/* * linux/drivers/video/omap2/dss/dispc.c * * Copyright (C) 2009 Nokia Corporation * Author: Tomi Valkeinen * * Some code and ideas taken from drivers/video/omap/ driver * by Imre Deak. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #define DSS_SUBSYS_NAME "DISPC" #include #include #include #include #include #include #include #include #include #include #include #include #include "dss.h" /* DISPC */ #define DISPC_BASE 0x48050400 #define DISPC_SZ_REGS SZ_1K struct dispc_reg { u16 idx; }; #define DISPC_REG(idx) ((const struct dispc_reg) { idx }) /* DISPC common */ #define DISPC_REVISION DISPC_REG(0x0000) #define DISPC_SYSCONFIG DISPC_REG(0x0010) #define DISPC_SYSSTATUS DISPC_REG(0x0014) #define DISPC_IRQSTATUS DISPC_REG(0x0018) #define DISPC_IRQENABLE DISPC_REG(0x001C) #define DISPC_CONTROL DISPC_REG(0x0040) #define DISPC_CONFIG DISPC_REG(0x0044) #define DISPC_CAPABLE DISPC_REG(0x0048) #define DISPC_DEFAULT_COLOR0 DISPC_REG(0x004C) #define DISPC_DEFAULT_COLOR1 DISPC_REG(0x0050) #define DISPC_TRANS_COLOR0 DISPC_REG(0x0054) #define DISPC_TRANS_COLOR1 DISPC_REG(0x0058) #define DISPC_LINE_STATUS DISPC_REG(0x005C) #define DISPC_LINE_NUMBER DISPC_REG(0x0060) #define DISPC_TIMING_H DISPC_REG(0x0064) #define DISPC_TIMING_V DISPC_REG(0x0068) #define DISPC_POL_FREQ DISPC_REG(0x006C) #define DISPC_DIVISOR DISPC_REG(0x0070) #define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074) #define DISPC_SIZE_DIG DISPC_REG(0x0078) #define DISPC_SIZE_LCD DISPC_REG(0x007C) /* DISPC GFX plane */ #define DISPC_GFX_BA0 DISPC_REG(0x0080) #define DISPC_GFX_BA1 DISPC_REG(0x0084) #define DISPC_GFX_POSITION DISPC_REG(0x0088) #define DISPC_GFX_SIZE DISPC_REG(0x008C) #define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0) #define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4) #define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8) #define DISPC_GFX_ROW_INC DISPC_REG(0x00AC) #define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0) #define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4) #define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8) #define DISPC_DATA_CYCLE1 DISPC_REG(0x01D4) #define DISPC_DATA_CYCLE2 DISPC_REG(0x01D8) #define DISPC_DATA_CYCLE3 DISPC_REG(0x01DC) #define DISPC_CPR_COEF_R DISPC_REG(0x0220) #define DISPC_CPR_COEF_G DISPC_REG(0x0224) #define DISPC_CPR_COEF_B DISPC_REG(0x0228) #define DISPC_GFX_PRELOAD DISPC_REG(0x022C) /* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */ #define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx) #define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000) #define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004) #define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008) #define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C) #define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010) #define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014) #define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018) #define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C) #define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020) #define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024) #define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028) #define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C) #define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030) /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */ #define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8) /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */ #define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8) /* coef index i = {0, 1, 2, 3, 4} */ #define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4) /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */ #define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4) #define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04) #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \ DISPC_IRQ_OCP_ERR | \ DISPC_IRQ_VID1_FIFO_UNDERFLOW | \ DISPC_IRQ_VID2_FIFO_UNDERFLOW | \ DISPC_IRQ_SYNC_LOST | \ DISPC_IRQ_SYNC_LOST_DIGIT) #define DISPC_MAX_NR_ISRS 8 struct omap_dispc_isr_data { omap_dispc_isr_t isr; void *arg; u32 mask; }; #define REG_GET(idx, start, end) \ FLD_GET(dispc_read_reg(idx), start, end) #define REG_FLD_MOD(idx, val, start, end) \ dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end)) static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES, DISPC_VID_ATTRIBUTES(0), DISPC_VID_ATTRIBUTES(1) }; struct dispc_irq_stats { unsigned long last_reset; unsigned irq_count; unsigned irqs[32]; }; static struct { void __iomem *base; u32 fifo_size[3]; spinlock_t irq_lock; u32 irq_error_mask; struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS]; u32 error_irqs; struct work_struct error_work; u32 ctx[DISPC_SZ_REGS / sizeof(u32)]; #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spinlock_t irq_stats_lock; struct dispc_irq_stats irq_stats; #endif } dispc; static void _omap_dispc_set_irqs(void); static inline void dispc_write_reg(const struct dispc_reg idx, u32 val) { __raw_writel(val, dispc.base + idx.idx); } static inline u32 dispc_read_reg(const struct dispc_reg idx) { return __raw_readl(dispc.base + idx.idx); } #define SR(reg) \ dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg) #define RR(reg) \ dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)]) void dispc_save_context(void) { if (cpu_is_omap24xx()) return; SR(SYSCONFIG); SR(IRQENABLE); SR(CONTROL); SR(CONFIG); SR(DEFAULT_COLOR0); SR(DEFAULT_COLOR1); SR(TRANS_COLOR0); SR(TRANS_COLOR1); SR(LINE_NUMBER); SR(TIMING_H); SR(TIMING_V); SR(POL_FREQ); SR(DIVISOR); SR(GLOBAL_ALPHA); SR(SIZE_DIG); SR(SIZE_LCD); SR(GFX_BA0); SR(GFX_BA1); SR(GFX_POSITION); SR(GFX_SIZE); SR(GFX_ATTRIBUTES); SR(GFX_FIFO_THRESHOLD); SR(GFX_ROW_INC); SR(GFX_PIXEL_INC); SR(GFX_WINDOW_SKIP); SR(GFX_TABLE_BA); SR(DATA_CYCLE1); SR(DATA_CYCLE2); SR(DATA_CYCLE3); SR(CPR_COEF_R); SR(CPR_COEF_G); SR(CPR_COEF_B); SR(GFX_PRELOAD); /* VID1 */ SR(VID_BA0(0)); SR(VID_BA1(0)); SR(VID_POSITION(0)); SR(VID_SIZE(0)); SR(VID_ATTRIBUTES(0)); SR(VID_FIFO_THRESHOLD(0)); SR(VID_ROW_INC(0)); SR(VID_PIXEL_INC(0)); SR(VID_FIR(0)); SR(VID_PICTURE_SIZE(0)); SR(VID_ACCU0(0)); SR(VID_ACCU1(0)); SR(VID_FIR_COEF_H(0, 0)); SR(VID_FIR_COEF_H(0, 1)); SR(VID_FIR_COEF_H(0, 2)); SR(VID_FIR_COEF_H(0, 3)); SR(VID_FIR_COEF_H(0, 4)); SR(VID_FIR_COEF_H(0, 5)); SR(VID_FIR_COEF_H(0, 6)); SR(VID_FIR_COEF_H(0, 7)); SR(VID_FIR_COEF_HV(0, 0)); SR(VID_FIR_COEF_HV(0, 1)); SR(VID_FIR_COEF_HV(0, 2)); SR(VID_FIR_COEF_HV(0, 3)); SR(VID_FIR_COEF_HV(0, 4)); SR(VID_FIR_COEF_HV(0, 5)); SR(VID_FIR_COEF_HV(0, 6)); SR(VID_FIR_COEF_HV(0, 7)); SR(VID_CONV_COEF(0, 0)); SR(VID_CONV_COEF(0, 1)); SR(VID_CONV_COEF(0, 2)); SR(VID_CONV_COEF(0, 3)); SR(VID_CONV_COEF(0, 4)); SR(VID_FIR_COEF_V(0, 0)); SR(VID_FIR_COEF_V(0, 1)); SR(VID_FIR_COEF_V(0, 2)); SR(VID_FIR_COEF_V(0, 3)); SR(VID_FIR_COEF_V(0, 4)); SR(VID_FIR_COEF_V(0, 5)); SR(VID_FIR_COEF_V(0, 6)); SR(VID_FIR_COEF_V(0, 7)); SR(VID_PRELOAD(0)); /* VID2 */ SR(VID_BA0(1)); SR(VID_BA1(1)); SR(VID_POSITION(1)); SR(VID_SIZE(1)); SR(VID_ATTRIBUTES(1)); SR(VID_FIFO_THRESHOLD(1)); SR(VID_ROW_INC(1)); SR(VID_PIXEL_INC(1)); SR(VID_FIR(1)); SR(VID_PICTURE_SIZE(1)); SR(VID_ACCU0(1)); SR(VID_ACCU1(1)); SR(VID_FIR_COEF_H(1, 0)); SR(VID_FIR_COEF_H(1, 1)); SR(VID_FIR_COEF_H(1, 2)); SR(VID_FIR_COEF_H(1, 3)); SR(VID_FIR_COEF_H(1, 4)); SR(VID_FIR_COEF_H(1, 5)); SR(VID_FIR_COEF_H(1, 6)); SR(VID_FIR_COEF_H(1, 7)); SR(VID_FIR_COEF_HV(1, 0)); SR(VID_FIR_COEF_HV(1, 1)); SR(VID_FIR_COEF_HV(1, 2)); SR(VID_FIR_COEF_HV(1, 3)); SR(VID_FIR_COEF_HV(1, 4)); SR(VID_FIR_COEF_HV(1, 5)); SR(VID_FIR_COEF_HV(1, 6)); SR(VID_FIR_COEF_HV(1, 7)); SR(VID_CONV_COEF(1, 0)); SR(VID_CONV_COEF(1, 1)); SR(VID_CONV_COEF(1, 2)); SR(VID_CONV_COEF(1, 3)); SR(VID_CONV_COEF(1, 4)); SR(VID_FIR_COEF_V(1, 0)); SR(VID_FIR_COEF_V(1, 1)); SR(VID_FIR_COEF_V(1, 2)); SR(VID_FIR_COEF_V(1, 3)); SR(VID_FIR_COEF_V(1, 4)); SR(VID_FIR_COEF_V(1, 5)); SR(VID_FIR_COEF_V(1, 6)); SR(VID_FIR_COEF_V(1, 7)); SR(VID_PRELOAD(1)); } void dispc_restore_context(void) { RR(SYSCONFIG); RR(IRQENABLE); /*RR(CONTROL);*/ RR(CONFIG); RR(DEFAULT_COLOR0); RR(DEFAULT_COLOR1); RR(TRANS_COLOR0); RR(TRANS_COLOR1); RR(LINE_NUMBER); RR(TIMING_H); RR(TIMING_V); RR(POL_FREQ); RR(DIVISOR); RR(GLOBAL_ALPHA); RR(SIZE_DIG); RR(SIZE_LCD); RR(GFX_BA0); RR(GFX_BA1); RR(GFX_POSITION); RR(GFX_SIZE); RR(GFX_ATTRIBUTES); RR(GFX_FIFO_THRESHOLD); RR(GFX_ROW_INC); RR(GFX_PIXEL_INC); RR(GFX_WINDOW_SKIP); RR(GFX_TABLE_BA); RR(DATA_CYCLE1); RR(DATA_CYCLE2); RR(DATA_CYCLE3); RR(CPR_COEF_R); RR(CPR_COEF_G); RR(CPR_COEF_B); RR(GFX_PRELOAD); /* VID1 */ RR(VID_BA0(0)); RR(VID_BA1(0)); RR(VID_POSITION(0)); RR(VID_SIZE(0)); RR(VID_ATTRIBUTES(0)); RR(VID_FIFO_THRESHOLD(0)); RR(VID_ROW_INC(0)); RR(VID_PIXEL_INC(0)); RR(VID_FIR(0)); RR(VID_PICTURE_SIZE(0)); RR(VID_ACCU0(0)); RR(VID_ACCU1(0)); RR(VID_FIR_COEF_H(0, 0)); RR(VID_FIR_COEF_H(0, 1)); RR(VID_FIR_COEF_H(0, 2)); RR(VID_FIR_COEF_H(0, 3)); RR(VID_FIR_COEF_H(0, 4)); RR(VID_FIR_COEF_H(0, 5)); RR(VID_FIR_COEF_H(0, 6)); RR(VID_FIR_COEF_H(0, 7)); RR(VID_FIR_COEF_HV(0, 0)); RR(VID_FIR_COEF_HV(0, 1)); RR(VID_FIR_COEF_HV(0, 2)); RR(VID_FIR_COEF_HV(0, 3)); RR(VID_FIR_COEF_HV(0, 4)); RR(VID_FIR_COEF_HV(0, 5)); RR(VID_FIR_COEF_HV(0, 6)); RR(VID_FIR_COEF_HV(0, 7)); RR(VID_CONV_COEF(0, 0)); RR(VID_CONV_COEF(0, 1)); RR(VID_CONV_COEF(0, 2)); RR(VID_CONV_COEF(0, 3)); RR(VID_CONV_COEF(0, 4)); RR(VID_FIR_COEF_V(0, 0)); RR(VID_FIR_COEF_V(0, 1)); RR(VID_FIR_COEF_V(0, 2)); RR(VID_FIR_COEF_V(0, 3)); RR(VID_FIR_COEF_V(0, 4)); RR(VID_FIR_COEF_V(0, 5)); RR(VID_FIR_COEF_V(0, 6)); RR(VID_FIR_COEF_V(0, 7)); RR(VID_PRELOAD(0)); /* VID2 */ RR(VID_BA0(1)); RR(VID_BA1(1)); RR(VID_POSITION(1)); RR(VID_SIZE(1)); RR(VID_ATTRIBUTES(1)); RR(VID_FIFO_THRESHOLD(1)); RR(VID_ROW_INC(1)); RR(VID_PIXEL_INC(1)); RR(VID_FIR(1)); RR(VID_PICTURE_SIZE(1)); RR(VID_ACCU0(1)); RR(VID_ACCU1(1)); RR(VID_FIR_COEF_H(1, 0)); RR(VID_FIR_COEF_H(1, 1)); RR(VID_FIR_COEF_H(1, 2)); RR(VID_FIR_COEF_H(1, 3)); RR(VID_FIR_COEF_H(1, 4)); RR(VID_FIR_COEF_H(1, 5)); RR(VID_FIR_COEF_H(1, 6)); RR(VID_FIR_COEF_H(1, 7)); RR(VID_FIR_COEF_HV(1, 0)); RR(VID_FIR_COEF_HV(1, 1)); RR(VID_FIR_COEF_HV(1, 2)); RR(VID_FIR_COEF_HV(1, 3)); RR(VID_FIR_COEF_HV(1, 4)); RR(VID_FIR_COEF_HV(1, 5)); RR(VID_FIR_COEF_HV(1, 6)); RR(VID_FIR_COEF_HV(1, 7)); RR(VID_CONV_COEF(1, 0)); RR(VID_CONV_COEF(1, 1)); RR(VID_CONV_COEF(1, 2)); RR(VID_CONV_COEF(1, 3)); RR(VID_CONV_COEF(1, 4)); RR(VID_FIR_COEF_V(1, 0)); RR(VID_FIR_COEF_V(1, 1)); RR(VID_FIR_COEF_V(1, 2)); RR(VID_FIR_COEF_V(1, 3)); RR(VID_FIR_COEF_V(1, 4)); RR(VID_FIR_COEF_V(1, 5)); RR(VID_FIR_COEF_V(1, 6)); RR(VID_FIR_COEF_V(1, 7)); RR(VID_PRELOAD(1)); /* enable last, because LCD & DIGIT enable are here */ RR(CONTROL); } #undef SR #undef RR static inline void enable_clocks(bool enable) { if (enable) dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1); else dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1); } bool dispc_go_busy(enum omap_channel channel) { int bit; if (channel == OMAP_DSS_CHANNEL_LCD) bit = 5; /* GOLCD */ else bit = 6; /* GODIGIT */ return REG_GET(DISPC_CONTROL, bit, bit) == 1; } void dispc_go(enum omap_channel channel) { int bit; enable_clocks(1); if (channel == OMAP_DSS_CHANNEL_LCD) bit = 0; /* LCDENABLE */ else bit = 1; /* DIGITALENABLE */ /* if the channel is not enabled, we don't need GO */ if (REG_GET(DISPC_CONTROL, bit, bit) == 0) goto end; if (channel == OMAP_DSS_CHANNEL_LCD) bit = 5; /* GOLCD */ else bit = 6; /* GODIGIT */ if (REG_GET(DISPC_CONTROL, bit, bit) == 1) { DSSERR("GO bit not down for channel %d\n", channel); goto end; } DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" : "DIGIT"); REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit); end: enable_clocks(0); } static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value) { BUG_ON(plane == OMAP_DSS_GFX); dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value); } static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value) { BUG_ON(plane == OMAP_DSS_GFX); dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value); } static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value) { BUG_ON(plane == OMAP_DSS_GFX); dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value); } static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup, int vscaleup, int five_taps) { /* Coefficients for horizontal up-sampling */ static const u32 coef_hup[8] = { 0x00800000, 0x0D7CF800, 0x1E70F5FF, 0x335FF5FE, 0xF74949F7, 0xF55F33FB, 0xF5701EFE, 0xF87C0DFF, }; /* Coefficients for horizontal down-sampling */ static const u32 coef_hdown[8] = { 0x24382400, 0x28371FFE, 0x2C361BFB, 0x303516F9, 0x11343311, 0x1635300C, 0x1B362C08, 0x1F372804, }; /* Coefficients for horizontal and vertical up-sampling */ static const u32 coef_hvup[2][8] = { { 0x00800000, 0x037B02FF, 0x0C6F05FE, 0x205907FB, 0x00404000, 0x075920FE, 0x056F0CFF, 0x027B0300, }, { 0x00800000, 0x0D7CF8FF, 0x1E70F5FE, 0x335FF5FB, 0xF7404000, 0xF55F33FE, 0xF5701EFF, 0xF87C0D00, }, }; /* Coefficients for horizontal and vertical down-sampling */ static const u32 coef_hvdown[2][8] = { { 0x24382400, 0x28391F04, 0x2D381B08, 0x3237170C, 0x123737F7, 0x173732F9, 0x1B382DFB, 0x1F3928FE, }, { 0x24382400, 0x28371F04, 0x2C361B08, 0x3035160C, 0x113433F7, 0x163530F9, 0x1B362CFB, 0x1F3728FE, }, }; /* Coefficients for vertical up-sampling */ static const u32 coef_vup[8] = { 0x00000000, 0x0000FF00, 0x0000FEFF, 0x0000FBFE, 0x000000F7, 0x0000FEFB, 0x0000FFFE, 0x000000FF, }; /* Coefficients for vertical down-sampling */ static const u32 coef_vdown[8] = { 0x00000000, 0x000004FE, 0x000008FB, 0x00000CF9, 0x0000F711, 0x0000F90C, 0x0000FB08, 0x0000FE04, }; const u32 *h_coef; const u32 *hv_coef; const u32 *hv_coef_mod; const u32 *v_coef; int i; if (hscaleup) h_coef = coef_hup; else h_coef = coef_hdown; if (vscaleup) { hv_coef = coef_hvup[five_taps]; v_coef = coef_vup; if (hscaleup) hv_coef_mod = NULL; else hv_coef_mod = coef_hvdown[five_taps]; } else { hv_coef = coef_hvdown[five_taps]; v_coef = coef_vdown; if (hscaleup) hv_coef_mod = coef_hvup[five_taps]; else hv_coef_mod = NULL; } for (i = 0; i < 8; i++) { u32 h, hv; h = h_coef[i]; hv = hv_coef[i]; if (hv_coef_mod) { hv &= 0xffffff00; hv |= (hv_coef_mod[i] & 0xff); } _dispc_write_firh_reg(plane, i, h); _dispc_write_firhv_reg(plane, i, hv); } if (!five_taps) return; for (i = 0; i < 8; i++) { u32 v; v = v_coef[i]; _dispc_write_firv_reg(plane, i, v); } } static void _dispc_setup_color_conv_coef(void) { const struct color_conv_coef { int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb; int full_range; } ctbl_bt601_5 = { 298, 409, 0, 298, -208, -100, 298, 0, 517, 0, }; const struct color_conv_coef *ct; #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0)) ct = &ctbl_bt601_5; dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry)); dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb)); dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr)); dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by)); dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb)); dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry)); dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb)); dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr)); dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by)); dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb)); #undef CVAL REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11); REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11); } static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr) { const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0, DISPC_VID_BA0(0), DISPC_VID_BA0(1) }; dispc_write_reg(ba0_reg[plane], paddr); } static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr) { const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1, DISPC_VID_BA1(0), DISPC_VID_BA1(1) }; dispc_write_reg(ba1_reg[plane], paddr); } static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y) { const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION, DISPC_VID_POSITION(0), DISPC_VID_POSITION(1) }; u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0); dispc_write_reg(pos_reg[plane], val); } static void _dispc_set_pic_size(enum omap_plane plane, int width, int height) { const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE, DISPC_VID_PICTURE_SIZE(0), DISPC_VID_PICTURE_SIZE(1) }; u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); dispc_write_reg(siz_reg[plane], val); } static void _dispc_set_vid_size(enum omap_plane plane, int width, int height) { u32 val; const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0), DISPC_VID_SIZE(1) }; BUG_ON(plane == OMAP_DSS_GFX); val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); dispc_write_reg(vsi_reg[plane-1], val); } static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha) { BUG_ON(plane == OMAP_DSS_VIDEO1); if (cpu_is_omap24xx()) return; if (plane == OMAP_DSS_GFX) REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0); else if (plane == OMAP_DSS_VIDEO2) REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16); } static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc) { const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC, DISPC_VID_PIXEL_INC(0), DISPC_VID_PIXEL_INC(1) }; dispc_write_reg(ri_reg[plane], inc); } static void _dispc_set_row_inc(enum omap_plane plane, s32 inc) { const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC, DISPC_VID_ROW_INC(0), DISPC_VID_ROW_INC(1) }; dispc_write_reg(ri_reg[plane], inc); } static void _dispc_set_color_mode(enum omap_plane plane, enum omap_color_mode color_mode) { u32 m = 0; switch (color_mode) { case OMAP_DSS_COLOR_CLUT1: m = 0x0; break; case OMAP_DSS_COLOR_CLUT2: m = 0x1; break; case OMAP_DSS_COLOR_CLUT4: m = 0x2; break; case OMAP_DSS_COLOR_CLUT8: m = 0x3; break; case OMAP_DSS_COLOR_RGB12U: m = 0x4; break; case OMAP_DSS_COLOR_ARGB16: m = 0x5; break; case OMAP_DSS_COLOR_RGB16: m = 0x6; break; case OMAP_DSS_COLOR_RGB24U: m = 0x8; break; case OMAP_DSS_COLOR_RGB24P: m = 0x9; break; case OMAP_DSS_COLOR_YUV2: m = 0xa; break; case OMAP_DSS_COLOR_UYVY: m = 0xb; break; case OMAP_DSS_COLOR_ARGB32: m = 0xc; break; case OMAP_DSS_COLOR_RGBA32: m = 0xd; break; case OMAP_DSS_COLOR_RGBX32: m = 0xe; break; default: BUG(); break; } REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1); } static void _dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel) { int shift; u32 val; switch (plane) { case OMAP_DSS_GFX: shift = 8; break; case OMAP_DSS_VIDEO1: case OMAP_DSS_VIDEO2: shift = 16; break; default: BUG(); return; } val = dispc_read_reg(dispc_reg_att[plane]); val = FLD_MOD(val, channel, shift, shift); dispc_write_reg(dispc_reg_att[plane], val); } void dispc_set_burst_size(enum omap_plane plane, enum omap_burst_size burst_size) { int shift; u32 val; enable_clocks(1); switch (plane) { case OMAP_DSS_GFX: shift = 6; break; case OMAP_DSS_VIDEO1: case OMAP_DSS_VIDEO2: shift = 14; break; default: BUG(); return; } val = dispc_read_reg(dispc_reg_att[plane]); val = FLD_MOD(val, burst_size, shift+1, shift); dispc_write_reg(dispc_reg_att[plane], val); enable_clocks(0); } static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable) { u32 val; BUG_ON(plane == OMAP_DSS_GFX); val = dispc_read_reg(dispc_reg_att[plane]); val = FLD_MOD(val, enable, 9, 9); dispc_write_reg(dispc_reg_att[plane], val); } void dispc_enable_replication(enum omap_plane plane, bool enable) { int bit; if (plane == OMAP_DSS_GFX) bit = 5; else bit = 10; enable_clocks(1); REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit); enable_clocks(0); } void dispc_set_lcd_size(u16 width, u16 height) { u32 val; BUG_ON((width > (1 << 11)) || (height > (1 << 11))); val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); enable_clocks(1); dispc_write_reg(DISPC_SIZE_LCD, val); enable_clocks(0); } void dispc_set_digit_size(u16 width, u16 height) { u32 val; BUG_ON((width > (1 << 11)) || (height > (1 << 11))); val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0); enable_clocks(1); dispc_write_reg(DISPC_SIZE_DIG, val); enable_clocks(0); } static void dispc_read_plane_fifo_sizes(void) { const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS, DISPC_VID_FIFO_SIZE_STATUS(0), DISPC_VID_FIFO_SIZE_STATUS(1) }; u32 size; int plane; enable_clocks(1); for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) { if (cpu_is_omap24xx()) size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 8, 0); else if (cpu_is_omap34xx()) size = FLD_GET(dispc_read_reg(fsz_reg[plane]), 10, 0); else BUG(); dispc.fifo_size[plane] = size; } enable_clocks(0); } u32 dispc_get_plane_fifo_size(enum omap_plane plane) { return dispc.fifo_size[plane]; } void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high) { const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD, DISPC_VID_FIFO_THRESHOLD(0), DISPC_VID_FIFO_THRESHOLD(1) }; enable_clocks(1); DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n", plane, REG_GET(ftrs_reg[plane], 11, 0), REG_GET(ftrs_reg[plane], 27, 16), low, high); if (cpu_is_omap24xx()) dispc_write_reg(ftrs_reg[plane], FLD_VAL(high, 24, 16) | FLD_VAL(low, 8, 0)); else dispc_write_reg(ftrs_reg[plane], FLD_VAL(high, 27, 16) | FLD_VAL(low, 11, 0)); enable_clocks(0); } void dispc_enable_fifomerge(bool enable) { enable_clocks(1); DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled"); REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14); enable_clocks(0); } static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc) { u32 val; const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0), DISPC_VID_FIR(1) }; BUG_ON(plane == OMAP_DSS_GFX); if (cpu_is_omap24xx()) val = FLD_VAL(vinc, 27, 16) | FLD_VAL(hinc, 11, 0); else val = FLD_VAL(vinc, 28, 16) | FLD_VAL(hinc, 12, 0); dispc_write_reg(fir_reg[plane-1], val); } static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu) { u32 val; const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0), DISPC_VID_ACCU0(1) }; BUG_ON(plane == OMAP_DSS_GFX); val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0); dispc_write_reg(ac0_reg[plane-1], val); } static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu) { u32 val; const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0), DISPC_VID_ACCU1(1) }; BUG_ON(plane == OMAP_DSS_GFX); val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0); dispc_write_reg(ac1_reg[plane-1], val); } static void _dispc_set_scaling(enum omap_plane plane, u16 orig_width, u16 orig_height, u16 out_width, u16 out_height, bool ilace, bool five_taps, bool fieldmode) { int fir_hinc; int fir_vinc; int hscaleup, vscaleup; int accu0 = 0; int accu1 = 0; u32 l; BUG_ON(plane == OMAP_DSS_GFX); hscaleup = orig_width <= out_width; vscaleup = orig_height <= out_height; _dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps); if (!orig_width || orig_width == out_width) fir_hinc = 0; else fir_hinc = 1024 * orig_width / out_width; if (!orig_height || orig_height == out_height) fir_vinc = 0; else fir_vinc = 1024 * orig_height / out_height; _dispc_set_fir(plane, fir_hinc, fir_vinc); l = dispc_read_reg(dispc_reg_att[plane]); l &= ~((0x0f << 5) | (0x3 << 21)); l |= fir_hinc ? (1 << 5) : 0; l |= fir_vinc ? (1 << 6) : 0; l |= hscaleup ? 0 : (1 << 7); l |= vscaleup ? 0 : (1 << 8); l |= five_taps ? (1 << 21) : 0; l |= five_taps ? (1 << 22) : 0; dispc_write_reg(dispc_reg_att[plane], l); /* * field 0 = even field = bottom field * field 1 = odd field = top field */ if (ilace && !fieldmode) { accu1 = 0; accu0 = (fir_vinc / 2) & 0x3ff; if (accu0 >= 1024/2) { accu1 = 1024/2; accu0 -= accu1; } } _dispc_set_vid_accu0(plane, 0, accu0); _dispc_set_vid_accu1(plane, 0, accu1); } static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation, bool mirroring, enum omap_color_mode color_mode) { if (color_mode == OMAP_DSS_COLOR_YUV2 || color_mode == OMAP_DSS_COLOR_UYVY) { int vidrot = 0; if (mirroring) { switch (rotation) { case OMAP_DSS_ROT_0: vidrot = 2; break; case OMAP_DSS_ROT_90: vidrot = 1; break; case OMAP_DSS_ROT_180: vidrot = 0; break; case OMAP_DSS_ROT_270: vidrot = 3; break; } } else { switch (rotation) { case OMAP_DSS_ROT_0: vidrot = 0; break; case OMAP_DSS_ROT_90: vidrot = 1; break; case OMAP_DSS_ROT_180: vidrot = 2; break; case OMAP_DSS_ROT_270: vidrot = 3; break; } } REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12); if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270) REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18); else REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18); } else { REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12); REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18); } } static int color_mode_to_bpp(enum omap_color_mode color_mode) { switch (color_mode) { case OMAP_DSS_COLOR_CLUT1: return 1; case OMAP_DSS_COLOR_CLUT2: return 2; case OMAP_DSS_COLOR_CLUT4: return 4; case OMAP_DSS_COLOR_CLUT8: return 8; case OMAP_DSS_COLOR_RGB12U: case OMAP_DSS_COLOR_RGB16: case OMAP_DSS_COLOR_ARGB16: case OMAP_DSS_COLOR_YUV2: case OMAP_DSS_COLOR_UYVY: return 16; case OMAP_DSS_COLOR_RGB24P: return 24; case OMAP_DSS_COLOR_RGB24U: case OMAP_DSS_COLOR_ARGB32: case OMAP_DSS_COLOR_RGBA32: case OMAP_DSS_COLOR_RGBX32: return 32; default: BUG(); } } static s32 pixinc(int pixels, u8 ps) { if (pixels == 1) return 1; else if (pixels > 1) return 1 + (pixels - 1) * ps; else if (pixels < 0) return 1 - (-pixels + 1) * ps; else BUG(); } static void calc_vrfb_rotation_offset(u8 rotation, bool mirror, u16 screen_width, u16 width, u16 height, enum omap_color_mode color_mode, bool fieldmode, unsigned int field_offset, unsigned *offset0, unsigned *offset1, s32 *row_inc, s32 *pix_inc) { u8 ps; /* FIXME CLUT formats */ switch (color_mode) { case OMAP_DSS_COLOR_CLUT1: case OMAP_DSS_COLOR_CLUT2: case OMAP_DSS_COLOR_CLUT4: case OMAP_DSS_COLOR_CLUT8: BUG(); return; case OMAP_DSS_COLOR_YUV2: case OMAP_DSS_COLOR_UYVY: ps = 4; break; default: ps = color_mode_to_bpp(color_mode) / 8; break; } DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width, width, height); /* * field 0 = even field = bottom field * field 1 = odd field = top field */ switch (rotation + mirror * 4) { case OMAP_DSS_ROT_0: case OMAP_DSS_ROT_180: /* * If the pixel format is YUV or UYVY divide the width * of the image by 2 for 0 and 180 degree rotation. */ if (color_mode == OMAP_DSS_COLOR_YUV2 || color_mode == OMAP_DSS_COLOR_UYVY) width = width >> 1; case OMAP_DSS_ROT_90: case OMAP_DSS_ROT_270: *offset1 = 0; if (field_offset) *offset0 = field_offset * screen_width * ps; else *offset0 = 0; *row_inc = pixinc(1 + (screen_width - width) + (fieldmode ? screen_width : 0), ps); *pix_inc = pixinc(1, ps); break; case OMAP_DSS_ROT_0 + 4: case OMAP_DSS_ROT_180 + 4: /* If the pixel format is YUV or UYVY divide the width * of the image by 2 for 0 degree and 180 degree */ if (color_mode == OMAP_DSS_COLOR_YUV2 || color_mode == OMAP_DSS_COLOR_UYVY) width = width >> 1; case OMAP_DSS_ROT_90 + 4: case OMAP_DSS_ROT_270 + 4: *offset1 = 0; if (field_offset) *offset0 = field_offset * screen_width * ps; else *offset0 = 0; *row_inc = pixinc(1 - (screen_width + width) - (fieldmode ? screen_width : 0), ps); *pix_inc = pixinc(1, ps); break; default: BUG(); } } static void calc_dma_rotation_offset(u8 rotation, bool mirror, u16 screen_width, u16 width, u16 height, enum omap_color_mode color_mode, bool fieldmode, unsigned int field_offset, unsigned *offset0, unsigned *offset1, s32 *row_inc, s32 *pix_inc) { u8 ps; u16 fbw, fbh; /* FIXME CLUT formats */ switch (color_mode) { case OMAP_DSS_COLOR_CLUT1: case OMAP_DSS_COLOR_CLUT2: case OMAP_DSS_COLOR_CLUT4: case OMAP_DSS_COLOR_CLUT8: BUG(); return; default: ps = color_mode_to_bpp(color_mode) / 8; break; } DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width, width, height); /* width & height are overlay sizes, convert to fb sizes */ if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) { fbw = width; fbh = height; } else { fbw = height; fbh = width; } /* * field 0 = even field = bottom field * field 1 = odd field = top field */ switch (rotation + mirror * 4) { case OMAP_DSS_ROT_0: *offset1 = 0; if (field_offset) *offset0 = *offset1 + field_offset * screen_width * ps; else *offset0 = *offset1; *row_inc = pixinc(1 + (screen_width - fbw) + (fieldmode ? screen_width : 0), ps); *pix_inc = pixinc(1, ps); break; case OMAP_DSS_ROT_90: *offset1 = screen_width * (fbh - 1) * ps; if (field_offset) *offset0 = *offset1 + field_offset * ps; else *offset0 = *offset1; *row_inc = pixinc(screen_width * (fbh - 1) + 1 + (fieldmode ? 1 : 0), ps); *pix_inc = pixinc(-screen_width, ps); break; case OMAP_DSS_ROT_180: *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps; if (field_offset) *offset0 = *offset1 - field_offset * screen_width * ps; else *offset0 = *offset1; *row_inc = pixinc(-1 - (screen_width - fbw) - (fieldmode ? screen_width : 0), ps); *pix_inc = pixinc(-1, ps); break; case OMAP_DSS_ROT_270: *offset1 = (fbw - 1) * ps; if (field_offset) *offset0 = *offset1 - field_offset * ps; else *offset0 = *offset1; *row_inc = pixinc(-screen_width * (fbh - 1) - 1 - (fieldmode ? 1 : 0), ps); *pix_inc = pixinc(screen_width, ps); break; /* mirroring */ case OMAP_DSS_ROT_0 + 4: *offset1 = (fbw - 1) * ps; if (field_offset) *offset0 = *offset1 + field_offset * screen_width * ps; else *offset0 = *offset1; *row_inc = pixinc(screen_width * 2 - 1 + (fieldmode ? screen_width : 0), ps); *pix_inc = pixinc(-1, ps); break; case OMAP_DSS_ROT_90 + 4: *offset1 = 0; if (field_offset) *offset0 = *offset1 + field_offset * ps; else *offset0 = *offset1; *row_inc = pixinc(-screen_width * (fbh - 1) + 1 + (fieldmode ? 1 : 0), ps); *pix_inc = pixinc(screen_width, ps); break; case OMAP_DSS_ROT_180 + 4: *offset1 = screen_width * (fbh - 1) * ps; if (field_offset) *offset0 = *offset1 - field_offset * screen_width * ps; else *offset0 = *offset1; *row_inc = pixinc(1 - screen_width * 2 - (fieldmode ? screen_width : 0), ps); *pix_inc = pixinc(1, ps); break; case OMAP_DSS_ROT_270 + 4: *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps; if (field_offset) *offset0 = *offset1 - field_offset * ps; else *offset0 = *offset1; *row_inc = pixinc(screen_width * (fbh - 1) - 1 - (fieldmode ? 1 : 0), ps); *pix_inc = pixinc(-screen_width, ps); break; default: BUG(); } } static unsigned long calc_fclk_five_taps(u16 width, u16 height, u16 out_width, u16 out_height, enum omap_color_mode color_mode) { u32 fclk = 0; /* FIXME venc pclk? */ u64 tmp, pclk = dispc_pclk_rate(); if (height > out_height) { /* FIXME get real display PPL */ unsigned int ppl = 800; tmp = pclk * height * out_width; do_div(tmp, 2 * out_height * ppl); fclk = tmp; if (height > 2 * out_height) { if (ppl == out_width) return 0; tmp = pclk * (height - 2 * out_height) * out_width; do_div(tmp, 2 * out_height * (ppl - out_width)); fclk = max(fclk, (u32) tmp); } } if (width > out_width) { tmp = pclk * width; do_div(tmp, out_width); fclk = max(fclk, (u32) tmp); if (color_mode == OMAP_DSS_COLOR_RGB24U) fclk <<= 1; } return fclk; } static unsigned long calc_fclk(u16 width, u16 height, u16 out_width, u16 out_height) { unsigned int hf, vf; /* * FIXME how to determine the 'A' factor * for the no downscaling case ? */ if (width > 3 * out_width) hf = 4; else if (width > 2 * out_width) hf = 3; else if (width > out_width) hf = 2; else hf = 1; if (height > out_height) vf = 2; else vf = 1; /* FIXME venc pclk? */ return dispc_pclk_rate() * vf * hf; } void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out) { enable_clocks(1); _dispc_set_channel_out(plane, channel_out); enable_clocks(0); } static int _dispc_setup_plane(enum omap_plane plane, u32 paddr, u16 screen_width, u16 pos_x, u16 pos_y, u16 width, u16 height, u16 out_width, u16 out_height, enum omap_color_mode color_mode, bool ilace, enum omap_dss_rotation_type rotation_type, u8 rotation, int mirror, u8 global_alpha) { const int maxdownscale = cpu_is_omap34xx() ? 4 : 2; bool five_taps = 0; bool fieldmode = 0; int cconv = 0; unsigned offset0, offset1; s32 row_inc; s32 pix_inc; u16 frame_height = height; unsigned int field_offset = 0; if (paddr == 0) return -EINVAL; if (ilace && height == out_height) fieldmode = 1; if (ilace) { if (fieldmode) height /= 2; pos_y /= 2; out_height /= 2; DSSDBG("adjusting for ilace: height %d, pos_y %d, " "out_height %d\n", height, pos_y, out_height); } if (plane == OMAP_DSS_GFX) { if (width != out_width || height != out_height) return -EINVAL; switch (color_mode) { case OMAP_DSS_COLOR_ARGB16: case OMAP_DSS_COLOR_ARGB32: case OMAP_DSS_COLOR_RGBA32: case OMAP_DSS_COLOR_RGBX32: if (cpu_is_omap24xx()) return -EINVAL; /* fall through */ case OMAP_DSS_COLOR_RGB12U: case OMAP_DSS_COLOR_RGB16: case OMAP_DSS_COLOR_RGB24P: case OMAP_DSS_COLOR_RGB24U: break; default: return -EINVAL; } } else { /* video plane */ unsigned long fclk = 0; if (out_width < width / maxdownscale || out_width > width * 8) return -EINVAL; if (out_height < height / maxdownscale || out_height > height * 8) return -EINVAL; switch (color_mode) { case OMAP_DSS_COLOR_RGBX32: case OMAP_DSS_COLOR_RGB12U: if (cpu_is_omap24xx()) return -EINVAL; /* fall through */ case OMAP_DSS_COLOR_RGB16: case OMAP_DSS_COLOR_RGB24P: case OMAP_DSS_COLOR_RGB24U: break; case OMAP_DSS_COLOR_ARGB16: case OMAP_DSS_COLOR_ARGB32: case OMAP_DSS_COLOR_RGBA32: if (cpu_is_omap24xx()) return -EINVAL; if (plane == OMAP_DSS_VIDEO1) return -EINVAL; break; case OMAP_DSS_COLOR_YUV2: case OMAP_DSS_COLOR_UYVY: cconv = 1; break; default: return -EINVAL; } /* Must use 5-tap filter? */ five_taps = height > out_height * 2; if (!five_taps) { fclk = calc_fclk(width, height, out_width, out_height); /* Try 5-tap filter if 3-tap fclk is too high */ if (cpu_is_omap34xx() && height > out_height && fclk > dispc_fclk_rate()) five_taps = true; } if (width > (2048 >> five_taps)) { DSSERR("failed to set up scaling, fclk too low\n"); return -EINVAL; } if (five_taps) fclk = calc_fclk_five_taps(width, height, out_width, out_height, color_mode); DSSDBG("required fclk rate = %lu Hz\n", fclk); DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate()); if (!fclk || fclk > dispc_fclk_rate()) { DSSERR("failed to set up scaling, " "required fclk rate = %lu Hz, " "current fclk rate = %lu Hz\n", fclk, dispc_fclk_rate()); return -EINVAL; } } if (ilace && !fieldmode) { /* * when downscaling the bottom field may have to start several * source lines below the top field. Unfortunately ACCUI * registers will only hold the fractional part of the offset * so the integer part must be added to the base address of the * bottom field. */ if (!height || height == out_height) field_offset = 0; else field_offset = height / out_height / 2; } /* Fields are independent but interleaved in memory. */ if (fieldmode) field_offset = 1; if (rotation_type == OMAP_DSS_ROT_DMA) calc_dma_rotation_offset(rotation, mirror, screen_width, width, frame_height, color_mode, fieldmode, field_offset, &offset0, &offset1, &row_inc, &pix_inc); else calc_vrfb_rotation_offset(rotation, mirror, screen_width, width, frame_height, color_mode, fieldmode, field_offset, &offset0, &offset1, &row_inc, &pix_inc); DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n", offset0, offset1, row_inc, pix_inc); _dispc_set_color_mode(plane, color_mode); _dispc_set_plane_ba0(plane, paddr + offset0); _dispc_set_plane_ba1(plane, paddr + offset1); _dispc_set_row_inc(plane, row_inc); _dispc_set_pix_inc(plane, pix_inc); DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height, out_width, out_height); _dispc_set_plane_pos(plane, pos_x, pos_y); _dispc_set_pic_size(plane, width, height); if (plane != OMAP_DSS_GFX) { _dispc_set_scaling(plane, width, height, out_width, out_height, ilace, five_taps, fieldmode); _dispc_set_vid_size(plane, out_width, out_height); _dispc_set_vid_color_conv(plane, cconv); } _dispc_set_rotation_attrs(plane, rotation, mirror, color_mode); if (plane != OMAP_DSS_VIDEO1) _dispc_setup_global_alpha(plane, global_alpha); return 0; } static void _dispc_enable_plane(enum omap_plane plane, bool enable) { REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0); } static void dispc_disable_isr(void *data, u32 mask) { struct completion *compl = data; complete(compl); } static void _enable_lcd_out(bool enable) { REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0); } static void dispc_enable_lcd_out(bool enable) { struct completion frame_done_completion; bool is_on; int r; enable_clocks(1); /* When we disable LCD output, we need to wait until frame is done. * Otherwise the DSS is still working, and turning off the clocks * prevents DSS from going to OFF mode */ is_on = REG_GET(DISPC_CONTROL, 0, 0); if (!enable && is_on) { init_completion(&frame_done_completion); r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion, DISPC_IRQ_FRAMEDONE); if (r) DSSERR("failed to register FRAMEDONE isr\n"); } _enable_lcd_out(enable); if (!enable && is_on) { if (!wait_for_completion_timeout(&frame_done_completion, msecs_to_jiffies(100))) DSSERR("timeout waiting for FRAME DONE\n"); r = omap_dispc_unregister_isr(dispc_disable_isr, &frame_done_completion, DISPC_IRQ_FRAMEDONE); if (r) DSSERR("failed to unregister FRAMEDONE isr\n"); } enable_clocks(0); } static void _enable_digit_out(bool enable) { REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1); } static void dispc_enable_digit_out(bool enable) { struct completion frame_done_completion; int r; enable_clocks(1); if (REG_GET(DISPC_CONTROL, 1, 1) == enable) { enable_clocks(0); return; } if (enable) { unsigned long flags; /* When we enable digit output, we'll get an extra digit * sync lost interrupt, that we need to ignore */ spin_lock_irqsave(&dispc.irq_lock, flags); dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT; _omap_dispc_set_irqs(); spin_unlock_irqrestore(&dispc.irq_lock, flags); } /* When we disable digit output, we need to wait until fields are done. * Otherwise the DSS is still working, and turning off the clocks * prevents DSS from going to OFF mode. And when enabling, we need to * wait for the extra sync losts */ init_completion(&frame_done_completion); r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion, DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD); if (r) DSSERR("failed to register EVSYNC isr\n"); _enable_digit_out(enable); /* XXX I understand from TRM that we should only wait for the * current field to complete. But it seems we have to wait * for both fields */ if (!wait_for_completion_timeout(&frame_done_completion, msecs_to_jiffies(100))) DSSERR("timeout waiting for EVSYNC\n"); if (!wait_for_completion_timeout(&frame_done_completion, msecs_to_jiffies(100))) DSSERR("timeout waiting for EVSYNC\n"); r = omap_dispc_unregister_isr(dispc_disable_isr, &frame_done_completion, DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD); if (r) DSSERR("failed to unregister EVSYNC isr\n"); if (enable) { unsigned long flags; spin_lock_irqsave(&dispc.irq_lock, flags); dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR; dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT); _omap_dispc_set_irqs(); spin_unlock_irqrestore(&dispc.irq_lock, flags); } enable_clocks(0); } bool dispc_is_channel_enabled(enum omap_channel channel) { if (channel == OMAP_DSS_CHANNEL_LCD) return !!REG_GET(DISPC_CONTROL, 0, 0); else if (channel == OMAP_DSS_CHANNEL_DIGIT) return !!REG_GET(DISPC_CONTROL, 1, 1); else BUG(); } void dispc_enable_channel(enum omap_channel channel, bool enable) { if (channel == OMAP_DSS_CHANNEL_LCD) dispc_enable_lcd_out(enable); else if (channel == OMAP_DSS_CHANNEL_DIGIT) dispc_enable_digit_out(enable); else BUG(); } void dispc_lcd_enable_signal_polarity(bool act_high) { enable_clocks(1); REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29); enable_clocks(0); } void dispc_lcd_enable_signal(bool enable) { enable_clocks(1); REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28); enable_clocks(0); } void dispc_pck_free_enable(bool enable) { enable_clocks(1); REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27); enable_clocks(0); } void dispc_enable_fifohandcheck(bool enable) { enable_clocks(1); REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16); enable_clocks(0); } void dispc_set_lcd_display_type(enum omap_lcd_display_type type) { int mode; switch (type) { case OMAP_DSS_LCD_DISPLAY_STN: mode = 0; break; case OMAP_DSS_LCD_DISPLAY_TFT: mode = 1; break; default: BUG(); return; } enable_clocks(1); REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3); enable_clocks(0); } void dispc_set_loadmode(enum omap_dss_load_mode mode) { enable_clocks(1); REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1); enable_clocks(0); } void dispc_set_default_color(enum omap_channel channel, u32 color) { const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0, DISPC_DEFAULT_COLOR1 }; enable_clocks(1); dispc_write_reg(def_reg[channel], color); enable_clocks(0); } u32 dispc_get_default_color(enum omap_channel channel) { const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0, DISPC_DEFAULT_COLOR1 }; u32 l; BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT && channel != OMAP_DSS_CHANNEL_LCD); enable_clocks(1); l = dispc_read_reg(def_reg[channel]); enable_clocks(0); return l; } void dispc_set_trans_key(enum omap_channel ch, enum omap_dss_trans_key_type type, u32 trans_key) { const struct dispc_reg tr_reg[] = { DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 }; enable_clocks(1); if (ch == OMAP_DSS_CHANNEL_LCD) REG_FLD_MOD(DISPC_CONFIG, type, 11, 11); else /* OMAP_DSS_CHANNEL_DIGIT */ REG_FLD_MOD(DISPC_CONFIG, type, 13, 13); dispc_write_reg(tr_reg[ch], trans_key); enable_clocks(0); } void dispc_get_trans_key(enum omap_channel ch, enum omap_dss_trans_key_type *type, u32 *trans_key) { const struct dispc_reg tr_reg[] = { DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 }; enable_clocks(1); if (type) { if (ch == OMAP_DSS_CHANNEL_LCD) *type = REG_GET(DISPC_CONFIG, 11, 11); else if (ch == OMAP_DSS_CHANNEL_DIGIT) *type = REG_GET(DISPC_CONFIG, 13, 13); else BUG(); } if (trans_key) *trans_key = dispc_read_reg(tr_reg[ch]); enable_clocks(0); } void dispc_enable_trans_key(enum omap_channel ch, bool enable) { enable_clocks(1); if (ch == OMAP_DSS_CHANNEL_LCD) REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10); else /* OMAP_DSS_CHANNEL_DIGIT */ REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12); enable_clocks(0); } void dispc_enable_alpha_blending(enum omap_channel ch, bool enable) { if (cpu_is_omap24xx()) return; enable_clocks(1); if (ch == OMAP_DSS_CHANNEL_LCD) REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18); else /* OMAP_DSS_CHANNEL_DIGIT */ REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19); enable_clocks(0); } bool dispc_alpha_blending_enabled(enum omap_channel ch) { bool enabled; if (cpu_is_omap24xx()) return false; enable_clocks(1); if (ch == OMAP_DSS_CHANNEL_LCD) enabled = REG_GET(DISPC_CONFIG, 18, 18); else if (ch == OMAP_DSS_CHANNEL_DIGIT) enabled = REG_GET(DISPC_CONFIG, 18, 18); else BUG(); enable_clocks(0); return enabled; } bool dispc_trans_key_enabled(enum omap_channel ch) { bool enabled; enable_clocks(1); if (ch == OMAP_DSS_CHANNEL_LCD) enabled = REG_GET(DISPC_CONFIG, 10, 10); else if (ch == OMAP_DSS_CHANNEL_DIGIT) enabled = REG_GET(DISPC_CONFIG, 12, 12); else BUG(); enable_clocks(0); return enabled; } void dispc_set_tft_data_lines(u8 data_lines) { int code; switch (data_lines) { case 12: code = 0; break; case 16: code = 1; break; case 18: code = 2; break; case 24: code = 3; break; default: BUG(); return; } enable_clocks(1); REG_FLD_MOD(DISPC_CONTROL, code, 9, 8); enable_clocks(0); } void dispc_set_parallel_interface_mode(enum omap_parallel_interface_mode mode) { u32 l; int stallmode; int gpout0 = 1; int gpout1; switch (mode) { case OMAP_DSS_PARALLELMODE_BYPASS: stallmode = 0; gpout1 = 1; break; case OMAP_DSS_PARALLELMODE_RFBI: stallmode = 1; gpout1 = 0; break; case OMAP_DSS_PARALLELMODE_DSI: stallmode = 1; gpout1 = 1; break; default: BUG(); return; } enable_clocks(1); l = dispc_read_reg(DISPC_CONTROL); l = FLD_MOD(l, stallmode, 11, 11); l = FLD_MOD(l, gpout0, 15, 15); l = FLD_MOD(l, gpout1, 16, 16); dispc_write_reg(DISPC_CONTROL, l); enable_clocks(0); } static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp, int vsw, int vfp, int vbp) { if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) { if (hsw < 1 || hsw > 64 || hfp < 1 || hfp > 256 || hbp < 1 || hbp > 256 || vsw < 1 || vsw > 64 || vfp < 0 || vfp > 255 || vbp < 0 || vbp > 255) return false; } else { if (hsw < 1 || hsw > 256 || hfp < 1 || hfp > 4096 || hbp < 1 || hbp > 4096 || vsw < 1 || vsw > 256 || vfp < 0 || vfp > 4095 || vbp < 0 || vbp > 4095) return false; } return true; } bool dispc_lcd_timings_ok(struct omap_video_timings *timings) { return _dispc_lcd_timings_ok(timings->hsw, timings->hfp, timings->hbp, timings->vsw, timings->vfp, timings->vbp); } static void _dispc_set_lcd_timings(int hsw, int hfp, int hbp, int vsw, int vfp, int vbp) { u32 timing_h, timing_v; if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) { timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) | FLD_VAL(hbp-1, 27, 20); timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) | FLD_VAL(vbp, 27, 20); } else { timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) | FLD_VAL(hbp-1, 31, 20); timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) | FLD_VAL(vbp, 31, 20); } enable_clocks(1); dispc_write_reg(DISPC_TIMING_H, timing_h); dispc_write_reg(DISPC_TIMING_V, timing_v); enable_clocks(0); } /* change name to mode? */ void dispc_set_lcd_timings(struct omap_video_timings *timings) { unsigned xtot, ytot; unsigned long ht, vt; if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp, timings->hbp, timings->vsw, timings->vfp, timings->vbp)) BUG(); _dispc_set_lcd_timings(timings->hsw, timings->hfp, timings->hbp, timings->vsw, timings->vfp, timings->vbp); dispc_set_lcd_size(timings->x_res, timings->y_res); xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp; ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp; ht = (timings->pixel_clock * 1000) / xtot; vt = (timings->pixel_clock * 1000) / xtot / ytot; DSSDBG("xres %u yres %u\n", timings->x_res, timings->y_res); DSSDBG("pck %u\n", timings->pixel_clock); DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n", timings->hsw, timings->hfp, timings->hbp, timings->vsw, timings->vfp, timings->vbp); DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt); } static void dispc_set_lcd_divisor(u16 lck_div, u16 pck_div) { BUG_ON(lck_div < 1); BUG_ON(pck_div < 2); enable_clocks(1); dispc_write_reg(DISPC_DIVISOR, FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0)); enable_clocks(0); } static void dispc_get_lcd_divisor(int *lck_div, int *pck_div) { u32 l; l = dispc_read_reg(DISPC_DIVISOR); *lck_div = FLD_GET(l, 23, 16); *pck_div = FLD_GET(l, 7, 0); } unsigned long dispc_fclk_rate(void) { unsigned long r = 0; if (dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK) r = dss_clk_get_rate(DSS_CLK_FCK1); else #ifdef CONFIG_OMAP2_DSS_DSI r = dsi_get_dsi1_pll_rate(); #else BUG(); #endif return r; } unsigned long dispc_lclk_rate(void) { int lcd; unsigned long r; u32 l; l = dispc_read_reg(DISPC_DIVISOR); lcd = FLD_GET(l, 23, 16); r = dispc_fclk_rate(); return r / lcd; } unsigned long dispc_pclk_rate(void) { int lcd, pcd; unsigned long r; u32 l; l = dispc_read_reg(DISPC_DIVISOR); lcd = FLD_GET(l, 23, 16); pcd = FLD_GET(l, 7, 0); r = dispc_fclk_rate(); return r / lcd / pcd; } void dispc_dump_clocks(struct seq_file *s) { int lcd, pcd; enable_clocks(1); dispc_get_lcd_divisor(&lcd, &pcd); seq_printf(s, "- DISPC -\n"); seq_printf(s, "dispc fclk source = %s\n", dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ? "dss1_alwon_fclk" : "dsi1_pll_fclk"); seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate()); seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_lclk_rate(), lcd); seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_pclk_rate(), pcd); enable_clocks(0); } #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS void dispc_dump_irqs(struct seq_file *s) { unsigned long flags; struct dispc_irq_stats stats; spin_lock_irqsave(&dispc.irq_stats_lock, flags); stats = dispc.irq_stats; memset(&dispc.irq_stats, 0, sizeof(dispc.irq_stats)); dispc.irq_stats.last_reset = jiffies; spin_unlock_irqrestore(&dispc.irq_stats_lock, flags); seq_printf(s, "period %u ms\n", jiffies_to_msecs(jiffies - stats.last_reset)); seq_printf(s, "irqs %d\n", stats.irq_count); #define PIS(x) \ seq_printf(s, "%-20s %10d\n", #x, stats.irqs[ffs(DISPC_IRQ_##x)-1]); PIS(FRAMEDONE); PIS(VSYNC); PIS(EVSYNC_EVEN); PIS(EVSYNC_ODD); PIS(ACBIAS_COUNT_STAT); PIS(PROG_LINE_NUM); PIS(GFX_FIFO_UNDERFLOW); PIS(GFX_END_WIN); PIS(PAL_GAMMA_MASK); PIS(OCP_ERR); PIS(VID1_FIFO_UNDERFLOW); PIS(VID1_END_WIN); PIS(VID2_FIFO_UNDERFLOW); PIS(VID2_END_WIN); PIS(SYNC_LOST); PIS(SYNC_LOST_DIGIT); PIS(WAKEUP); #undef PIS } #endif void dispc_dump_regs(struct seq_file *s) { #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r)) dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1); DUMPREG(DISPC_REVISION); DUMPREG(DISPC_SYSCONFIG); DUMPREG(DISPC_SYSSTATUS); DUMPREG(DISPC_IRQSTATUS); DUMPREG(DISPC_IRQENABLE); DUMPREG(DISPC_CONTROL); DUMPREG(DISPC_CONFIG); DUMPREG(DISPC_CAPABLE); DUMPREG(DISPC_DEFAULT_COLOR0); DUMPREG(DISPC_DEFAULT_COLOR1); DUMPREG(DISPC_TRANS_COLOR0); DUMPREG(DISPC_TRANS_COLOR1); DUMPREG(DISPC_LINE_STATUS); DUMPREG(DISPC_LINE_NUMBER); DUMPREG(DISPC_TIMING_H); DUMPREG(DISPC_TIMING_V); DUMPREG(DISPC_POL_FREQ); DUMPREG(DISPC_DIVISOR); DUMPREG(DISPC_GLOBAL_ALPHA); DUMPREG(DISPC_SIZE_DIG); DUMPREG(DISPC_SIZE_LCD); DUMPREG(DISPC_GFX_BA0); DUMPREG(DISPC_GFX_BA1); DUMPREG(DISPC_GFX_POSITION); DUMPREG(DISPC_GFX_SIZE); DUMPREG(DISPC_GFX_ATTRIBUTES); DUMPREG(DISPC_GFX_FIFO_THRESHOLD); DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS); DUMPREG(DISPC_GFX_ROW_INC); DUMPREG(DISPC_GFX_PIXEL_INC); DUMPREG(DISPC_GFX_WINDOW_SKIP); DUMPREG(DISPC_GFX_TABLE_BA); DUMPREG(DISPC_DATA_CYCLE1); DUMPREG(DISPC_DATA_CYCLE2); DUMPREG(DISPC_DATA_CYCLE3); DUMPREG(DISPC_CPR_COEF_R); DUMPREG(DISPC_CPR_COEF_G); DUMPREG(DISPC_CPR_COEF_B); DUMPREG(DISPC_GFX_PRELOAD); DUMPREG(DISPC_VID_BA0(0)); DUMPREG(DISPC_VID_BA1(0)); DUMPREG(DISPC_VID_POSITION(0)); DUMPREG(DISPC_VID_SIZE(0)); DUMPREG(DISPC_VID_ATTRIBUTES(0)); DUMPREG(DISPC_VID_FIFO_THRESHOLD(0)); DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0)); DUMPREG(DISPC_VID_ROW_INC(0)); DUMPREG(DISPC_VID_PIXEL_INC(0)); DUMPREG(DISPC_VID_FIR(0)); DUMPREG(DISPC_VID_PICTURE_SIZE(0)); DUMPREG(DISPC_VID_ACCU0(0)); DUMPREG(DISPC_VID_ACCU1(0)); DUMPREG(DISPC_VID_BA0(1)); DUMPREG(DISPC_VID_BA1(1)); DUMPREG(DISPC_VID_POSITION(1)); DUMPREG(DISPC_VID_SIZE(1)); DUMPREG(DISPC_VID_ATTRIBUTES(1)); DUMPREG(DISPC_VID_FIFO_THRESHOLD(1)); DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1)); DUMPREG(DISPC_VID_ROW_INC(1)); DUMPREG(DISPC_VID_PIXEL_INC(1)); DUMPREG(DISPC_VID_FIR(1)); DUMPREG(DISPC_VID_PICTURE_SIZE(1)); DUMPREG(DISPC_VID_ACCU0(1)); DUMPREG(DISPC_VID_ACCU1(1)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 0)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 1)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 2)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 3)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 4)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 5)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 6)); DUMPREG(DISPC_VID_FIR_COEF_H(0, 7)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6)); DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7)); DUMPREG(DISPC_VID_CONV_COEF(0, 0)); DUMPREG(DISPC_VID_CONV_COEF(0, 1)); DUMPREG(DISPC_VID_CONV_COEF(0, 2)); DUMPREG(DISPC_VID_CONV_COEF(0, 3)); DUMPREG(DISPC_VID_CONV_COEF(0, 4)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 0)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 1)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 2)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 3)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 4)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 5)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 6)); DUMPREG(DISPC_VID_FIR_COEF_V(0, 7)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 0)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 1)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 2)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 3)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 4)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 5)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 6)); DUMPREG(DISPC_VID_FIR_COEF_H(1, 7)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6)); DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7)); DUMPREG(DISPC_VID_CONV_COEF(1, 0)); DUMPREG(DISPC_VID_CONV_COEF(1, 1)); DUMPREG(DISPC_VID_CONV_COEF(1, 2)); DUMPREG(DISPC_VID_CONV_COEF(1, 3)); DUMPREG(DISPC_VID_CONV_COEF(1, 4)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 0)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 1)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 2)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 3)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 4)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 5)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 6)); DUMPREG(DISPC_VID_FIR_COEF_V(1, 7)); DUMPREG(DISPC_VID_PRELOAD(0)); DUMPREG(DISPC_VID_PRELOAD(1)); dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1); #undef DUMPREG } static void _dispc_set_pol_freq(bool onoff, bool rf, bool ieo, bool ipc, bool ihs, bool ivs, u8 acbi, u8 acb) { u32 l = 0; DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n", onoff, rf, ieo, ipc, ihs, ivs, acbi, acb); l |= FLD_VAL(onoff, 17, 17); l |= FLD_VAL(rf, 16, 16); l |= FLD_VAL(ieo, 15, 15); l |= FLD_VAL(ipc, 14, 14); l |= FLD_VAL(ihs, 13, 13); l |= FLD_VAL(ivs, 12, 12); l |= FLD_VAL(acbi, 11, 8); l |= FLD_VAL(acb, 7, 0); enable_clocks(1); dispc_write_reg(DISPC_POL_FREQ, l); enable_clocks(0); } void dispc_set_pol_freq(enum omap_panel_config config, u8 acbi, u8 acb) { _dispc_set_pol_freq((config & OMAP_DSS_LCD_ONOFF) != 0, (config & OMAP_DSS_LCD_RF) != 0, (config & OMAP_DSS_LCD_IEO) != 0, (config & OMAP_DSS_LCD_IPC) != 0, (config & OMAP_DSS_LCD_IHS) != 0, (config & OMAP_DSS_LCD_IVS) != 0, acbi, acb); } /* with fck as input clock rate, find dispc dividers that produce req_pck */ void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck, struct dispc_clock_info *cinfo) { u16 pcd_min = is_tft ? 2 : 3; unsigned long best_pck; u16 best_ld, cur_ld; u16 best_pd, cur_pd; best_pck = 0; best_ld = 0; best_pd = 0; for (cur_ld = 1; cur_ld <= 255; ++cur_ld) { unsigned long lck = fck / cur_ld; for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) { unsigned long pck = lck / cur_pd; long old_delta = abs(best_pck - req_pck); long new_delta = abs(pck - req_pck); if (best_pck == 0 || new_delta < old_delta) { best_pck = pck; best_ld = cur_ld; best_pd = cur_pd; if (pck == req_pck) goto found; } if (pck < req_pck) break; } if (lck / pcd_min < req_pck) break; } found: cinfo->lck_div = best_ld; cinfo->pck_div = best_pd; cinfo->lck = fck / cinfo->lck_div; cinfo->pck = cinfo->lck / cinfo->pck_div; } /* calculate clock rates using dividers in cinfo */ int dispc_calc_clock_rates(unsigned long dispc_fclk_rate, struct dispc_clock_info *cinfo) { if (cinfo->lck_div > 255 || cinfo->lck_div == 0) return -EINVAL; if (cinfo->pck_div < 2 || cinfo->pck_div > 255) return -EINVAL; cinfo->lck = dispc_fclk_rate / cinfo->lck_div; cinfo->pck = cinfo->lck / cinfo->pck_div; return 0; } int dispc_set_clock_div(struct dispc_clock_info *cinfo) { DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div); DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div); dispc_set_lcd_divisor(cinfo->lck_div, cinfo->pck_div); return 0; } int dispc_get_clock_div(struct dispc_clock_info *cinfo) { unsigned long fck; fck = dispc_fclk_rate(); cinfo->lck_div = REG_GET(DISPC_DIVISOR, 23, 16); cinfo->pck_div = REG_GET(DISPC_DIVISOR, 7, 0); cinfo->lck = fck / cinfo->lck_div; cinfo->pck = cinfo->lck / cinfo->pck_div; return 0; } /* dispc.irq_lock has to be locked by the caller */ static void _omap_dispc_set_irqs(void) { u32 mask; u32 old_mask; int i; struct omap_dispc_isr_data *isr_data; mask = dispc.irq_error_mask; for (i = 0; i < DISPC_MAX_NR_ISRS; i++) { isr_data = &dispc.registered_isr[i]; if (isr_data->isr == NULL) continue; mask |= isr_data->mask; } enable_clocks(1); old_mask = dispc_read_reg(DISPC_IRQENABLE); /* clear the irqstatus for newly enabled irqs */ dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask); dispc_write_reg(DISPC_IRQENABLE, mask); enable_clocks(0); } int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask) { int i; int ret; unsigned long flags; struct omap_dispc_isr_data *isr_data; if (isr == NULL) return -EINVAL; spin_lock_irqsave(&dispc.irq_lock, flags); /* check for duplicate entry */ for (i = 0; i < DISPC_MAX_NR_ISRS; i++) { isr_data = &dispc.registered_isr[i]; if (isr_data->isr == isr && isr_data->arg == arg && isr_data->mask == mask) { ret = -EINVAL; goto err; } } isr_data = NULL; ret = -EBUSY; for (i = 0; i < DISPC_MAX_NR_ISRS; i++) { isr_data = &dispc.registered_isr[i]; if (isr_data->isr != NULL) continue; isr_data->isr = isr; isr_data->arg = arg; isr_data->mask = mask; ret = 0; break; } _omap_dispc_set_irqs(); spin_unlock_irqrestore(&dispc.irq_lock, flags); return 0; err: spin_unlock_irqrestore(&dispc.irq_lock, flags); return ret; } EXPORT_SYMBOL(omap_dispc_register_isr); int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask) { int i; unsigned long flags; int ret = -EINVAL; struct omap_dispc_isr_data *isr_data; spin_lock_irqsave(&dispc.irq_lock, flags); for (i = 0; i < DISPC_MAX_NR_ISRS; i++) { isr_data = &dispc.registered_isr[i]; if (isr_data->isr != isr || isr_data->arg != arg || isr_data->mask != mask) continue; /* found the correct isr */ isr_data->isr = NULL; isr_data->arg = NULL; isr_data->mask = 0; ret = 0; break; } if (ret == 0) _omap_dispc_set_irqs(); spin_unlock_irqrestore(&dispc.irq_lock, flags); return ret; } EXPORT_SYMBOL(omap_dispc_unregister_isr); #ifdef DEBUG static void print_irq_status(u32 status) { if ((status & dispc.irq_error_mask) == 0) return; printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status); #define PIS(x) \ if (status & DISPC_IRQ_##x) \ printk(#x " "); PIS(GFX_FIFO_UNDERFLOW); PIS(OCP_ERR); PIS(VID1_FIFO_UNDERFLOW); PIS(VID2_FIFO_UNDERFLOW); PIS(SYNC_LOST); PIS(SYNC_LOST_DIGIT); #undef PIS printk("\n"); } #endif /* Called from dss.c. Note that we don't touch clocks here, * but we presume they are on because we got an IRQ. However, * an irq handler may turn the clocks off, so we may not have * clock later in the function. */ void dispc_irq_handler(void) { int i; u32 irqstatus; u32 handledirqs = 0; u32 unhandled_errors; struct omap_dispc_isr_data *isr_data; struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS]; spin_lock(&dispc.irq_lock); irqstatus = dispc_read_reg(DISPC_IRQSTATUS); #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spin_lock(&dispc.irq_stats_lock); dispc.irq_stats.irq_count++; dss_collect_irq_stats(irqstatus, dispc.irq_stats.irqs); spin_unlock(&dispc.irq_stats_lock); #endif #ifdef DEBUG if (dss_debug) print_irq_status(irqstatus); #endif /* Ack the interrupt. Do it here before clocks are possibly turned * off */ dispc_write_reg(DISPC_IRQSTATUS, irqstatus); /* flush posted write */ dispc_read_reg(DISPC_IRQSTATUS); /* make a copy and unlock, so that isrs can unregister * themselves */ memcpy(registered_isr, dispc.registered_isr, sizeof(registered_isr)); spin_unlock(&dispc.irq_lock); for (i = 0; i < DISPC_MAX_NR_ISRS; i++) { isr_data = ®istered_isr[i]; if (!isr_data->isr) continue; if (isr_data->mask & irqstatus) { isr_data->isr(isr_data->arg, irqstatus); handledirqs |= isr_data->mask; } } spin_lock(&dispc.irq_lock); unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask; if (unhandled_errors) { dispc.error_irqs |= unhandled_errors; dispc.irq_error_mask &= ~unhandled_errors; _omap_dispc_set_irqs(); schedule_work(&dispc.error_work); } spin_unlock(&dispc.irq_lock); } static void dispc_error_worker(struct work_struct *work) { int i; u32 errors; unsigned long flags; spin_lock_irqsave(&dispc.irq_lock, flags); errors = dispc.error_irqs; dispc.error_irqs = 0; spin_unlock_irqrestore(&dispc.irq_lock, flags); if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) { DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n"); for (i = 0; i < omap_dss_get_num_overlays(); ++i) { struct omap_overlay *ovl; ovl = omap_dss_get_overlay(i); if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC)) continue; if (ovl->id == 0) { dispc_enable_plane(ovl->id, 0); dispc_go(ovl->manager->id); mdelay(50); break; } } } if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) { DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n"); for (i = 0; i < omap_dss_get_num_overlays(); ++i) { struct omap_overlay *ovl; ovl = omap_dss_get_overlay(i); if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC)) continue; if (ovl->id == 1) { dispc_enable_plane(ovl->id, 0); dispc_go(ovl->manager->id); mdelay(50); break; } } } if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) { DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n"); for (i = 0; i < omap_dss_get_num_overlays(); ++i) { struct omap_overlay *ovl; ovl = omap_dss_get_overlay(i); if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC)) continue; if (ovl->id == 2) { dispc_enable_plane(ovl->id, 0); dispc_go(ovl->manager->id); mdelay(50); break; } } } if (errors & DISPC_IRQ_SYNC_LOST) { struct omap_overlay_manager *manager = NULL; bool enable = false; DSSERR("SYNC_LOST, disabling LCD\n"); for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) { struct omap_overlay_manager *mgr; mgr = omap_dss_get_overlay_manager(i); if (mgr->id == OMAP_DSS_CHANNEL_LCD) { manager = mgr; enable = mgr->device->state == OMAP_DSS_DISPLAY_ACTIVE; mgr->device->disable(mgr->device); break; } } if (manager) { for (i = 0; i < omap_dss_get_num_overlays(); ++i) { struct omap_overlay *ovl; ovl = omap_dss_get_overlay(i); if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC)) continue; if (ovl->id != 0 && ovl->manager == manager) dispc_enable_plane(ovl->id, 0); } dispc_go(manager->id); mdelay(50); if (enable) manager->device->enable(manager->device); } } if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) { struct omap_overlay_manager *manager = NULL; bool enable = false; DSSERR("SYNC_LOST_DIGIT, disabling TV\n"); for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) { struct omap_overlay_manager *mgr; mgr = omap_dss_get_overlay_manager(i); if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) { manager = mgr; enable = mgr->device->state == OMAP_DSS_DISPLAY_ACTIVE; mgr->device->disable(mgr->device); break; } } if (manager) { for (i = 0; i < omap_dss_get_num_overlays(); ++i) { struct omap_overlay *ovl; ovl = omap_dss_get_overlay(i); if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC)) continue; if (ovl->id != 0 && ovl->manager == manager) dispc_enable_plane(ovl->id, 0); } dispc_go(manager->id); mdelay(50); if (enable) manager->device->enable(manager->device); } } if (errors & DISPC_IRQ_OCP_ERR) { DSSERR("OCP_ERR\n"); for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) { struct omap_overlay_manager *mgr; mgr = omap_dss_get_overlay_manager(i); if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC) mgr->device->disable(mgr->device); } } spin_lock_irqsave(&dispc.irq_lock, flags); dispc.irq_error_mask |= errors; _omap_dispc_set_irqs(); spin_unlock_irqrestore(&dispc.irq_lock, flags); } int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout) { void dispc_irq_wait_handler(void *data, u32 mask) { complete((struct completion *)data); } int r; DECLARE_COMPLETION_ONSTACK(completion); r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion, irqmask); if (r) return r; timeout = wait_for_completion_timeout(&completion, timeout); omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask); if (timeout == 0) return -ETIMEDOUT; if (timeout == -ERESTARTSYS) return -ERESTARTSYS; return 0; } int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask, unsigned long timeout) { void dispc_irq_wait_handler(void *data, u32 mask) { complete((struct completion *)data); } int r; DECLARE_COMPLETION_ONSTACK(completion); r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion, irqmask); if (r) return r; timeout = wait_for_completion_interruptible_timeout(&completion, timeout); omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask); if (timeout == 0) return -ETIMEDOUT; if (timeout == -ERESTARTSYS) return -ERESTARTSYS; return 0; } #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC void dispc_fake_vsync_irq(void) { u32 irqstatus = DISPC_IRQ_VSYNC; int i; local_irq_disable(); for (i = 0; i < DISPC_MAX_NR_ISRS; i++) { struct omap_dispc_isr_data *isr_data; isr_data = &dispc.registered_isr[i]; if (!isr_data->isr) continue; if (isr_data->mask & irqstatus) isr_data->isr(isr_data->arg, irqstatus); } local_irq_enable(); } #endif static void _omap_dispc_initialize_irq(void) { unsigned long flags; spin_lock_irqsave(&dispc.irq_lock, flags); memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr)); dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR; /* there's SYNC_LOST_DIGIT waiting after enabling the DSS, * so clear it */ dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS)); _omap_dispc_set_irqs(); spin_unlock_irqrestore(&dispc.irq_lock, flags); } void dispc_enable_sidle(void) { REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */ } void dispc_disable_sidle(void) { REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */ } static void _omap_dispc_initial_config(void) { u32 l; l = dispc_read_reg(DISPC_SYSCONFIG); l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */ l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */ l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */ l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */ dispc_write_reg(DISPC_SYSCONFIG, l); /* FUNCGATED */ REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9); /* L3 firewall setting: enable access to OCM RAM */ /* XXX this should be somewhere in plat-omap */ if (cpu_is_omap24xx()) __raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0)); _dispc_setup_color_conv_coef(); dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY); dispc_read_plane_fifo_sizes(); } int dispc_init(void) { u32 rev; spin_lock_init(&dispc.irq_lock); #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS spin_lock_init(&dispc.irq_stats_lock); dispc.irq_stats.last_reset = jiffies; #endif INIT_WORK(&dispc.error_work, dispc_error_worker); dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS); if (!dispc.base) { DSSERR("can't ioremap DISPC\n"); return -ENOMEM; } enable_clocks(1); _omap_dispc_initial_config(); _omap_dispc_initialize_irq(); dispc_save_context(); rev = dispc_read_reg(DISPC_REVISION); printk(KERN_INFO "OMAP DISPC rev %d.%d\n", FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0)); enable_clocks(0); return 0; } void dispc_exit(void) { iounmap(dispc.base); } int dispc_enable_plane(enum omap_plane plane, bool enable) { DSSDBG("dispc_enable_plane %d, %d\n", plane, enable); enable_clocks(1); _dispc_enable_plane(plane, enable); enable_clocks(0); return 0; } int dispc_setup_plane(enum omap_plane plane, u32 paddr, u16 screen_width, u16 pos_x, u16 pos_y, u16 width, u16 height, u16 out_width, u16 out_height, enum omap_color_mode color_mode, bool ilace, enum omap_dss_rotation_type rotation_type, u8 rotation, bool mirror, u8 global_alpha) { int r = 0; DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> " "%dx%d, ilace %d, cmode %x, rot %d, mir %d\n", plane, paddr, screen_width, pos_x, pos_y, width, height, out_width, out_height, ilace, color_mode, rotation, mirror); enable_clocks(1); r = _dispc_setup_plane(plane, paddr, screen_width, pos_x, pos_y, width, height, out_width, out_height, color_mode, ilace, rotation_type, rotation, mirror, global_alpha); enable_clocks(0); return r; }