso, FILE *fp) { char sbuild_id[SBUILD_ID_SIZE]; build_id__sprintf(dso->build_id, sizeof(dso->build_id), sbuild_id); return fprintf(fp, "%s", sbuild_id); } size_t dso__fprintf(struct dso *dso, enum map_type type, FILE *fp) { struct rb_node *nd; size_t ret = fprintf(fp, "dso: %s (", dso->short_name); if (dso->short_name != dso->long_name) ret += fprintf(fp, "%s, ", dso->long_name); ret += fprintf(fp, "%s, %sloaded, ", map_type__name[type], dso__loaded(dso, type) ? "" : "NOT "); ret += dso__fprintf_buildid(dso, fp); ret += fprintf(fp, ")\n"); for (nd = rb_first(&dso->symbols[type]); nd; nd = rb_next(nd)) { struct symbol *pos = rb_entry(nd, struct symbol, rb_node); ret += symbol__fprintf(pos, fp); } return ret; } enum dso_type dso__type(struct dso *dso, struct machine *machine) { int fd; enum dso_type type = DSO__TYPE_UNKNOWN; fd = dso__data_get_fd(dso, machine); if (fd >= 0) { type = dso__type_fd(fd); dso__data_put_fd(dso); } return type; } int dso__strerror_load(struct dso *dso, char *buf, size_t buflen) { int idx, errnum = dso->load_errno; /* * This must have a same ordering as the enum dso_load_errno. */ static const char *dso_load__error_str[] = { "Internal tools/perf/ library error", "Invalid ELF file", "Can not read build id", "Mismatching build id", "Decompression failure", }; BUG_ON(buflen == 0); if (errnum >= 0) { const char *err = str_error_r(errnum, buf, buflen); if (err != buf) scnprintf(buf, buflen, "%s", err); return 0; } if (errnum < __DSO_LOAD_ERRNO__START || errnum >= __DSO_LOAD_ERRNO__END) return -1; idx = errnum - __DSO_LOAD_ERRNO__START; scnprintf(buf, buflen, "%s", dso_load__error_str[idx]); return 0; }