/* Copyright (C) 2010 Willow Garage Copyright (C) 2004 - 2010 Ivo van Doorn Copyright (C) 2004 - 2009 Gertjan van Wingerde This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Module: rt2x00lib Abstract: rt2x00 queue specific routines. */ #include #include #include #include #include "rt2x00.h" #include "rt2x00lib.h" struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct sk_buff *skb; struct skb_frame_desc *skbdesc; unsigned int frame_size; unsigned int head_size = 0; unsigned int tail_size = 0; /* * The frame size includes descriptor size, because the * hardware directly receive the frame into the skbuffer. */ frame_size = entry->queue->data_size + entry->queue->desc_size; /* * The payload should be aligned to a 4-byte boundary, * this means we need at least 3 bytes for moving the frame * into the correct offset. */ head_size = 4; /* * For IV/EIV/ICV assembly we must make sure there is * at least 8 bytes bytes available in headroom for IV/EIV * and 8 bytes for ICV data as tailroon. */ if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) { head_size += 8; tail_size += 8; } /* * Allocate skbuffer. */ skb = dev_alloc_skb(frame_size + head_size + tail_size); if (!skb) return NULL; /* * Make sure we not have a frame with the requested bytes * available in the head and tail. */ skb_reserve(skb, head_size); skb_put(skb, frame_size); /* * Populate skbdesc. */ skbdesc = get_skb_frame_desc(skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->entry = entry; if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) { skbdesc->skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_FROM_DEVICE); skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; } return skb; } void rt2x00queue_map_txskb(struct queue_entry *entry) { struct device *dev = entry->queue->rt2x00dev->dev; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); skbdesc->skb_dma = dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE); skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; } EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); void rt2x00queue_unmap_skb(struct queue_entry *entry) { struct device *dev = entry->queue->rt2x00dev->dev; struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, DMA_FROM_DEVICE); skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, DMA_TO_DEVICE); skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; } } EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb); void rt2x00queue_free_skb(struct queue_entry *entry) { if (!entry->skb) return; rt2x00queue_unmap_skb(entry); dev_kfree_skb_any(entry->skb); entry->skb = NULL; } void rt2x00queue_align_frame(struct sk_buff *skb) { unsigned int frame_length = skb->len; unsigned int align = ALIGN_SIZE(skb, 0); if (!align) return; skb_push(skb, align); memmove(skb->data, skb->data + align, frame_length); skb_trim(skb, frame_length); } void rt2x00queue_align_payload(struct sk_buff *skb, unsigned int header_length) { unsigned int frame_length = skb->len; unsigned int align = ALIGN_SIZE(skb, header_length); if (!align) return; skb_push(skb, align); memmove(skb->data, skb->data + align, frame_length); skb_trim(skb, frame_length); } void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length) { unsigned int payload_length = skb->len - header_length; unsigned int header_align = ALIGN_SIZE(skb, 0); unsigned int payload_align = ALIGN_SIZE(skb, header_length); unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0; /* * Adjust the header alignment if the payload needs to be moved more * than the header. */ if (payload_align > header_align) header_align += 4; /* There is nothing to do if no alignment is needed */ if (!header_align) return; /* Reserve the amount of space needed in front of the frame */ skb_push(skb, header_align); /* * Move the header. */ memmove(skb->data, skb->data + header_align, header_length); /* Move the payload, if present and if required */ if (payload_length && payload_align) memmove(skb->data + header_length + l2pad, skb->data + header_length + l2pad + payload_align, payload_length); /* Trim the skb to the correct size */ skb_trim(skb, header_length + l2pad + payload_length); } void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length) { /* * L2 padding is only present if the skb contains more than just the * IEEE 802.11 header. */ unsigned int l2pad = (skb->len > header_length) ? L2PAD_SIZE(header_length) : 0; if (!l2pad) return; memmove(skb->data + l2pad, skb->data, header_length); skb_pull(skb, l2pad); } static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry, struct txentry_desc *txdesc) { struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data; struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); unsigned long irqflags; if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) || unlikely(!tx_info->control.vif)) return; /* * Hardware should insert sequence counter. * FIXME: We insert a software sequence counter first for * hardware that doesn't support hardware sequence counting. * * This is wrong because beacons are not getting sequence * numbers assigned properly. * * A secondary problem exists for drivers that cannot toggle * sequence counting per-frame, since those will override the * sequence counter given by mac80211. */ spin_lock_irqsave(&intf->seqlock, irqflags); if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) intf->seqno += 0x10; hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); hdr->seq_ctrl |= cpu_to_le16(intf->seqno); spin_unlock_irqrestore(&intf->seqlock, irqflags); __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); } static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry, struct txentry_desc *txdesc, const struct rt2x00_rate *hwrate) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; unsigned int data_length; unsigned int duration; unsigned int residual; /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */ data_length = entry->skb->len + 4; data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb); /* * PLCP setup * Length calculation depends on OFDM/CCK rate. */ txdesc->signal = hwrate->plcp; txdesc->service = 0x04; if (hwrate->flags & DEV_RATE_OFDM) { txdesc->length_high = (data_length >> 6) & 0x3f; txdesc->length_low = data_length & 0x3f; } else { /* * Convert length to microseconds. */ residual = GET_DURATION_RES(data_length, hwrate->bitrate); duration = GET_DURATION(data_length, hwrate->bitrate); if (residual != 0) { duration++; /* * Check if we need to set the Length Extension */ if (hwrate->bitrate == 110 && residual <= 30) txdesc->service |= 0x80; } txdesc->length_high = (duration >> 8) & 0xff; txdesc->length_low = duration & 0xff; /* * When preamble is enabled we should set the * preamble bit for the signal. */ if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) txdesc->signal |= 0x08; } } static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry, struct txentry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data; struct ieee80211_rate *rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); const struct rt2x00_rate *hwrate; memset(txdesc, 0, sizeof(*txdesc)); /* * Header and frame information. */ txdesc->length = entry->skb->len; txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb); /* * Check whether this frame is to be acked. */ if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) __set_bit(ENTRY_TXD_ACK, &txdesc->flags); /* * Check if this is a RTS/CTS frame */ if (ieee80211_is_rts(hdr->frame_control) || ieee80211_is_cts(hdr->frame_control)) { __set_bit(ENTRY_TXD_BURST, &txdesc->flags); if (ieee80211_is_rts(hdr->frame_control)) __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); else __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); if (tx_info->control.rts_cts_rate_idx >= 0) rate = ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); } /* * Determine retry information. */ txdesc->retry_limit = tx_info->control.rates[0].count - 1; if (txdesc->retry_limit >= rt2x00dev->long_retry) __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); /* * Check if more fragments are pending */ if (ieee80211_has_morefrags(hdr->frame_control)) { __set_bit(ENTRY_TXD_BURST, &txdesc->flags); __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); } /* * Check if more frames (!= fragments) are pending */ if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES) __set_bit(ENTRY_TXD_BURST, &txdesc->flags); /* * Beacons and probe responses require the tsf timestamp * to be inserted into the frame, except for a frame that has been injected * through a monitor interface. This latter is needed for testing a * monitor interface. */ if ((ieee80211_is_beacon(hdr->frame_control) || ieee80211_is_probe_resp(hdr->frame_control)) && (!(tx_info->flags & IEEE80211_TX_CTL_INJECTED))) __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); /* * Determine with what IFS priority this frame should be send. * Set ifs to IFS_SIFS when the this is not the first fragment, * or this fragment came after RTS/CTS. */ if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) && !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) { __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); txdesc->ifs = IFS_BACKOFF; } else txdesc->ifs = IFS_SIFS; /* * Determine rate modulation. */ hwrate = rt2x00_get_rate(rate->hw_value); txdesc->rate_mode = RATE_MODE_CCK; if (hwrate->flags & DEV_RATE_OFDM) txdesc->rate_mode = RATE_MODE_OFDM; /* * Apply TX descriptor handling by components */ rt2x00crypto_create_tx_descriptor(entry, txdesc); rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate); rt2x00queue_create_tx_descriptor_seq(entry, txdesc); rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate); } static int rt2x00queue_write_tx_data(struct queue_entry *entry, struct txentry_desc *txdesc) { struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; /* * This should not happen, we already checked the entry * was ours. When the hardware disagrees there has been * a queue corruption! */ if (unlikely(rt2x00dev->ops->lib->get_entry_state && rt2x00dev->ops->lib->get_entry_state(entry))) { ERROR(rt2x00dev, "Corrupt queue %d, accessing entry which is not ours.\n" "Please file bug report to %s.\n", entry->queue->qid, DRV_PROJECT); return -EINVAL; } /* * Add the requested extra tx headroom in front of the skb. */ skb_push(entry->skb, rt2x00dev->ops->extra_tx_headroom); memset(entry->skb->data, 0, rt2x00dev->ops->extra_tx_headroom); /* * Call the driver's write_tx_data function, if it exists. */ if (rt2x00dev->ops->lib->write_tx_data) rt2x00dev->ops->lib->write_tx_data(entry, txdesc); /* * Map the skb to DMA. */ if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) rt2x00queue_map_txskb(entry); return 0; } static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, struct txentry_desc *txdesc) { struct data_queue *queue = entry->queue; queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc); /* * All processing on the frame has been completed, this means * it is now ready to be dumped to userspace through debugfs. */ rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb); } static void rt2x00queue_kick_tx_queue(struct data_queue *queue, struct txentry_desc *txdesc) { /* * Check if we need to kick the queue, there are however a few rules * 1) Don't kick unless this is the last in frame in a burst. * When the burst flag is set, this frame is always followed * by another frame which in some way are related to eachother. * This is true for fragments, RTS or CTS-to-self frames. * 2) Rule 1 can be broken when the available entries * in the queue are less then a certain threshold. */ if (rt2x00queue_threshold(queue) || !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) queue->rt2x00dev->ops->lib->kick_tx_queue(queue); } int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb, bool local) { struct ieee80211_tx_info *tx_info; struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX); struct txentry_desc txdesc; struct skb_frame_desc *skbdesc; u8 rate_idx, rate_flags; if (unlikely(rt2x00queue_full(queue))) return -ENOBUFS; if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags))) { ERROR(queue->rt2x00dev, "Arrived at non-free entry in the non-full queue %d.\n" "Please file bug report to %s.\n", queue->qid, DRV_PROJECT); return -EINVAL; } /* * Copy all TX descriptor information into txdesc, * after that we are free to use the skb->cb array * for our information. */ entry->skb = skb; rt2x00queue_create_tx_descriptor(entry, &txdesc); /* * All information is retrieved from the skb->cb array, * now we should claim ownership of the driver part of that * array, preserving the bitrate index and flags. */ tx_info = IEEE80211_SKB_CB(skb); rate_idx = tx_info->control.rates[0].idx; rate_flags = tx_info->control.rates[0].flags; skbdesc = get_skb_frame_desc(skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->entry = entry; skbdesc->tx_rate_idx = rate_idx; skbdesc->tx_rate_flags = rate_flags; if (local) skbdesc->flags |= SKBDESC_NOT_MAC80211; /* * When hardware encryption is supported, and this frame * is to be encrypted, we should strip the IV/EIV data from * the frame so we can provide it to the driver separately. */ if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags)) rt2x00crypto_tx_copy_iv(skb, &txdesc); else rt2x00crypto_tx_remove_iv(skb, &txdesc); } /* * When DMA allocation is required we should guarentee to the * driver that the DMA is aligned to a 4-byte boundary. * However some drivers require L2 padding to pad the payload * rather then the header. This could be a requirement for * PCI and USB devices, while header alignment only is valid * for PCI devices. */ if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags)) rt2x00queue_insert_l2pad(entry->skb, txdesc.header_length); else if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags)) rt2x00queue_align_frame(entry->skb); /* * It could be possible that the queue was corrupted and this * call failed. Since we always return NETDEV_TX_OK to mac80211, * this frame will simply be dropped. */ if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) { clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); entry->skb = NULL; return -EIO; } set_bit(ENTRY_DATA_PENDING, &entry->flags); rt2x00queue_index_inc(queue, Q_INDEX); rt2x00queue_write_tx_descriptor(entry, &txdesc); rt2x00queue_kick_tx_queue(queue, &txdesc); return 0; } int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif, const bool enable_beacon) { struct rt2x00_intf *intf = vif_to_intf(vif); struct skb_frame_desc *skbdesc; struct txentry_desc txdesc; if (unlikely(!intf->beacon)) return -ENOBUFS; mutex_lock(&intf->beacon_skb_mutex); /* * Clean up the beacon skb. */ rt2x00queue_free_skb(intf->beacon); if (!enable_beacon) { rt2x00dev->ops->lib->kill_tx_queue(intf->beacon->queue); mutex_unlock(&intf->beacon_skb_mutex); return 0; } intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif); if (!intf->beacon->skb) { mutex_unlock(&intf->beacon_skb_mutex); return -ENOMEM; } /* * Copy all TX descriptor information into txdesc, * after that we are free to use the skb->cb array * for our information. */ rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc); /* * Fill in skb descriptor */ skbdesc = get_skb_frame_desc(intf->beacon->skb); memset(skbdesc, 0, sizeof(*skbdesc)); skbdesc->entry = intf->beacon; /* * Send beacon to hardware and enable beacon genaration.. */ rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc); mutex_unlock(&intf->beacon_skb_mutex); return 0; } void rt2x00queue_for_each_entry(struct data_queue *queue, enum queue_index start, enum queue_index end, void (*fn)(struct queue_entry *entry)) { unsigned long irqflags; unsigned int index_start; unsigned int index_end; unsigned int i; if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) { ERROR(queue->rt2x00dev, "Entry requested from invalid index range (%d - %d)\n", start, end); return; } /* * Only protect the range we are going to loop over, * if during our loop a extra entry is set to pending * it should not be kicked during this run, since it * is part of another TX operation. */ spin_lock_irqsave(&queue->index_lock, irqflags); index_start = queue->index[start]; index_end = queue->index[end]; spin_unlock_irqrestore(&queue->index_lock, irqflags); /* * Start from the TX done pointer, this guarentees that we will * send out all frames in the correct order. */ if (index_start < index_end) { for (i = index_start; i < index_end; i++) fn(&queue->entries[i]); } else { for (i = index_start; i < queue->limit; i++) fn(&queue->entries[i]); for (i = 0; i < index_end; i++) fn(&queue->entries[i]); } } EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry); struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev, const enum data_queue_qid queue) { int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); if (queue == QID_RX) return rt2x00dev->rx; if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx) return &rt2x00dev->tx[queue]; if (!rt2x00dev->bcn) return NULL; if (queue == QID_BEACON) return &rt2x00dev->bcn[0]; else if (queue == QID_ATIM && atim) return &rt2x00dev->bcn[1]; return NULL; } EXPORT_SYMBOL_GPL(rt2x00queue_get_queue); struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, enum queue_index index) { struct queue_entry *entry; unsigned long irqflags; if (unlikely(index >= Q_INDEX_MAX)) { ERROR(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n", index); return NULL; } spin_lock_irqsave(&queue->index_lock, irqflags); entry = &queue->entries[queue->index[index]]; spin_unlock_irqrestore(&queue->index_lock, irqflags); return entry; } EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index) { unsigned long irqflags; if (unlikely(index >= Q_INDEX_MAX)) { ERROR(queue->rt2x00dev, "Index change on invalid index type (%d)\n", index); return; } spin_lock_irqsave(&queue->index_lock, irqflags); queue->index[index]++; if (queue->index[index] >= queue->limit) queue->index[index] = 0; queue->last_action[index] = jiffies; if (index == Q_INDEX) { queue->length++; } else if (index == Q_INDEX_DONE) { queue->length--; queue->count++; } spin_unlock_irqrestore(&queue->index_lock, irqflags); } static void rt2x00queue_reset(struct data_queue *queue) { unsigned long irqflags; unsigned int i; spin_lock_irqsave(&queue->index_lock, irqflags); queue->count = 0; queue->length = 0; for (i = 0; i < Q_INDEX_MAX; i++) { queue->index[i] = 0; queue->last_action[i] = jiffies; } spin_unlock_irqrestore(&queue->index_lock, irqflags); } void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; txall_queue_for_each(rt2x00dev, queue) rt2x00dev->ops->lib->kill_tx_queue(queue); } void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; unsigned int i; queue_for_each(rt2x00dev, queue) { rt2x00queue_reset(queue); for (i = 0; i < queue->limit; i++) { rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); if (queue->qid == QID_RX) rt2x00queue_index_inc(queue, Q_INDEX); } } } static int rt2x00queue_alloc_entries(struct data_queue *queue, const struct data_queue_desc *qdesc) { struct queue_entry *entries; unsigned int entry_size; unsigned int i; rt2x00queue_reset(queue); queue->limit = qdesc->entry_num; queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10); queue->data_size = qdesc->data_size; queue->desc_size = qdesc->desc_size; /* * Allocate all queue entries. */ entry_size = sizeof(*entries) + qdesc->priv_size; entries = kcalloc(queue->limit, entry_size, GFP_KERNEL); if (!entries) return -ENOMEM; #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ (((char *)(__base)) + ((__limit) * (__esize)) + \ ((__index) * (__psize))) for (i = 0; i < queue->limit; i++) { entries[i].flags = 0; entries[i].queue = queue; entries[i].skb = NULL; entries[i].entry_idx = i; entries[i].priv_data = QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, sizeof(*entries), qdesc->priv_size); } #undef QUEUE_ENTRY_PRIV_OFFSET queue->entries = entries; return 0; } static void rt2x00queue_free_skbs(struct data_queue *queue) { unsigned int i; if (!queue->entries) return; for (i = 0; i < queue->limit; i++) { rt2x00queue_free_skb(&queue->entries[i]); } } static int rt2x00queue_alloc_rxskbs(struct data_queue *queue) { unsigned int i; struct sk_buff *skb; for (i = 0; i < queue->limit; i++) { skb = rt2x00queue_alloc_rxskb(&queue->entries[i]); if (!skb) return -ENOMEM; queue->entries[i].skb = skb; } return 0; } int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; int status; status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx); if (status) goto exit; tx_queue_for_each(rt2x00dev, queue) { status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx); if (status) goto exit; } status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn); if (status) goto exit; if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) { status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1], rt2x00dev->ops->atim); if (status) goto exit; } status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx); if (status) goto exit; return 0; exit: ERROR(rt2x00dev, "Queue entries allocation failed.\n"); rt2x00queue_uninitialize(rt2x00dev); return status; } void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; rt2x00queue_free_skbs(rt2x00dev->rx); queue_for_each(rt2x00dev, queue) { kfree(queue->entries); queue->entries = NULL; } } static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, struct data_queue *queue, enum data_queue_qid qid) { spin_lock_init(&queue->index_lock); queue->rt2x00dev = rt2x00dev; queue->qid = qid; queue->txop = 0; queue->aifs = 2; queue->cw_min = 5; queue->cw_max = 10; } int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) { struct data_queue *queue; enum data_queue_qid qid; unsigned int req_atim = !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags); /* * We need the following queues: * RX: 1 * TX: ops->tx_queues * Beacon: 1 * Atim: 1 (if required) */ rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL); if (!queue) { ERROR(rt2x00dev, "Queue allocation failed.\n"); return -ENOMEM; } /* * Initialize pointers */ rt2x00dev->rx = queue; rt2x00dev->tx = &queue[1]; rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; /* * Initialize queue parameters. * RX: qid = QID_RX * TX: qid = QID_AC_BE + index * TX: cw_min: 2^5 = 32. * TX: cw_max: 2^10 = 1024. * BCN: qid = QID_BEACON * ATIM: qid = QID_ATIM */ rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); qid = QID_AC_BE; tx_queue_for_each(rt2x00dev, queue) rt2x00queue_init(rt2x00dev, queue, qid++); rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON); if (req_atim) rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM); return 0; } void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) { kfree(rt2x00dev->rx); rt2x00dev->rx = NULL; rt2x00dev->tx = NULL; rt2x00dev->bcn = NULL; }