/* * Copyright 2010 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include "priv.h" #include "vmm.h" #include #include struct nvkm_mmu_ptp { struct nvkm_mmu_pt *pt; struct list_head head; u8 shift; u16 mask; u16 free; }; static void nvkm_mmu_ptp_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt *pt) { const int slot = pt->base >> pt->ptp->shift; struct nvkm_mmu_ptp *ptp = pt->ptp; /* If there were no free slots in the parent allocation before, * there will be now, so return PTP to the cache. */ if (!ptp->free) list_add(&ptp->head, &mmu->ptp.list); ptp->free |= BIT(slot); /* If there's no more sub-allocations, destroy PTP. */ if (ptp->free == ptp->mask) { nvkm_mmu_ptc_put(mmu, force, &ptp->pt); list_del(&ptp->head); kfree(ptp); } kfree(pt); } struct nvkm_mmu_pt * nvkm_mmu_ptp_get(struct nvkm_mmu *mmu, u32 size, bool zero) { struct nvkm_mmu_pt *pt; struct nvkm_mmu_ptp *ptp; int slot; if (!(pt = kzalloc(sizeof(*pt), GFP_KERNEL))) return NULL; ptp = list_first_entry_or_null(&mmu->ptp.list, typeof(*ptp), head); if (!ptp) { /* Need to allocate a new parent to sub-allocate from. */ if (!(ptp = kmalloc(sizeof(*ptp), GFP_KERNEL))) { kfree(pt); return NULL; } ptp->pt = nvkm_mmu_ptc_get(mmu, 0x1000, 0x1000, false); if (!ptp->pt) { kfree(ptp); kfree(pt); return NULL; } ptp->shift = order_base_2(size); slot = nvkm_memory_size(ptp->pt->memory) >> ptp->shift; ptp->mask = (1 << slot) - 1; ptp->free = ptp->mask; list_add(&ptp->head, &mmu->ptp.list); } pt->ptp = ptp; pt->sub = true; /* Sub-allocate from parent object, removing PTP from cache * if there's no more free slots left. */ slot = __ffs(ptp->free); ptp->free &= ~BIT(slot); if (!ptp->free) list_del(&ptp->head); pt->memory = pt->ptp->pt->memory; pt->base = slot << ptp->shift; pt->addr = pt->ptp->pt->addr + pt->base; return pt; } struct nvkm_mmu_ptc { struct list_head head; struct list_head item; u32 size; u32 refs; }; static inline struct nvkm_mmu_ptc * nvkm_mmu_ptc_find(struct nvkm_mmu *mmu, u32 size) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { if (ptc->size == size) return ptc; } ptc = kmalloc(sizeof(*ptc), GFP_KERNEL); if (ptc) { INIT_LIST_HEAD(&ptc->item); ptc->size = size; ptc->refs = 0; list_add(&ptc->head, &mmu->ptc.list); } return ptc; } void nvkm_mmu_ptc_put(struct nvkm_mmu *mmu, bool force, struct nvkm_mmu_pt **ppt) { struct nvkm_mmu_pt *pt = *ppt; if (pt) { /* Handle sub-allocated page tables. */ if (pt->sub) { mutex_lock(&mmu->ptp.mutex); nvkm_mmu_ptp_put(mmu, force, pt); mutex_unlock(&mmu->ptp.mutex); return; } /* Either cache or free the object. */ mutex_lock(&mmu->ptc.mutex); if (pt->ptc->refs < 8 /* Heuristic. */ && !force) { list_add_tail(&pt->head, &pt->ptc->item); pt->ptc->refs++; } else { nvkm_memory_unref(&pt->memory); kfree(pt); } mutex_unlock(&mmu->ptc.mutex); } } struct nvkm_mmu_pt * nvkm_mmu_ptc_get(struct nvkm_mmu *mmu, u32 size, u32 align, bool zero) { struct nvkm_mmu_ptc *ptc; struct nvkm_mmu_pt *pt; int ret; /* Sub-allocated page table (ie. GP100 LPT). */ if (align < 0x1000) { mutex_lock(&mmu->ptp.mutex); pt = nvkm_mmu_ptp_get(mmu, align, zero); mutex_unlock(&mmu->ptp.mutex); return pt; } /* Lookup cache for this page table size. */ mutex_lock(&mmu->ptc.mutex); ptc = nvkm_mmu_ptc_find(mmu, size); if (!ptc) { mutex_unlock(&mmu->ptc.mutex); return NULL; } /* If there's a free PT in the cache, reuse it. */ pt = list_first_entry_or_null(&ptc->item, typeof(*pt), head); if (pt) { if (zero) nvkm_fo64(pt->memory, 0, 0, size >> 3); list_del(&pt->head); ptc->refs--; mutex_unlock(&mmu->ptc.mutex); return pt; } mutex_unlock(&mmu->ptc.mutex); /* No such luck, we need to allocate. */ if (!(pt = kmalloc(sizeof(*pt), GFP_KERNEL))) return NULL; pt->ptc = ptc; pt->sub = false; ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST, size, align, zero, &pt->memory); if (ret) { kfree(pt); return NULL; } pt->base = 0; pt->addr = nvkm_memory_addr(pt->memory); return pt; } void nvkm_mmu_ptc_dump(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc; list_for_each_entry(ptc, &mmu->ptc.list, head) { struct nvkm_mmu_pt *pt, *tt; list_for_each_entry_safe(pt, tt, &ptc->item, head) { nvkm_memory_unref(&pt->memory); list_del(&pt->head); kfree(pt); } } } static void nvkm_mmu_ptc_fini(struct nvkm_mmu *mmu) { struct nvkm_mmu_ptc *ptc, *ptct; list_for_each_entry_safe(ptc, ptct, &mmu->ptc.list, head) { WARN_ON(!list_empty(&ptc->item)); list_del(&ptc->head); kfree(ptc); } } static void nvkm_mmu_ptc_init(struct nvkm_mmu *mmu) { mutex_init(&mmu->ptc.mutex); INIT_LIST_HEAD(&mmu->ptc.list); mutex_init(&mmu->ptp.mutex); INIT_LIST_HEAD(&mmu->ptp.list); } void nvkm_vm_map_at(struct nvkm_vma *vma, u64 delta, struct nvkm_mem *node) { struct nvkm_vm *vm = vma->vm; struct nvkm_mmu *mmu = vm->mmu; struct nvkm_mm_node *r = node->mem; int big = vma->node->type != mmu->func->spg_shift; u32 offset = vma->node->offset + (delta >> 12); u32 bits = vma->node->type - 12; u32 pde = (offset >> mmu->func->pgt_bits) - vm->fpde; u32 pte = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits; u32 max = 1 << (mmu->func->pgt_bits - bits); u32 end, len; delta = 0; while (r) { u64 phys = (u64)r->offset << 12; u32 num = r->length >> bits; while (num) { struct nvkm_memory *pgt = vm->pgt[pde].mem[big]; end = (pte + num); if (unlikely(end >= max)) end = max; len = end - pte; mmu->func->map(vma, pgt, node, pte, len, phys, delta); num -= len; pte += len; if (unlikely(end >= max)) { phys += len << (bits + 12); pde++; pte = 0; } delta += (u64)len << vma->node->type; } r = r->next; } mmu->func->flush(vm); } static void nvkm_vm_map_sg_table(struct nvkm_vma *vma, u64 delta, u64 length, struct nvkm_mem *mem) { struct nvkm_vm *vm = vma->vm; struct nvkm_mmu *mmu = vm->mmu; int big = vma->node->type != mmu->func->spg_shift; u32 offset = vma->node->offset + (delta >> 12); u32 bits = vma->node->type - 12; u32 num = length >> vma->node->type; u32 pde = (offset >> mmu->func->pgt_bits) - vm->fpde; u32 pte = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits; u32 max = 1 << (mmu->func->pgt_bits - bits); unsigned m, sglen; u32 end, len; int i; struct scatterlist *sg; for_each_sg(mem->sg->sgl, sg, mem->sg->nents, i) { struct nvkm_memory *pgt = vm->pgt[pde].mem[big]; sglen = sg_dma_len(sg) >> PAGE_SHIFT; end = pte + sglen; if (unlikely(end >= max)) end = max; len = end - pte; for (m = 0; m < len; m++) { dma_addr_t addr = sg_dma_address(sg) + (m << PAGE_SHIFT); mmu->func->map_sg(vma, pgt, mem, pte, 1, &addr); num--; pte++; if (num == 0) goto finish; } if (unlikely(end >= max)) { pde++; pte = 0; } if (m < sglen) { for (; m < sglen; m++) { dma_addr_t addr = sg_dma_address(sg) + (m << PAGE_SHIFT); mmu->func->map_sg(vma, pgt, mem, pte, 1, &addr); num--; pte++; if (num == 0) goto finish; } } } finish: mmu->func->flush(vm); } static void nvkm_vm_map_sg(struct nvkm_vma *vma, u64 delta, u64 length, struct nvkm_mem *mem) { struct nvkm_vm *vm = vma->vm; struct nvkm_mmu *mmu = vm->mmu; dma_addr_t *list = mem->pages; int big = vma->node->type != mmu->func->spg_shift; u32 offset = vma->node->offset + (delta >> 12); u32 bits = vma->node->type - 12; u32 num = length >> vma->node->type; u32 pde = (offset >> mmu->func->pgt_bits) - vm->fpde; u32 pte = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits; u32 max = 1 << (mmu->func->pgt_bits - bits); u32 end, len; while (num) { struct nvkm_memory *pgt = vm->pgt[pde].mem[big]; end = (pte + num); if (unlikely(end >= max)) end = max; len = end - pte; mmu->func->map_sg(vma, pgt, mem, pte, len, list); num -= len; pte += len; list += len; if (unlikely(end >= max)) { pde++; pte = 0; } } mmu->func->flush(vm); } void nvkm_vm_map(struct nvkm_vma *vma, struct nvkm_mem *node) { if (node->sg) nvkm_vm_map_sg_table(vma, 0, node->size << 12, node); else if (node->pages) nvkm_vm_map_sg(vma, 0, node->size << 12, node); else nvkm_vm_map_at(vma, 0, node); } void nvkm_vm_unmap_at(struct nvkm_vma *vma, u64 delta, u64 length) { struct nvkm_vm *vm = vma->vm; struct nvkm_mmu *mmu = vm->mmu; int big = vma->node->type != mmu->func->spg_shift; u32 offset = vma->node->offset + (delta >> 12); u32 bits = vma->node->type - 12; u32 num = length >> vma->node->type; u32 pde = (offset >> mmu->func->pgt_bits) - vm->fpde; u32 pte = (offset & ((1 << mmu->func->pgt_bits) - 1)) >> bits; u32 max = 1 << (mmu->func->pgt_bits - bits); u32 end, len; while (num) { struct nvkm_memory *pgt = vm->pgt[pde].mem[big]; end = (pte + num); if (unlikely(end >= max)) end = max; len = end - pte; mmu->func->unmap(vma, pgt, pte, len); num -= len; pte += len; if (unlikely(end >= max)) { pde++; pte = 0; } } mmu->func->flush(vm); } void nvkm_vm_unmap(struct nvkm_vma *vma) { nvkm_vm_unmap_at(vma, 0, (u64)vma->node->length << 12); } static void nvkm_vm_unmap_pgt(struct nvkm_vm *vm, int big, u32 fpde, u32 lpde) { struct nvkm_mmu *mmu = vm->mmu; struct nvkm_vm_pgd *vpgd; struct nvkm_vm_pgt *vpgt; struct nvkm_memory *pgt; u32 pde; for (pde = fpde; pde <= lpde; pde++) { vpgt = &vm->pgt[pde - vm->fpde]; if (--vpgt->refcount[big]) continue; pgt = vpgt->mem[big]; vpgt->mem[big] = NULL; list_for_each_entry(vpgd, &vm->pgd_list, head) { mmu->func->map_pgt(vpgd->obj, pde, vpgt->mem); } mmu->func->flush(vm); nvkm_memory_unref(&pgt); } } static int nvkm_vm_map_pgt(struct nvkm_vm *vm, u32 pde, u32 type) { struct nvkm_mmu *mmu = vm->mmu; struct nvkm_vm_pgt *vpgt = &vm->pgt[pde - vm->fpde]; struct nvkm_vm_pgd *vpgd; int big = (type != mmu->func->spg_shift); u32 pgt_size; int ret; pgt_size = (1 << (mmu->func->pgt_bits + 12)) >> type; pgt_size *= 8; ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST, pgt_size, 0x1000, true, &vpgt->mem[big]); if (unlikely(ret)) return ret; list_for_each_entry(vpgd, &vm->pgd_list, head) { mmu->func->map_pgt(vpgd->obj, pde, vpgt->mem); } vpgt->refcount[big]++; return 0; } int nvkm_vm_get(struct nvkm_vm *vm, u64 size, u32 page_shift, u32 access, struct nvkm_vma *vma) { struct nvkm_mmu *mmu = vm->mmu; u32 align = (1 << page_shift) >> 12; u32 msize = size >> 12; u32 fpde, lpde, pde; int ret; mutex_lock(&vm->mutex); ret = nvkm_mm_head(&vm->mm, 0, page_shift, msize, msize, align, &vma->node); if (unlikely(ret != 0)) { mutex_unlock(&vm->mutex); return ret; } fpde = (vma->node->offset >> mmu->func->pgt_bits); lpde = (vma->node->offset + vma->node->length - 1) >> mmu->func->pgt_bits; for (pde = fpde; pde <= lpde; pde++) { struct nvkm_vm_pgt *vpgt = &vm->pgt[pde - vm->fpde]; int big = (vma->node->type != mmu->func->spg_shift); if (likely(vpgt->refcount[big])) { vpgt->refcount[big]++; continue; } ret = nvkm_vm_map_pgt(vm, pde, vma->node->type); if (ret) { if (pde != fpde) nvkm_vm_unmap_pgt(vm, big, fpde, pde - 1); nvkm_mm_free(&vm->mm, &vma->node); mutex_unlock(&vm->mutex); return ret; } } mutex_unlock(&vm->mutex); vma->vm = NULL; nvkm_vm_ref(vm, &vma->vm, NULL); vma->offset = (u64)vma->node->offset << 12; vma->access = access; return 0; } void nvkm_vm_put(struct nvkm_vma *vma) { struct nvkm_mmu *mmu; struct nvkm_vm *vm; u32 fpde, lpde; if (unlikely(vma->node == NULL)) return; vm = vma->vm; mmu = vm->mmu; fpde = (vma->node->offset >> mmu->func->pgt_bits); lpde = (vma->node->offset + vma->node->length - 1) >> mmu->func->pgt_bits; mutex_lock(&vm->mutex); nvkm_vm_unmap_pgt(vm, vma->node->type != mmu->func->spg_shift, fpde, lpde); nvkm_mm_free(&vm->mm, &vma->node); mutex_unlock(&vm->mutex); nvkm_vm_ref(NULL, &vma->vm, NULL); } int nvkm_vm_boot(struct nvkm_vm *vm, u64 size) { struct nvkm_mmu *mmu = vm->mmu; struct nvkm_memory *pgt; int ret; ret = nvkm_memory_new(mmu->subdev.device, NVKM_MEM_TARGET_INST, (size >> mmu->func->spg_shift) * 8, 0x1000, true, &pgt); if (ret == 0) { vm->pgt[0].refcount[0] = 1; vm->pgt[0].mem[0] = pgt; nvkm_memory_boot(pgt, vm); vm->bootstrapped = true; } return ret; } static int nvkm_vm_legacy(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset, u32 block, struct nvkm_vm *vm) { u64 mm_length = (offset + length) - mm_offset; int ret; INIT_LIST_HEAD(&vm->pgd_list); kref_init(&vm->refcount); vm->fpde = offset >> (mmu->func->pgt_bits + 12); vm->lpde = (offset + length - 1) >> (mmu->func->pgt_bits + 12); vm->pgt = vzalloc((vm->lpde - vm->fpde + 1) * sizeof(*vm->pgt)); if (!vm->pgt) { kfree(vm); return -ENOMEM; } if (block > length) block = length; ret = nvkm_mm_init(&vm->mm, 0, mm_offset >> 12, mm_length >> 12, block >> 12); if (ret) { vfree(vm->pgt); return ret; } return 0; } int nvkm_vm_create(struct nvkm_mmu *mmu, u64 offset, u64 length, u64 mm_offset, u32 block, struct lock_class_key *key, struct nvkm_vm **pvm) { static struct lock_class_key _key; struct nvkm_vm *vm; int ret; vm = kzalloc(sizeof(*vm), GFP_KERNEL); if (!vm) return -ENOMEM; __mutex_init(&vm->mutex, "&vm->mutex", key ? key : &_key); vm->mmu = mmu; ret = nvkm_vm_legacy(mmu, offset, length, mm_offset, block, vm); if (ret) { kfree(vm); return ret; } *pvm = vm; return 0; } int nvkm_vm_new(struct nvkm_device *device, u64 offset, u64 length, u64 mm_offset, struct lock_class_key *key, struct nvkm_vm **pvm) { struct nvkm_mmu *mmu = device->mmu; *pvm = NULL; if (mmu->func->vmm.ctor) { int ret = mmu->func->vmm.ctor(mmu, mm_offset, offset + length - mm_offset, NULL, 0, key, "legacy", pvm); if (ret) { nvkm_vm_ref(NULL, pvm, NULL); return ret; } ret = nvkm_vm_legacy(mmu, offset, length, mm_offset, (*pvm)->func->page_block ? (*pvm)->func->page_block : 4096, *pvm); if (ret) nvkm_vm_ref(NULL, pvm, NULL); return ret; } if (!mmu->func->create) return -EINVAL; return mmu->func->create(mmu, offset, length, mm_offset, key, pvm); } static int nvkm_vm_link(struct nvkm_vm *vm, struct nvkm_gpuobj *pgd) { struct nvkm_mmu *mmu = vm->mmu; struct nvkm_vm_pgd *vpgd; int i; if (!pgd) return 0; vpgd = kzalloc(sizeof(*vpgd), GFP_KERNEL); if (!vpgd) return -ENOMEM; vpgd->obj = pgd; mutex_lock(&vm->mutex); for (i = vm->fpde; i <= vm->lpde; i++) mmu->func->map_pgt(pgd, i, vm->pgt[i - vm->fpde].mem); list_add(&vpgd->head, &vm->pgd_list); mutex_unlock(&vm->mutex); return 0; } static void nvkm_vm_unlink(struct nvkm_vm *vm, struct nvkm_gpuobj *mpgd) { struct nvkm_vm_pgd *vpgd, *tmp; if (!mpgd) return; mutex_lock(&vm->mutex); list_for_each_entry_safe(vpgd, tmp, &vm->pgd_list, head) { if (vpgd->obj == mpgd) { list_del(&vpgd->head); kfree(vpgd); break; } } mutex_unlock(&vm->mutex); } static void nvkm_vm_del(struct kref *kref) { struct nvkm_vm *vm = container_of(kref, typeof(*vm), refcount); struct nvkm_vm_pgd *vpgd, *tmp; list_for_each_entry_safe(vpgd, tmp, &vm->pgd_list, head) { nvkm_vm_unlink(vm, vpgd->obj); } nvkm_mm_fini(&vm->mm); vfree(vm->pgt); if (vm->func) nvkm_vmm_dtor(vm); kfree(vm); } int nvkm_vm_ref(struct nvkm_vm *ref, struct nvkm_vm **ptr, struct nvkm_gpuobj *pgd) { if (ref) { int ret = nvkm_vm_link(ref, pgd); if (ret) return ret; kref_get(&ref->refcount); } if (*ptr) { if ((*ptr)->bootstrapped && pgd) nvkm_memory_unref(&(*ptr)->pgt[0].mem[0]); nvkm_vm_unlink(*ptr, pgd); kref_put(&(*ptr)->refcount, nvkm_vm_del); } *ptr = ref; return 0; } static int nvkm_mmu_oneinit(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); if (mmu->func->vmm.global) { int ret = nvkm_vm_new(subdev->device, 0, mmu->limit, 0, NULL, &mmu->vmm); if (ret) return ret; } if (mmu->func->oneinit) return mmu->func->oneinit(mmu); return 0; } static int nvkm_mmu_init(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); if (mmu->func->init) mmu->func->init(mmu); return 0; } static void * nvkm_mmu_dtor(struct nvkm_subdev *subdev) { struct nvkm_mmu *mmu = nvkm_mmu(subdev); nvkm_vm_ref(NULL, &mmu->vmm, NULL); nvkm_mmu_ptc_fini(mmu); return mmu; } static const struct nvkm_subdev_func nvkm_mmu = { .dtor = nvkm_mmu_dtor, .oneinit = nvkm_mmu_oneinit, .init = nvkm_mmu_init, }; void nvkm_mmu_ctor(const struct nvkm_mmu_func *func, struct nvkm_device *device, int index, struct nvkm_mmu *mmu) { nvkm_subdev_ctor(&nvkm_mmu, device, index, &mmu->subdev); mmu->func = func; mmu->limit = func->limit; mmu->dma_bits = func->dma_bits; mmu->lpg_shift = func->lpg_shift; nvkm_mmu_ptc_init(mmu); } int nvkm_mmu_new_(const struct nvkm_mmu_func *func, struct nvkm_device *device, int index, struct nvkm_mmu **pmmu) { if (!(*pmmu = kzalloc(sizeof(**pmmu), GFP_KERNEL))) return -ENOMEM; nvkm_mmu_ctor(func, device, index, *pmmu); return 0; }