/* * linux/drivers/video/omap2/dss/rfbi.c * * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen * * Some code and ideas taken from drivers/video/omap/ driver * by Imre Deak. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define DSS_SUBSYS_NAME "RFBI" #include #include #include #include #include #include #include #include #include #include #include #include "dss.h" /*#define MEASURE_PERF*/ #define RFBI_BASE 0x48050800 struct rfbi_reg { u16 idx; }; #define RFBI_REG(idx) ((const struct rfbi_reg) { idx }) #define RFBI_REVISION RFBI_REG(0x0000) #define RFBI_SYSCONFIG RFBI_REG(0x0010) #define RFBI_SYSSTATUS RFBI_REG(0x0014) #define RFBI_CONTROL RFBI_REG(0x0040) #define RFBI_PIXEL_CNT RFBI_REG(0x0044) #define RFBI_LINE_NUMBER RFBI_REG(0x0048) #define RFBI_CMD RFBI_REG(0x004c) #define RFBI_PARAM RFBI_REG(0x0050) #define RFBI_DATA RFBI_REG(0x0054) #define RFBI_READ RFBI_REG(0x0058) #define RFBI_STATUS RFBI_REG(0x005c) #define RFBI_CONFIG(n) RFBI_REG(0x0060 + (n)*0x18) #define RFBI_ONOFF_TIME(n) RFBI_REG(0x0064 + (n)*0x18) #define RFBI_CYCLE_TIME(n) RFBI_REG(0x0068 + (n)*0x18) #define RFBI_DATA_CYCLE1(n) RFBI_REG(0x006c + (n)*0x18) #define RFBI_DATA_CYCLE2(n) RFBI_REG(0x0070 + (n)*0x18) #define RFBI_DATA_CYCLE3(n) RFBI_REG(0x0074 + (n)*0x18) #define RFBI_VSYNC_WIDTH RFBI_REG(0x0090) #define RFBI_HSYNC_WIDTH RFBI_REG(0x0094) #define RFBI_CMD_FIFO_LEN_BYTES (16 * sizeof(struct update_param)) #define REG_FLD_MOD(idx, val, start, end) \ rfbi_write_reg(idx, FLD_MOD(rfbi_read_reg(idx), val, start, end)) /* To work around an RFBI transfer rate limitation */ #define OMAP_RFBI_RATE_LIMIT 1 enum omap_rfbi_cycleformat { OMAP_DSS_RFBI_CYCLEFORMAT_1_1 = 0, OMAP_DSS_RFBI_CYCLEFORMAT_2_1 = 1, OMAP_DSS_RFBI_CYCLEFORMAT_3_1 = 2, OMAP_DSS_RFBI_CYCLEFORMAT_3_2 = 3, }; enum omap_rfbi_datatype { OMAP_DSS_RFBI_DATATYPE_12 = 0, OMAP_DSS_RFBI_DATATYPE_16 = 1, OMAP_DSS_RFBI_DATATYPE_18 = 2, OMAP_DSS_RFBI_DATATYPE_24 = 3, }; enum omap_rfbi_parallelmode { OMAP_DSS_RFBI_PARALLELMODE_8 = 0, OMAP_DSS_RFBI_PARALLELMODE_9 = 1, OMAP_DSS_RFBI_PARALLELMODE_12 = 2, OMAP_DSS_RFBI_PARALLELMODE_16 = 3, }; enum update_cmd { RFBI_CMD_UPDATE = 0, RFBI_CMD_SYNC = 1, }; static int rfbi_convert_timings(struct rfbi_timings *t); static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div); static void process_cmd_fifo(void); static struct { void __iomem *base; unsigned long l4_khz; enum omap_rfbi_datatype datatype; enum omap_rfbi_parallelmode parallelmode; enum omap_rfbi_te_mode te_mode; int te_enabled; void (*framedone_callback)(void *data); void *framedone_callback_data; struct omap_dss_device *dssdev[2]; struct kfifo cmd_fifo; spinlock_t cmd_lock; struct completion cmd_done; atomic_t cmd_fifo_full; atomic_t cmd_pending; #ifdef MEASURE_PERF unsigned perf_bytes; ktime_t perf_setup_time; ktime_t perf_start_time; #endif } rfbi; struct update_region { u16 x; u16 y; u16 w; u16 h; }; struct update_param { u8 rfbi_module; u8 cmd; union { struct update_region r; struct completion *sync; } par; }; static inline void rfbi_write_reg(const struct rfbi_reg idx, u32 val) { __raw_writel(val, rfbi.base + idx.idx); } static inline u32 rfbi_read_reg(const struct rfbi_reg idx) { return __raw_readl(rfbi.base + idx.idx); } static void rfbi_enable_clocks(bool enable) { if (enable) dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1); else dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1); } void omap_rfbi_write_command(const void *buf, u32 len) { rfbi_enable_clocks(1); switch (rfbi.parallelmode) { case OMAP_DSS_RFBI_PARALLELMODE_8: { const u8 *b = buf; for (; len; len--) rfbi_write_reg(RFBI_CMD, *b++); break; } case OMAP_DSS_RFBI_PARALLELMODE_16: { const u16 *w = buf; BUG_ON(len & 1); for (; len; len -= 2) rfbi_write_reg(RFBI_CMD, *w++); break; } case OMAP_DSS_RFBI_PARALLELMODE_9: case OMAP_DSS_RFBI_PARALLELMODE_12: default: BUG(); } rfbi_enable_clocks(0); } EXPORT_SYMBOL(omap_rfbi_write_command); void omap_rfbi_read_data(void *buf, u32 len) { rfbi_enable_clocks(1); switch (rfbi.parallelmode) { case OMAP_DSS_RFBI_PARALLELMODE_8: { u8 *b = buf; for (; len; len--) { rfbi_write_reg(RFBI_READ, 0); *b++ = rfbi_read_reg(RFBI_READ); } break; } case OMAP_DSS_RFBI_PARALLELMODE_16: { u16 *w = buf; BUG_ON(len & ~1); for (; len; len -= 2) { rfbi_write_reg(RFBI_READ, 0); *w++ = rfbi_read_reg(RFBI_READ); } break; } case OMAP_DSS_RFBI_PARALLELMODE_9: case OMAP_DSS_RFBI_PARALLELMODE_12: default: BUG(); } rfbi_enable_clocks(0); } EXPORT_SYMBOL(omap_rfbi_read_data); void omap_rfbi_write_data(const void *buf, u32 len) { rfbi_enable_clocks(1); switch (rfbi.parallelmode) { case OMAP_DSS_RFBI_PARALLELMODE_8: { const u8 *b = buf; for (; len; len--) rfbi_write_reg(RFBI_PARAM, *b++); break; } case OMAP_DSS_RFBI_PARALLELMODE_16: { const u16 *w = buf; BUG_ON(len & 1); for (; len; len -= 2) rfbi_write_reg(RFBI_PARAM, *w++); break; } case OMAP_DSS_RFBI_PARALLELMODE_9: case OMAP_DSS_RFBI_PARALLELMODE_12: default: BUG(); } rfbi_enable_clocks(0); } EXPORT_SYMBOL(omap_rfbi_write_data); void omap_rfbi_write_pixels(const void __iomem *buf, int scr_width, u16 x, u16 y, u16 w, u16 h) { int start_offset = scr_width * y + x; int horiz_offset = scr_width - w; int i; rfbi_enable_clocks(1); if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 && rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) { const u16 __iomem *pd = buf; pd += start_offset; for (; h; --h) { for (i = 0; i < w; ++i) { const u8 __iomem *b = (const u8 __iomem *)pd; rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1)); rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0)); ++pd; } pd += horiz_offset; } } else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_24 && rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_8) { const u32 __iomem *pd = buf; pd += start_offset; for (; h; --h) { for (i = 0; i < w; ++i) { const u8 __iomem *b = (const u8 __iomem *)pd; rfbi_write_reg(RFBI_PARAM, __raw_readb(b+2)); rfbi_write_reg(RFBI_PARAM, __raw_readb(b+1)); rfbi_write_reg(RFBI_PARAM, __raw_readb(b+0)); ++pd; } pd += horiz_offset; } } else if (rfbi.datatype == OMAP_DSS_RFBI_DATATYPE_16 && rfbi.parallelmode == OMAP_DSS_RFBI_PARALLELMODE_16) { const u16 __iomem *pd = buf; pd += start_offset; for (; h; --h) { for (i = 0; i < w; ++i) { rfbi_write_reg(RFBI_PARAM, __raw_readw(pd)); ++pd; } pd += horiz_offset; } } else { BUG(); } rfbi_enable_clocks(0); } EXPORT_SYMBOL(omap_rfbi_write_pixels); #ifdef MEASURE_PERF static void perf_mark_setup(void) { rfbi.perf_setup_time = ktime_get(); } static void perf_mark_start(void) { rfbi.perf_start_time = ktime_get(); } static void perf_show(const char *name) { ktime_t t, setup_time, trans_time; u32 total_bytes; u32 setup_us, trans_us, total_us; t = ktime_get(); setup_time = ktime_sub(rfbi.perf_start_time, rfbi.perf_setup_time); setup_us = (u32)ktime_to_us(setup_time); if (setup_us == 0) setup_us = 1; trans_time = ktime_sub(t, rfbi.perf_start_time); trans_us = (u32)ktime_to_us(trans_time); if (trans_us == 0) trans_us = 1; total_us = setup_us + trans_us; total_bytes = rfbi.perf_bytes; DSSINFO("%s update %u us + %u us = %u us (%uHz), %u bytes, " "%u kbytes/sec\n", name, setup_us, trans_us, total_us, 1000*1000 / total_us, total_bytes, total_bytes * 1000 / total_us); } #else #define perf_mark_setup() #define perf_mark_start() #define perf_show(x) #endif void rfbi_transfer_area(u16 width, u16 height, void (callback)(void *data), void *data) { u32 l; /*BUG_ON(callback == 0);*/ BUG_ON(rfbi.framedone_callback != NULL); DSSDBG("rfbi_transfer_area %dx%d\n", width, height); dispc_set_lcd_size(width, height); dispc_enable_channel(OMAP_DSS_CHANNEL_LCD, true); rfbi.framedone_callback = callback; rfbi.framedone_callback_data = data; rfbi_enable_clocks(1); rfbi_write_reg(RFBI_PIXEL_CNT, width * height); l = rfbi_read_reg(RFBI_CONTROL); l = FLD_MOD(l, 1, 0, 0); /* enable */ if (!rfbi.te_enabled) l = FLD_MOD(l, 1, 4, 4); /* ITE */ perf_mark_start(); rfbi_write_reg(RFBI_CONTROL, l); } static void framedone_callback(void *data, u32 mask) { void (*callback)(void *data); DSSDBG("FRAMEDONE\n"); perf_show("DISPC"); REG_FLD_MOD(RFBI_CONTROL, 0, 0, 0); rfbi_enable_clocks(0); callback = rfbi.framedone_callback; rfbi.framedone_callback = NULL; /*callback(rfbi.framedone_callback_data);*/ atomic_set(&rfbi.cmd_pending, 0); process_cmd_fifo(); } #if 1 /* VERBOSE */ static void rfbi_print_timings(void) { u32 l; u32 time; l = rfbi_read_reg(RFBI_CONFIG(0)); time = 1000000000 / rfbi.l4_khz; if (l & (1 << 4)) time *= 2; DSSDBG("Tick time %u ps\n", time); l = rfbi_read_reg(RFBI_ONOFF_TIME(0)); DSSDBG("CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, " "REONTIME %d, REOFFTIME %d\n", l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f, (l >> 20) & 0x0f, (l >> 24) & 0x3f); l = rfbi_read_reg(RFBI_CYCLE_TIME(0)); DSSDBG("WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, " "ACCESSTIME %d\n", (l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f, (l >> 22) & 0x3f); } #else static void rfbi_print_timings(void) {} #endif static u32 extif_clk_period; static inline unsigned long round_to_extif_ticks(unsigned long ps, int div) { int bus_tick = extif_clk_period * div; return (ps + bus_tick - 1) / bus_tick * bus_tick; } static int calc_reg_timing(struct rfbi_timings *t, int div) { t->clk_div = div; t->cs_on_time = round_to_extif_ticks(t->cs_on_time, div); t->we_on_time = round_to_extif_ticks(t->we_on_time, div); t->we_off_time = round_to_extif_ticks(t->we_off_time, div); t->we_cycle_time = round_to_extif_ticks(t->we_cycle_time, div); t->re_on_time = round_to_extif_ticks(t->re_on_time, div); t->re_off_time = round_to_extif_ticks(t->re_off_time, div); t->re_cycle_time = round_to_extif_ticks(t->re_cycle_time, div); t->access_time = round_to_extif_ticks(t->access_time, div); t->cs_off_time = round_to_extif_ticks(t->cs_off_time, div); t->cs_pulse_width = round_to_extif_ticks(t->cs_pulse_width, div); DSSDBG("[reg]cson %d csoff %d reon %d reoff %d\n", t->cs_on_time, t->cs_off_time, t->re_on_time, t->re_off_time); DSSDBG("[reg]weon %d weoff %d recyc %d wecyc %d\n", t->we_on_time, t->we_off_time, t->re_cycle_time, t->we_cycle_time); DSSDBG("[reg]rdaccess %d cspulse %d\n", t->access_time, t->cs_pulse_width); return rfbi_convert_timings(t); } static int calc_extif_timings(struct rfbi_timings *t) { u32 max_clk_div; int div; rfbi_get_clk_info(&extif_clk_period, &max_clk_div); for (div = 1; div <= max_clk_div; div++) { if (calc_reg_timing(t, div) == 0) break; } if (div <= max_clk_div) return 0; DSSERR("can't setup timings\n"); return -1; } void rfbi_set_timings(int rfbi_module, struct rfbi_timings *t) { int r; if (!t->converted) { r = calc_extif_timings(t); if (r < 0) DSSERR("Failed to calc timings\n"); } BUG_ON(!t->converted); rfbi_enable_clocks(1); rfbi_write_reg(RFBI_ONOFF_TIME(rfbi_module), t->tim[0]); rfbi_write_reg(RFBI_CYCLE_TIME(rfbi_module), t->tim[1]); /* TIMEGRANULARITY */ REG_FLD_MOD(RFBI_CONFIG(rfbi_module), (t->tim[2] ? 1 : 0), 4, 4); rfbi_print_timings(); rfbi_enable_clocks(0); } static int ps_to_rfbi_ticks(int time, int div) { unsigned long tick_ps; int ret; /* Calculate in picosecs to yield more exact results */ tick_ps = 1000000000 / (rfbi.l4_khz) * div; ret = (time + tick_ps - 1) / tick_ps; return ret; } #ifdef OMAP_RFBI_RATE_LIMIT unsigned long rfbi_get_max_tx_rate(void) { unsigned long l4_rate, dss1_rate; int min_l4_ticks = 0; int i; /* According to TI this can't be calculated so make the * adjustments for a couple of known frequencies and warn for * others. */ static const struct { unsigned long l4_clk; /* HZ */ unsigned long dss1_clk; /* HZ */ unsigned long min_l4_ticks; } ftab[] = { { 55, 132, 7, }, /* 7.86 MPix/s */ { 110, 110, 12, }, /* 9.16 MPix/s */ { 110, 132, 10, }, /* 11 Mpix/s */ { 120, 120, 10, }, /* 12 Mpix/s */ { 133, 133, 10, }, /* 13.3 Mpix/s */ }; l4_rate = rfbi.l4_khz / 1000; dss1_rate = dss_clk_get_rate(DSS_CLK_FCK1) / 1000000; for (i = 0; i < ARRAY_SIZE(ftab); i++) { /* Use a window instead of an exact match, to account * for different DPLL multiplier / divider pairs. */ if (abs(ftab[i].l4_clk - l4_rate) < 3 && abs(ftab[i].dss1_clk - dss1_rate) < 3) { min_l4_ticks = ftab[i].min_l4_ticks; break; } } if (i == ARRAY_SIZE(ftab)) { /* Can't be sure, return anyway the maximum not * rate-limited. This might cause a problem only for the * tearing synchronisation. */ DSSERR("can't determine maximum RFBI transfer rate\n"); return rfbi.l4_khz * 1000; } return rfbi.l4_khz * 1000 / min_l4_ticks; } #else int rfbi_get_max_tx_rate(void) { return rfbi.l4_khz * 1000; } #endif static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div) { *clk_period = 1000000000 / rfbi.l4_khz; *max_clk_div = 2; } static int rfbi_convert_timings(struct rfbi_timings *t) { u32 l; int reon, reoff, weon, weoff, cson, csoff, cs_pulse; int actim, recyc, wecyc; int div = t->clk_div; if (div <= 0 || div > 2) return -1; /* Make sure that after conversion it still holds that: * weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff, * csoff > cson, csoff >= max(weoff, reoff), actim > reon */ weon = ps_to_rfbi_ticks(t->we_on_time, div); weoff = ps_to_rfbi_ticks(t->we_off_time, div); if (weoff <= weon) weoff = weon + 1; if (weon > 0x0f) return -1; if (weoff > 0x3f) return -1; reon = ps_to_rfbi_ticks(t->re_on_time, div); reoff = ps_to_rfbi_ticks(t->re_off_time, div); if (reoff <= reon) reoff = reon + 1; if (reon > 0x0f) return -1; if (reoff > 0x3f) return -1; cson = ps_to_rfbi_ticks(t->cs_on_time, div); csoff = ps_to_rfbi_ticks(t->cs_off_time, div); if (csoff <= cson) csoff = cson + 1; if (csoff < max(weoff, reoff)) csoff = max(weoff, reoff); if (cson > 0x0f) return -1; if (csoff > 0x3f) return -1; l = cson; l |= csoff << 4; l |= weon << 10; l |= weoff << 14; l |= reon << 20; l |= reoff << 24; t->tim[0] = l; actim = ps_to_rfbi_ticks(t->access_time, div); if (actim <= reon) actim = reon + 1; if (actim > 0x3f) return -1; wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div); if (wecyc < weoff) wecyc = weoff; if (wecyc > 0x3f) return -1; recyc = ps_to_rfbi_ticks(t->re_cycle_time, div); if (recyc < reoff) recyc = reoff; if (recyc > 0x3f) return -1; cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div); if (cs_pulse > 0x3f) return -1; l = wecyc; l |= recyc << 6; l |= cs_pulse << 12; l |= actim << 22; t->tim[1] = l; t->tim[2] = div - 1; t->converted = 1; return 0; } /* xxx FIX module selection missing */ int omap_rfbi_setup_te(enum omap_rfbi_te_mode mode, unsigned hs_pulse_time, unsigned vs_pulse_time, int hs_pol_inv, int vs_pol_inv, int extif_div) { int hs, vs; int min; u32 l; hs = ps_to_rfbi_ticks(hs_pulse_time, 1); vs = ps_to_rfbi_ticks(vs_pulse_time, 1); if (hs < 2) return -EDOM; if (mode == OMAP_DSS_RFBI_TE_MODE_2) min = 2; else /* OMAP_DSS_RFBI_TE_MODE_1 */ min = 4; if (vs < min) return -EDOM; if (vs == hs) return -EINVAL; rfbi.te_mode = mode; DSSDBG("setup_te: mode %d hs %d vs %d hs_inv %d vs_inv %d\n", mode, hs, vs, hs_pol_inv, vs_pol_inv); rfbi_enable_clocks(1); rfbi_write_reg(RFBI_HSYNC_WIDTH, hs); rfbi_write_reg(RFBI_VSYNC_WIDTH, vs); l = rfbi_read_reg(RFBI_CONFIG(0)); if (hs_pol_inv) l &= ~(1 << 21); else l |= 1 << 21; if (vs_pol_inv) l &= ~(1 << 20); else l |= 1 << 20; rfbi_enable_clocks(0); return 0; } EXPORT_SYMBOL(omap_rfbi_setup_te); /* xxx FIX module selection missing */ int omap_rfbi_enable_te(bool enable, unsigned line) { u32 l; DSSDBG("te %d line %d mode %d\n", enable, line, rfbi.te_mode); if (line > (1 << 11) - 1) return -EINVAL; rfbi_enable_clocks(1); l = rfbi_read_reg(RFBI_CONFIG(0)); l &= ~(0x3 << 2); if (enable) { rfbi.te_enabled = 1; l |= rfbi.te_mode << 2; } else rfbi.te_enabled = 0; rfbi_write_reg(RFBI_CONFIG(0), l); rfbi_write_reg(RFBI_LINE_NUMBER, line); rfbi_enable_clocks(0); return 0; } EXPORT_SYMBOL(omap_rfbi_enable_te); #if 0 static void rfbi_enable_config(int enable1, int enable2) { u32 l; int cs = 0; if (enable1) cs |= 1<<0; if (enable2) cs |= 1<<1; rfbi_enable_clocks(1); l = rfbi_read_reg(RFBI_CONTROL); l = FLD_MOD(l, cs, 3, 2); l = FLD_MOD(l, 0, 1, 1); rfbi_write_reg(RFBI_CONTROL, l); l = rfbi_read_reg(RFBI_CONFIG(0)); l = FLD_MOD(l, 0, 3, 2); /* TRIGGERMODE: ITE */ /*l |= FLD_VAL(2, 8, 7); */ /* L4FORMAT, 2pix/L4 */ /*l |= FLD_VAL(0, 8, 7); */ /* L4FORMAT, 1pix/L4 */ l = FLD_MOD(l, 0, 16, 16); /* A0POLARITY */ l = FLD_MOD(l, 1, 20, 20); /* TE_VSYNC_POLARITY */ l = FLD_MOD(l, 1, 21, 21); /* HSYNCPOLARITY */ l = FLD_MOD(l, OMAP_DSS_RFBI_PARALLELMODE_8, 1, 0); rfbi_write_reg(RFBI_CONFIG(0), l); rfbi_enable_clocks(0); } #endif int rfbi_configure(int rfbi_module, int bpp, int lines) { u32 l; int cycle1 = 0, cycle2 = 0, cycle3 = 0; enum omap_rfbi_cycleformat cycleformat; enum omap_rfbi_datatype datatype; enum omap_rfbi_parallelmode parallelmode; switch (bpp) { case 12: datatype = OMAP_DSS_RFBI_DATATYPE_12; break; case 16: datatype = OMAP_DSS_RFBI_DATATYPE_16; break; case 18: datatype = OMAP_DSS_RFBI_DATATYPE_18; break; case 24: datatype = OMAP_DSS_RFBI_DATATYPE_24; break; default: BUG(); return 1; } rfbi.datatype = datatype; switch (lines) { case 8: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_8; break; case 9: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_9; break; case 12: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_12; break; case 16: parallelmode = OMAP_DSS_RFBI_PARALLELMODE_16; break; default: BUG(); return 1; } rfbi.parallelmode = parallelmode; if ((bpp % lines) == 0) { switch (bpp / lines) { case 1: cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_1_1; break; case 2: cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_2_1; break; case 3: cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_1; break; default: BUG(); return 1; } } else if ((2 * bpp % lines) == 0) { if ((2 * bpp / lines) == 3) cycleformat = OMAP_DSS_RFBI_CYCLEFORMAT_3_2; else { BUG(); return 1; } } else { BUG(); return 1; } switch (cycleformat) { case OMAP_DSS_RFBI_CYCLEFORMAT_1_1: cycle1 = lines; break; case OMAP_DSS_RFBI_CYCLEFORMAT_2_1: cycle1 = lines; cycle2 = lines; break; case OMAP_DSS_RFBI_CYCLEFORMAT_3_1: cycle1 = lines; cycle2 = lines; cycle3 = lines; break; case OMAP_DSS_RFBI_CYCLEFORMAT_3_2: cycle1 = lines; cycle2 = (lines / 2) | ((lines / 2) << 16); cycle3 = (lines << 16); break; } rfbi_enable_clocks(1); REG_FLD_MOD(RFBI_CONTROL, 0, 3, 2); /* clear CS */ l = 0; l |= FLD_VAL(parallelmode, 1, 0); l |= FLD_VAL(0, 3, 2); /* TRIGGERMODE: ITE */ l |= FLD_VAL(0, 4, 4); /* TIMEGRANULARITY */ l |= FLD_VAL(datatype, 6, 5); /* l |= FLD_VAL(2, 8, 7); */ /* L4FORMAT, 2pix/L4 */ l |= FLD_VAL(0, 8, 7); /* L4FORMAT, 1pix/L4 */ l |= FLD_VAL(cycleformat, 10, 9); l |= FLD_VAL(0, 12, 11); /* UNUSEDBITS */ l |= FLD_VAL(0, 16, 16); /* A0POLARITY */ l |= FLD_VAL(0, 17, 17); /* REPOLARITY */ l |= FLD_VAL(0, 18, 18); /* WEPOLARITY */ l |= FLD_VAL(0, 19, 19); /* CSPOLARITY */ l |= FLD_VAL(1, 20, 20); /* TE_VSYNC_POLARITY */ l |= FLD_VAL(1, 21, 21); /* HSYNCPOLARITY */ rfbi_write_reg(RFBI_CONFIG(rfbi_module), l); rfbi_write_reg(RFBI_DATA_CYCLE1(rfbi_module), cycle1); rfbi_write_reg(RFBI_DATA_CYCLE2(rfbi_module), cycle2); rfbi_write_reg(RFBI_DATA_CYCLE3(rfbi_module), cycle3); l = rfbi_read_reg(RFBI_CONTROL); l = FLD_MOD(l, rfbi_module+1, 3, 2); /* Select CSx */ l = FLD_MOD(l, 0, 1, 1); /* clear bypass */ rfbi_write_reg(RFBI_CONTROL, l); DSSDBG("RFBI config: bpp %d, lines %d, cycles: 0x%x 0x%x 0x%x\n", bpp, lines, cycle1, cycle2, cycle3); rfbi_enable_clocks(0); return 0; } EXPORT_SYMBOL(rfbi_configure); static int rfbi_find_display(struct omap_dss_device *dssdev) { if (dssdev == rfbi.dssdev[0]) return 0; if (dssdev == rfbi.dssdev[1]) return 1; BUG(); return -1; } static void signal_fifo_waiters(void) { if (atomic_read(&rfbi.cmd_fifo_full) > 0) { /* DSSDBG("SIGNALING: Fifo not full for waiter!\n"); */ complete(&rfbi.cmd_done); atomic_dec(&rfbi.cmd_fifo_full); } } /* returns 1 for async op, and 0 for sync op */ static int do_update(struct omap_dss_device *dssdev, struct update_region *upd) { u16 x = upd->x; u16 y = upd->y; u16 w = upd->w; u16 h = upd->h; perf_mark_setup(); if (dssdev->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) { /*dssdev->driver->enable_te(dssdev, 1); */ dss_setup_partial_planes(dssdev, &x, &y, &w, &h); } #ifdef MEASURE_PERF rfbi.perf_bytes = w * h * 2; /* XXX always 16bit */ #endif dssdev->driver->setup_update(dssdev, x, y, w, h); if (dssdev->manager->caps & OMAP_DSS_OVL_MGR_CAP_DISPC) { rfbi_transfer_area(w, h, NULL, NULL); return 1; } else { struct omap_overlay *ovl; void __iomem *addr; int scr_width; ovl = dssdev->manager->overlays[0]; scr_width = ovl->info.screen_width; addr = ovl->info.vaddr; omap_rfbi_write_pixels(addr, scr_width, x, y, w, h); perf_show("L4"); return 0; } } static void process_cmd_fifo(void) { int len; struct update_param p; struct omap_dss_device *dssdev; unsigned long flags; if (atomic_inc_return(&rfbi.cmd_pending) != 1) return; while (true) { spin_lock_irqsave(&rfbi.cmd_lock, flags); len = kfifo_out(&rfbi.cmd_fifo, (unsigned char *)&p, sizeof(struct update_param)); if (len == 0) { DSSDBG("nothing more in fifo\n"); atomic_set(&rfbi.cmd_pending, 0); spin_unlock_irqrestore(&rfbi.cmd_lock, flags); break; } /* DSSDBG("fifo full %d\n", rfbi.cmd_fifo_full.counter);*/ spin_unlock_irqrestore(&rfbi.cmd_lock, flags); BUG_ON(len != sizeof(struct update_param)); BUG_ON(p.rfbi_module > 1); dssdev = rfbi.dssdev[p.rfbi_module]; if (p.cmd == RFBI_CMD_UPDATE) { if (do_update(dssdev, &p.par.r)) break; /* async op */ } else if (p.cmd == RFBI_CMD_SYNC) { DSSDBG("Signaling SYNC done!\n"); complete(p.par.sync); } else BUG(); } signal_fifo_waiters(); } static void rfbi_push_cmd(struct update_param *p) { int ret; while (1) { unsigned long flags; int available; spin_lock_irqsave(&rfbi.cmd_lock, flags); available = RFBI_CMD_FIFO_LEN_BYTES - kfifo_len(&rfbi.cmd_fifo); /* DSSDBG("%d bytes left in fifo\n", available); */ if (available < sizeof(struct update_param)) { DSSDBG("Going to wait because FIFO FULL..\n"); spin_unlock_irqrestore(&rfbi.cmd_lock, flags); atomic_inc(&rfbi.cmd_fifo_full); wait_for_completion(&rfbi.cmd_done); /*DSSDBG("Woke up because fifo not full anymore\n");*/ continue; } ret = kfifo_in(&rfbi.cmd_fifo, (unsigned char *)p, sizeof(struct update_param)); /* DSSDBG("pushed %d bytes\n", ret);*/ spin_unlock_irqrestore(&rfbi.cmd_lock, flags); BUG_ON(ret != sizeof(struct update_param)); break; } } static void rfbi_push_update(int rfbi_module, int x, int y, int w, int h) { struct update_param p; p.rfbi_module = rfbi_module; p.cmd = RFBI_CMD_UPDATE; p.par.r.x = x; p.par.r.y = y; p.par.r.w = w; p.par.r.h = h; DSSDBG("RFBI pushed %d,%d %dx%d\n", x, y, w, h); rfbi_push_cmd(&p); process_cmd_fifo(); } static void rfbi_push_sync(int rfbi_module, struct completion *sync_comp) { struct update_param p; p.rfbi_module = rfbi_module; p.cmd = RFBI_CMD_SYNC; p.par.sync = sync_comp; rfbi_push_cmd(&p); DSSDBG("RFBI sync pushed to cmd fifo\n"); process_cmd_fifo(); } void rfbi_dump_regs(struct seq_file *s) { #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, rfbi_read_reg(r)) dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1); DUMPREG(RFBI_REVISION); DUMPREG(RFBI_SYSCONFIG); DUMPREG(RFBI_SYSSTATUS); DUMPREG(RFBI_CONTROL); DUMPREG(RFBI_PIXEL_CNT); DUMPREG(RFBI_LINE_NUMBER); DUMPREG(RFBI_CMD); DUMPREG(RFBI_PARAM); DUMPREG(RFBI_DATA); DUMPREG(RFBI_READ); DUMPREG(RFBI_STATUS); DUMPREG(RFBI_CONFIG(0)); DUMPREG(RFBI_ONOFF_TIME(0)); DUMPREG(RFBI_CYCLE_TIME(0)); DUMPREG(RFBI_DATA_CYCLE1(0)); DUMPREG(RFBI_DATA_CYCLE2(0)); DUMPREG(RFBI_DATA_CYCLE3(0)); DUMPREG(RFBI_CONFIG(1)); DUMPREG(RFBI_ONOFF_TIME(1)); DUMPREG(RFBI_CYCLE_TIME(1)); DUMPREG(RFBI_DATA_CYCLE1(1)); DUMPREG(RFBI_DATA_CYCLE2(1)); DUMPREG(RFBI_DATA_CYCLE3(1)); DUMPREG(RFBI_VSYNC_WIDTH); DUMPREG(RFBI_HSYNC_WIDTH); dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1); #undef DUMPREG } int rfbi_init(void) { u32 rev; u32 l; int r; spin_lock_init(&rfbi.cmd_lock); r = kfifo_alloc(&rfbi.cmd_fifo, RFBI_CMD_FIFO_LEN_BYTES, GFP_KERNEL); if (r) return r; init_completion(&rfbi.cmd_done); atomic_set(&rfbi.cmd_fifo_full, 0); atomic_set(&rfbi.cmd_pending, 0); rfbi.base = ioremap(RFBI_BASE, SZ_256); if (!rfbi.base) { DSSERR("can't ioremap RFBI\n"); return -ENOMEM; } rfbi_enable_clocks(1); msleep(10); rfbi.l4_khz = dss_clk_get_rate(DSS_CLK_ICK) / 1000; /* Enable autoidle and smart-idle */ l = rfbi_read_reg(RFBI_SYSCONFIG); l |= (1 << 0) | (2 << 3); rfbi_write_reg(RFBI_SYSCONFIG, l); rev = rfbi_read_reg(RFBI_REVISION); printk(KERN_INFO "OMAP RFBI rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); rfbi_enable_clocks(0); return 0; } void rfbi_exit(void) { DSSDBG("rfbi_exit\n"); kfifo_free(&rfbi.cmd_fifo); iounmap(rfbi.base); } /* struct omap_display support */ static int rfbi_display_update(struct omap_dss_device *dssdev, u16 x, u16 y, u16 w, u16 h) { int rfbi_module; if (w == 0 || h == 0) return 0; rfbi_module = rfbi_find_display(dssdev); rfbi_push_update(rfbi_module, x, y, w, h); return 0; } static int rfbi_display_sync(struct omap_dss_device *dssdev) { struct completion sync_comp; int rfbi_module; rfbi_module = rfbi_find_display(dssdev); init_completion(&sync_comp); rfbi_push_sync(rfbi_module, &sync_comp); DSSDBG("Waiting for SYNC to happen...\n"); wait_for_completion(&sync_comp); DSSDBG("Released from SYNC\n"); return 0; } static int rfbi_display_enable_te(struct omap_dss_device *dssdev, bool enable) { dssdev->driver->enable_te(dssdev, enable); return 0; } static int rfbi_display_enable(struct omap_dss_device *dssdev) { int r; r = omap_dss_start_device(dssdev); if (r) { DSSERR("failed to start device\n"); goto err0; } r = omap_dispc_register_isr(framedone_callback, NULL, DISPC_IRQ_FRAMEDONE); if (r) { DSSERR("can't get FRAMEDONE irq\n"); goto err1; } dispc_set_lcd_display_type(OMAP_DSS_LCD_DISPLAY_TFT); dispc_set_parallel_interface_mode(OMAP_DSS_PARALLELMODE_RFBI); dispc_set_tft_data_lines(dssdev->ctrl.pixel_size); rfbi_configure(dssdev->phy.rfbi.channel, dssdev->ctrl.pixel_size, dssdev->phy.rfbi.data_lines); rfbi_set_timings(dssdev->phy.rfbi.channel, &dssdev->ctrl.rfbi_timings); if (dssdev->driver->enable) { r = dssdev->driver->enable(dssdev); if (r) goto err2; } return 0; err2: omap_dispc_unregister_isr(framedone_callback, NULL, DISPC_IRQ_FRAMEDONE); err1: omap_dss_stop_device(dssdev); err0: return r; } static void rfbi_display_disable(struct omap_dss_device *dssdev) { dssdev->driver->disable(dssdev); omap_dispc_unregister_isr(framedone_callback, NULL, DISPC_IRQ_FRAMEDONE); omap_dss_stop_device(dssdev); } int rfbi_init_display(struct omap_dss_device *dssdev) { dssdev->enable = rfbi_display_enable; dssdev->disable = rfbi_display_disable; dssdev->update = rfbi_display_update; dssdev->sync = rfbi_display_sync; dssdev->enable_te = rfbi_display_enable_te; rfbi.dssdev[dssdev->phy.rfbi.channel] = dssdev; dssdev->caps = OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE; return 0; }