/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Author: Huang Rui * */ #include #include #include #include "linux/delay.h" #include "pp_acpi.h" #include "hwmgr.h" #include #include "iceland_hwmgr.h" #include "pptable.h" #include "processpptables.h" #include "pp_debug.h" #include "ppsmc.h" #include "cgs_common.h" #include "pppcielanes.h" #include "iceland_dyn_defaults.h" #include "smumgr.h" #include "iceland_smumgr.h" #include "iceland_clockpowergating.h" #include "iceland_thermal.h" #include "iceland_powertune.h" #include "gmc/gmc_8_1_d.h" #include "gmc/gmc_8_1_sh_mask.h" #include "bif/bif_5_0_d.h" #include "bif/bif_5_0_sh_mask.h" #include "smu/smu_7_1_1_d.h" #include "smu/smu_7_1_1_sh_mask.h" #include "cgs_linux.h" #include "eventmgr.h" #include "amd_pcie_helpers.h" #define MC_CG_ARB_FREQ_F0 0x0a #define MC_CG_ARB_FREQ_F1 0x0b #define MC_CG_ARB_FREQ_F2 0x0c #define MC_CG_ARB_FREQ_F3 0x0d #define MC_CG_SEQ_DRAMCONF_S0 0x05 #define MC_CG_SEQ_DRAMCONF_S1 0x06 #define MC_CG_SEQ_YCLK_SUSPEND 0x04 #define MC_CG_SEQ_YCLK_RESUME 0x0a #define PCIE_BUS_CLK 10000 #define TCLK (PCIE_BUS_CLK / 10) #define SMC_RAM_END 0x40000 #define SMC_CG_IND_START 0xc0030000 #define SMC_CG_IND_END 0xc0040000 /* First byte after SMC_CG_IND*/ #define VOLTAGE_SCALE 4 #define VOLTAGE_VID_OFFSET_SCALE1 625 #define VOLTAGE_VID_OFFSET_SCALE2 100 const uint32_t iceland_magic = (uint32_t)(PHM_VIslands_Magic); #define MC_SEQ_MISC0_GDDR5_SHIFT 28 #define MC_SEQ_MISC0_GDDR5_MASK 0xf0000000 #define MC_SEQ_MISC0_GDDR5_VALUE 5 /** Values for the CG_THERMAL_CTRL::DPM_EVENT_SRC field. */ enum DPM_EVENT_SRC { DPM_EVENT_SRC_ANALOG = 0, /* Internal analog trip point */ DPM_EVENT_SRC_EXTERNAL = 1, /* External (GPIO 17) signal */ DPM_EVENT_SRC_DIGITAL = 2, /* Internal digital trip point (DIG_THERM_DPM) */ DPM_EVENT_SRC_ANALOG_OR_EXTERNAL = 3, /* Internal analog or external */ DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL = 4 /* Internal digital or external */ }; static int iceland_read_clock_registers(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); data->clock_registers.vCG_SPLL_FUNC_CNTL = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL); data->clock_registers.vCG_SPLL_FUNC_CNTL_2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_2); data->clock_registers.vCG_SPLL_FUNC_CNTL_3 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_3); data->clock_registers.vCG_SPLL_FUNC_CNTL_4 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_FUNC_CNTL_4); data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM); data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_SPLL_SPREAD_SPECTRUM_2); data->clock_registers.vDLL_CNTL = cgs_read_register(hwmgr->device, mmDLL_CNTL); data->clock_registers.vMCLK_PWRMGT_CNTL = cgs_read_register(hwmgr->device, mmMCLK_PWRMGT_CNTL); data->clock_registers.vMPLL_AD_FUNC_CNTL = cgs_read_register(hwmgr->device, mmMPLL_AD_FUNC_CNTL); data->clock_registers.vMPLL_DQ_FUNC_CNTL = cgs_read_register(hwmgr->device, mmMPLL_DQ_FUNC_CNTL); data->clock_registers.vMPLL_FUNC_CNTL = cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL); data->clock_registers.vMPLL_FUNC_CNTL_1 = cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_1); data->clock_registers.vMPLL_FUNC_CNTL_2 = cgs_read_register(hwmgr->device, mmMPLL_FUNC_CNTL_2); data->clock_registers.vMPLL_SS1 = cgs_read_register(hwmgr->device, mmMPLL_SS1); data->clock_registers.vMPLL_SS2 = cgs_read_register(hwmgr->device, mmMPLL_SS2); return 0; } /** * Find out if memory is GDDR5. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_get_memory_type(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint32_t temp; temp = cgs_read_register(hwmgr->device, mmMC_SEQ_MISC0); data->is_memory_GDDR5 = (MC_SEQ_MISC0_GDDR5_VALUE == ((temp & MC_SEQ_MISC0_GDDR5_MASK) >> MC_SEQ_MISC0_GDDR5_SHIFT)); return 0; } int iceland_update_uvd_dpm(struct pp_hwmgr *hwmgr, bool bgate) { /* iceland does not have MM hardware blocks */ return 0; } /** * Enables Dynamic Power Management by SMC * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_enable_acpi_power_management(struct pp_hwmgr *hwmgr) { PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, STATIC_PM_EN, 1); return 0; } /** * Find the MC microcode version and store it in the HwMgr struct * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_get_mc_microcode_version(struct pp_hwmgr *hwmgr) { cgs_write_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_INDEX, 0x9F); hwmgr->microcode_version_info.MC = cgs_read_register(hwmgr->device, mmMC_SEQ_IO_DEBUG_DATA); return 0; } static int iceland_init_sclk_threshold(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); data->low_sclk_interrupt_threshold = 0; return 0; } static int iceland_setup_asic_task(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; tmp_result = iceland_read_clock_registers(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to read clock registers!", result = tmp_result); tmp_result = iceland_get_memory_type(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to get memory type!", result = tmp_result); tmp_result = iceland_enable_acpi_power_management(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable ACPI power management!", result = tmp_result); tmp_result = iceland_get_mc_microcode_version(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to get MC microcode version!", result = tmp_result); tmp_result = iceland_init_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to init sclk threshold!", result = tmp_result); return result; } static bool cf_iceland_voltage_control(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); return ICELAND_VOLTAGE_CONTROL_NONE != data->voltage_control; } /* * -------------- Voltage Tables ---------------------- * If the voltage table would be bigger than what will fit into the * state table on the SMC keep only the higher entries. */ static void iceland_trim_voltage_table_to_fit_state_table( struct pp_hwmgr *hwmgr, uint32_t max_voltage_steps, pp_atomctrl_voltage_table *voltage_table) { unsigned int i, diff; if (voltage_table->count <= max_voltage_steps) { return; } diff = voltage_table->count - max_voltage_steps; for (i = 0; i < max_voltage_steps; i++) { voltage_table->entries[i] = voltage_table->entries[i + diff]; } voltage_table->count = max_voltage_steps; return; } /** * Enable voltage control * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_enable_voltage_control(struct pp_hwmgr *hwmgr) { /* enable voltage control */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, VOLT_PWRMGT_EN, 1); return 0; } static int iceland_get_svi2_voltage_table(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table *voltage_dependency_table, pp_atomctrl_voltage_table *voltage_table) { uint32_t i; PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Dependency Table empty.", return -EINVAL;); voltage_table->mask_low = 0; voltage_table->phase_delay = 0; voltage_table->count = voltage_dependency_table->count; for (i = 0; i < voltage_dependency_table->count; i++) { voltage_table->entries[i].value = voltage_dependency_table->entries[i].v; voltage_table->entries[i].smio_low = 0; } return 0; } /** * Create Voltage Tables. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_construct_voltage_tables(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); int result; /* GPIO voltage */ if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT, &data->vddc_voltage_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve VDDC table.", return result;); } else if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { /* SVI2 VDDC voltage */ result = iceland_get_svi2_voltage_table(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk, &data->vddc_voltage_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 VDDC table from dependancy table.", return result;); } PP_ASSERT_WITH_CODE( (data->vddc_voltage_table.count <= (SMU71_MAX_LEVELS_VDDC)), "Too many voltage values for VDDC. Trimming to fit state table.", iceland_trim_voltage_table_to_fit_state_table(hwmgr, SMU71_MAX_LEVELS_VDDC, &(data->vddc_voltage_table)); ); /* GPIO */ if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT, &(data->vddci_voltage_table)); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve VDDCI table.", return result;); } /* SVI2 VDDCI voltage */ if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) { result = iceland_get_svi2_voltage_table(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk, &data->vddci_voltage_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 VDDCI table from dependancy table.", return result;); } PP_ASSERT_WITH_CODE( (data->vddci_voltage_table.count <= (SMU71_MAX_LEVELS_VDDCI)), "Too many voltage values for VDDCI. Trimming to fit state table.", iceland_trim_voltage_table_to_fit_state_table(hwmgr, SMU71_MAX_LEVELS_VDDCI, &(data->vddci_voltage_table)); ); /* GPIO */ if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { result = atomctrl_get_voltage_table_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT, &(data->mvdd_voltage_table)); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve table.", return result;); } /* SVI2 voltage control */ if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { result = iceland_get_svi2_voltage_table(hwmgr, hwmgr->dyn_state.mvdd_dependency_on_mclk, &data->mvdd_voltage_table); PP_ASSERT_WITH_CODE((0 == result), "Failed to retrieve SVI2 MVDD table from dependancy table.", return result;); } PP_ASSERT_WITH_CODE( (data->mvdd_voltage_table.count <= (SMU71_MAX_LEVELS_MVDD)), "Too many voltage values for MVDD. Trimming to fit state table.", iceland_trim_voltage_table_to_fit_state_table(hwmgr, SMU71_MAX_LEVELS_MVDD, &(data->mvdd_voltage_table)); ); return 0; } /*---------------------------MC----------------------------*/ uint8_t iceland_get_memory_module_index(struct pp_hwmgr *hwmgr) { return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16)); } bool iceland_check_s0_mc_reg_index(uint16_t inReg, uint16_t *outReg) { bool result = true; switch (inReg) { case mmMC_SEQ_RAS_TIMING: *outReg = mmMC_SEQ_RAS_TIMING_LP; break; case mmMC_SEQ_DLL_STBY: *outReg = mmMC_SEQ_DLL_STBY_LP; break; case mmMC_SEQ_G5PDX_CMD0: *outReg = mmMC_SEQ_G5PDX_CMD0_LP; break; case mmMC_SEQ_G5PDX_CMD1: *outReg = mmMC_SEQ_G5PDX_CMD1_LP; break; case mmMC_SEQ_G5PDX_CTRL: *outReg = mmMC_SEQ_G5PDX_CTRL_LP; break; case mmMC_SEQ_CAS_TIMING: *outReg = mmMC_SEQ_CAS_TIMING_LP; break; case mmMC_SEQ_MISC_TIMING: *outReg = mmMC_SEQ_MISC_TIMING_LP; break; case mmMC_SEQ_MISC_TIMING2: *outReg = mmMC_SEQ_MISC_TIMING2_LP; break; case mmMC_SEQ_PMG_DVS_CMD: *outReg = mmMC_SEQ_PMG_DVS_CMD_LP; break; case mmMC_SEQ_PMG_DVS_CTL: *outReg = mmMC_SEQ_PMG_DVS_CTL_LP; break; case mmMC_SEQ_RD_CTL_D0: *outReg = mmMC_SEQ_RD_CTL_D0_LP; break; case mmMC_SEQ_RD_CTL_D1: *outReg = mmMC_SEQ_RD_CTL_D1_LP; break; case mmMC_SEQ_WR_CTL_D0: *outReg = mmMC_SEQ_WR_CTL_D0_LP; break; case mmMC_SEQ_WR_CTL_D1: *outReg = mmMC_SEQ_WR_CTL_D1_LP; break; case mmMC_PMG_CMD_EMRS: *outReg = mmMC_SEQ_PMG_CMD_EMRS_LP; break; case mmMC_PMG_CMD_MRS: *outReg = mmMC_SEQ_PMG_CMD_MRS_LP; break; case mmMC_PMG_CMD_MRS1: *outReg = mmMC_SEQ_PMG_CMD_MRS1_LP; break; case mmMC_SEQ_PMG_TIMING: *outReg = mmMC_SEQ_PMG_TIMING_LP; break; case mmMC_PMG_CMD_MRS2: *outReg = mmMC_SEQ_PMG_CMD_MRS2_LP; break; case mmMC_SEQ_WR_CTL_2: *outReg = mmMC_SEQ_WR_CTL_2_LP; break; default: result = false; break; } return result; } int iceland_set_s0_mc_reg_index(phw_iceland_mc_reg_table *table) { uint32_t i; uint16_t address; for (i = 0; i < table->last; i++) { table->mc_reg_address[i].s0 = iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address) ? address : table->mc_reg_address[i].s1; } return 0; } int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table, phw_iceland_mc_reg_table *ni_table) { uint8_t i, j; PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -1); PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES), "Invalid VramInfo table.", return -1); for (i = 0; i < table->last; i++) { ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1; } ni_table->last = table->last; for (i = 0; i < table->num_entries; i++) { ni_table->mc_reg_table_entry[i].mclk_max = table->mc_reg_table_entry[i].mclk_max; for (j = 0; j < table->last; j++) { ni_table->mc_reg_table_entry[i].mc_data[j] = table->mc_reg_table_entry[i].mc_data[j]; } } ni_table->num_entries = table->num_entries; return 0; } /** * VBIOS omits some information to reduce size, we need to recover them here. * 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to mmMC_PMG_CMD_EMRS /_LP[15:0]. * Bit[15:0] MRS, need to be update mmMC_PMG_CMD_MRS/_LP[15:0] * 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to mmMC_PMG_CMD_MRS1/_LP[15:0]. * 3. need to set these data for each clock range * * @param hwmgr the address of the powerplay hardware manager. * @param table the address of MCRegTable * @return always 0 */ static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr, phw_iceland_mc_reg_table *table) { uint8_t i, j, k; uint32_t temp_reg; const iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); for (i = 0, j = table->last; i < table->last; i++) { PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -1); switch (table->mc_reg_address[i].s1) { /* * mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write * to mmMC_PMG_CMD_EMRS/_LP[15:0]. Bit[15:0] MRS, need * to be update mmMC_PMG_CMD_MRS/_LP[15:0] */ case mmMC_SEQ_MISC1: temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = ((temp_reg & 0xffff0000)) | ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16); } j++; PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -1); temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); if (!data->is_memory_GDDR5) { table->mc_reg_table_entry[k].mc_data[j] |= 0x100; } } j++; PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -1); if (!data->is_memory_GDDR5) { table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD; table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16; } j++; PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -1); } break; case mmMC_SEQ_RESERVE_M: temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1); table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1; table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP; for (k = 0; k < table->num_entries; k++) { table->mc_reg_table_entry[k].mc_data[j] = (temp_reg & 0xffff0000) | (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff); } j++; PP_ASSERT_WITH_CODE((j <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE), "Invalid VramInfo table.", return -1); break; default: break; } } table->last = j; return 0; } static int iceland_set_valid_flag(phw_iceland_mc_reg_table *table) { uint8_t i, j; for (i = 0; i < table->last; i++) { for (j = 1; j < table->num_entries; j++) { if (table->mc_reg_table_entry[j-1].mc_data[i] != table->mc_reg_table_entry[j].mc_data[i]) { table->validflag |= (1<backend); pp_atomctrl_mc_reg_table *table; phw_iceland_mc_reg_table *ni_table = &data->iceland_mc_reg_table; uint8_t module_index = iceland_get_memory_module_index(hwmgr); table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL); if (NULL == table) return -ENOMEM; /* Program additional LP registers that are no longer programmed by VBIOS */ cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1)); cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0)); cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING)); cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2)); cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2)); memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table)); result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table); if (0 == result) result = iceland_copy_vbios_smc_reg_table(table, ni_table); if (0 == result) { iceland_set_s0_mc_reg_index(ni_table); result = iceland_set_mc_special_registers(hwmgr, ni_table); } if (0 == result) iceland_set_valid_flag(ni_table); kfree(table); return result; } /** * Programs static screed detection parameters * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_program_static_screen_threshold_parameters(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* Set static screen threshold unit*/ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD_UNIT, data->static_screen_threshold_unit); /* Set static screen threshold*/ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_STATIC_SCREEN_PARAMETER, STATIC_SCREEN_THRESHOLD, data->static_screen_threshold); return 0; } /** * Setup display gap for glitch free memory clock switching. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_enable_display_gap(struct pp_hwmgr *hwmgr) { uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, DISPLAY_GAP_IGNORE); display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP_MCHG, DISPLAY_GAP_VBLANK); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); return 0; } /** * Programs activity state transition voting clients * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ int iceland_program_voting_clients(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* Clear reset for voting clients before enabling DPM */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_SCLK_CNT, 0); PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, RESET_BUSY_CNT, 0); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_0, data->voting_rights_clients0); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_1, data->voting_rights_clients1); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_2, data->voting_rights_clients2); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_3, data->voting_rights_clients3); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_4, data->voting_rights_clients4); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_5, data->voting_rights_clients5); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_6, data->voting_rights_clients6); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_FREQ_TRAN_VOTING_7, data->voting_rights_clients7); return 0; } static int iceland_upload_firmware(struct pp_hwmgr *hwmgr) { return 0; } /** * Get the location of various tables inside the FW image. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint32_t tmp; int result; bool error = 0; result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU71_FIRMWARE_HEADER_LOCATION + offsetof(SMU71_Firmware_Header, DpmTable), &tmp, data->sram_end); if (0 == result) { data->dpm_table_start = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU71_FIRMWARE_HEADER_LOCATION + offsetof(SMU71_Firmware_Header, SoftRegisters), &tmp, data->sram_end); if (0 == result) { data->soft_regs_start = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU71_FIRMWARE_HEADER_LOCATION + offsetof(SMU71_Firmware_Header, mcRegisterTable), &tmp, data->sram_end); if (0 == result) { data->mc_reg_table_start = tmp; } result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU71_FIRMWARE_HEADER_LOCATION + offsetof(SMU71_Firmware_Header, FanTable), &tmp, data->sram_end); if (0 == result) { data->fan_table_start = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU71_FIRMWARE_HEADER_LOCATION + offsetof(SMU71_Firmware_Header, mcArbDramTimingTable), &tmp, data->sram_end); if (0 == result) { data->arb_table_start = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU71_FIRMWARE_HEADER_LOCATION + offsetof(SMU71_Firmware_Header, Version), &tmp, data->sram_end); if (0 == result) { hwmgr->microcode_version_info.SMC = tmp; } error |= (0 != result); result = smu7_read_smc_sram_dword(hwmgr->smumgr, SMU71_FIRMWARE_HEADER_LOCATION + offsetof(SMU71_Firmware_Header, UlvSettings), &tmp, data->sram_end); if (0 == result) { data->ulv_settings_start = tmp; } error |= (0 != result); return error ? 1 : 0; } /* * Copy one arb setting to another and then switch the active set. * arbFreqSrc and arbFreqDest is one of the MC_CG_ARB_FREQ_Fx constants. */ int iceland_copy_and_switch_arb_sets(struct pp_hwmgr *hwmgr, uint32_t arbFreqSrc, uint32_t arbFreqDest) { uint32_t mc_arb_dram_timing; uint32_t mc_arb_dram_timing2; uint32_t burst_time; uint32_t mc_cg_config; switch (arbFreqSrc) { case MC_CG_ARB_FREQ_F0: mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); break; case MC_CG_ARB_FREQ_F1: mc_arb_dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1); mc_arb_dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1); burst_time = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1); break; default: return -1; } switch (arbFreqDest) { case MC_CG_ARB_FREQ_F0: cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING, mc_arb_dram_timing); cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2, mc_arb_dram_timing2); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0, burst_time); break; case MC_CG_ARB_FREQ_F1: cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING_1, mc_arb_dram_timing); cgs_write_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2_1, mc_arb_dram_timing2); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE1, burst_time); break; default: return -1; } mc_cg_config = cgs_read_register(hwmgr->device, mmMC_CG_CONFIG); mc_cg_config |= 0x0000000F; cgs_write_register(hwmgr->device, mmMC_CG_CONFIG, mc_cg_config); PHM_WRITE_FIELD(hwmgr->device, MC_ARB_CG, CG_ARB_REQ, arbFreqDest); return 0; } /** * Initial switch from ARB F0->F1 * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 * This function is to be called from the SetPowerState table. */ int iceland_initial_switch_from_arb_f0_to_f1(struct pp_hwmgr *hwmgr) { return iceland_copy_and_switch_arb_sets(hwmgr, MC_CG_ARB_FREQ_F0, MC_CG_ARB_FREQ_F1); } /* ---------------------------------------- ULV related functions ----------------------------------------------------*/ static int iceland_reset_single_dpm_table( struct pp_hwmgr *hwmgr, struct iceland_single_dpm_table *dpm_table, uint32_t count) { uint32_t i; if (!(count <= MAX_REGULAR_DPM_NUMBER)) printk(KERN_ERR "[ powerplay ] Fatal error, can not set up single DPM \ table entries to exceed max number! \n"); dpm_table->count = count; for (i = 0; i < MAX_REGULAR_DPM_NUMBER; i++) { dpm_table->dpm_levels[i].enabled = 0; } return 0; } static void iceland_setup_pcie_table_entry( struct iceland_single_dpm_table *dpm_table, uint32_t index, uint32_t pcie_gen, uint32_t pcie_lanes) { dpm_table->dpm_levels[index].value = pcie_gen; dpm_table->dpm_levels[index].param1 = pcie_lanes; dpm_table->dpm_levels[index].enabled = 1; } /* * Set up the PCIe DPM table as follows: * * A = Performance State, Max, Gen Speed * C = Performance State, Min, Gen Speed * 1 = Performance State, Max, Lane # * 3 = Performance State, Min, Lane # * * B = Power Saving State, Max, Gen Speed * D = Power Saving State, Min, Gen Speed * 2 = Power Saving State, Max, Lane # * 4 = Power Saving State, Min, Lane # * * * DPM Index Gen Speed Lane # * 5 A 1 * 4 B 2 * 3 C 1 * 2 D 2 * 1 C 3 * 0 D 4 * */ static int iceland_setup_default_pcie_tables(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); PP_ASSERT_WITH_CODE((data->use_pcie_performance_levels || data->use_pcie_power_saving_levels), "No pcie performance levels!", return -EINVAL); if (data->use_pcie_performance_levels && !data->use_pcie_power_saving_levels) { data->pcie_gen_power_saving = data->pcie_gen_performance; data->pcie_lane_power_saving = data->pcie_lane_performance; } else if (!data->use_pcie_performance_levels && data->use_pcie_power_saving_levels) { data->pcie_gen_performance = data->pcie_gen_power_saving; data->pcie_lane_performance = data->pcie_lane_power_saving; } iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.pcie_speed_table, SMU71_MAX_LEVELS_LINK); /* Hardcode Pcie Table */ iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 0, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 1, get_pcie_gen_support(data->pcie_gen_cap, PP_Min_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 2, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 3, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 4, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); iceland_setup_pcie_table_entry(&data->dpm_table.pcie_speed_table, 5, get_pcie_gen_support(data->pcie_gen_cap, PP_Max_PCIEGen), get_pcie_lane_support(data->pcie_lane_cap, PP_Max_PCIELane)); data->dpm_table.pcie_speed_table.count = 6; return 0; } /* * This function is to initalize all DPM state tables for SMU7 based on the dependency table. * Dynamic state patching function will then trim these state tables to the allowed range based * on the power policy or external client requests, such as UVD request, etc. */ static int iceland_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint32_t i; struct phm_clock_voltage_dependency_table *allowed_vdd_sclk_table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_clock_voltage_dependency_table *allowed_vdd_mclk_table = hwmgr->dyn_state.vddc_dependency_on_mclk; struct phm_cac_leakage_table *std_voltage_table = hwmgr->dyn_state.cac_leakage_table; PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, "SCLK dependency table is missing. This table is mandatory", return -1); PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table->count >= 1, "SCLK dependency table has to have is missing. This table is mandatory", return -1); PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, "MCLK dependency table is missing. This table is mandatory", return -1); PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table->count >= 1, "VMCLK dependency table has to have is missing. This table is mandatory", return -1); /* clear the state table to reset everything to default */ memset(&(data->dpm_table), 0x00, sizeof(data->dpm_table)); iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.sclk_table, SMU71_MAX_LEVELS_GRAPHICS); iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.mclk_table, SMU71_MAX_LEVELS_MEMORY); iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.vddc_table, SMU71_MAX_LEVELS_VDDC); iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.vdd_ci_table, SMU71_MAX_LEVELS_VDDCI); iceland_reset_single_dpm_table(hwmgr, &data->dpm_table.mvdd_table, SMU71_MAX_LEVELS_MVDD); PP_ASSERT_WITH_CODE(allowed_vdd_sclk_table != NULL, "SCLK dependency table is missing. This table is mandatory", return -1); /* Initialize Sclk DPM table based on allow Sclk values*/ data->dpm_table.sclk_table.count = 0; for (i = 0; i < allowed_vdd_sclk_table->count; i++) { if (i == 0 || data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count-1].value != allowed_vdd_sclk_table->entries[i].clk) { data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].value = allowed_vdd_sclk_table->entries[i].clk; data->dpm_table.sclk_table.dpm_levels[data->dpm_table.sclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; to do */ data->dpm_table.sclk_table.count++; } } PP_ASSERT_WITH_CODE(allowed_vdd_mclk_table != NULL, "MCLK dependency table is missing. This table is mandatory", return -1); /* Initialize Mclk DPM table based on allow Mclk values */ data->dpm_table.mclk_table.count = 0; for (i = 0; i < allowed_vdd_mclk_table->count; i++) { if (i == 0 || data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count-1].value != allowed_vdd_mclk_table->entries[i].clk) { data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].value = allowed_vdd_mclk_table->entries[i].clk; data->dpm_table.mclk_table.dpm_levels[data->dpm_table.mclk_table.count].enabled = 1; /*(i==0) ? 1 : 0; */ data->dpm_table.mclk_table.count++; } } /* Initialize Vddc DPM table based on allow Vddc values. And populate corresponding std values. */ for (i = 0; i < allowed_vdd_sclk_table->count; i++) { data->dpm_table.vddc_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; data->dpm_table.vddc_table.dpm_levels[i].param1 = std_voltage_table->entries[i].Leakage; /* param1 is for corresponding std voltage */ data->dpm_table.vddc_table.dpm_levels[i].enabled = 1; } data->dpm_table.vddc_table.count = allowed_vdd_sclk_table->count; allowed_vdd_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; if (NULL != allowed_vdd_mclk_table) { /* Initialize Vddci DPM table based on allow Mclk values */ for (i = 0; i < allowed_vdd_mclk_table->count; i++) { data->dpm_table.vdd_ci_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; data->dpm_table.vdd_ci_table.dpm_levels[i].enabled = 1; } data->dpm_table.vdd_ci_table.count = allowed_vdd_mclk_table->count; } allowed_vdd_mclk_table = hwmgr->dyn_state.mvdd_dependency_on_mclk; if (NULL != allowed_vdd_mclk_table) { /* * Initialize MVDD DPM table based on allow Mclk * values */ for (i = 0; i < allowed_vdd_mclk_table->count; i++) { data->dpm_table.mvdd_table.dpm_levels[i].value = allowed_vdd_mclk_table->entries[i].v; data->dpm_table.mvdd_table.dpm_levels[i].enabled = 1; } data->dpm_table.mvdd_table.count = allowed_vdd_mclk_table->count; } /* setup PCIE gen speed levels*/ iceland_setup_default_pcie_tables(hwmgr); /* save a copy of the default DPM table*/ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct iceland_dpm_table)); return 0; } /** * @brief PhwIceland_GetVoltageOrder * Returns index of requested voltage record in lookup(table) * @param hwmgr - pointer to hardware manager * @param lookutab - lookup list to search in * @param voltage - voltage to look for * @return 0 on success */ uint8_t iceland_get_voltage_index(phm_ppt_v1_voltage_lookup_table *look_up_table, uint16_t voltage) { uint8_t count = (uint8_t) (look_up_table->count); uint8_t i; PP_ASSERT_WITH_CODE((NULL != look_up_table), "Lookup Table empty.", return 0;); PP_ASSERT_WITH_CODE((0 != count), "Lookup Table empty.", return 0;); for (i = 0; i < count; i++) { /* find first voltage equal or bigger than requested */ if (look_up_table->entries[i].us_vdd >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i-1; } static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr, pp_atomctrl_voltage_table_entry *tab, uint16_t *hi, uint16_t *lo) { uint16_t v_index; bool vol_found = false; *hi = tab->value * VOLTAGE_SCALE; *lo = tab->value * VOLTAGE_SCALE; /* SCLK/VDDC Dependency Table has to exist. */ PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk, "The SCLK/VDDC Dependency Table does not exist.\n", return -EINVAL); if (NULL == hwmgr->dyn_state.cac_leakage_table) { pr_warning("CAC Leakage Table does not exist, using vddc.\n"); return 0; } /* * Since voltage in the sclk/vddc dependency table is not * necessarily in ascending order because of ELB voltage * patching, loop through entire list to find exact voltage. */ for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { vol_found = true; if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE); } else { pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n"); *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); } break; } } /* * If voltage is not found in the first pass, loop again to * find the best match, equal or higher value. */ if (!vol_found) { for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) { if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) { vol_found = true; if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) { *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE; } else { pr_warning("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table."); *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE; *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE); } break; } } if (!vol_found) pr_warning("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n"); } return 0; } static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr, pp_atomctrl_voltage_table_entry *tab, SMU71_Discrete_VoltageLevel *smc_voltage_tab) { int result; result = iceland_get_std_voltage_value_sidd(hwmgr, tab, &smc_voltage_tab->StdVoltageHiSidd, &smc_voltage_tab->StdVoltageLoSidd); if (0 != result) { smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE; smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE; } smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE); CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd); return 0; } /** * Vddc table preparation for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { unsigned int count; int result; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); table->VddcLevelCount = data->vddc_voltage_table.count; for (count = 0; count < table->VddcLevelCount; count++) { result = iceland_populate_smc_voltage_table(hwmgr, &data->vddc_voltage_table.entries[count], &table->VddcLevel[count]); PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL); /* GPIO voltage control */ if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low; else if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) table->VddcLevel[count].Smio = 0; } CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); return 0; } /** * Vddci table preparation for SMC. * * @param *hwmgr The address of the hardware manager. * @param *table The SMC DPM table structure to be populated. * @return 0 */ static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { int result; uint32_t count; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); table->VddciLevelCount = data->vddci_voltage_table.count; for (count = 0; count < table->VddciLevelCount; count++) { result = iceland_populate_smc_voltage_table(hwmgr, &data->vddci_voltage_table.entries[count], &table->VddciLevel[count]); PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDCI voltage table", return -EINVAL); /* GPIO voltage control */ if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->vdd_ci_control) table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low; else table->VddciLevel[count].Smio = 0; } CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount); return 0; } /** * Mvdd table preparation for SMC. * * @param *hwmgr The address of the hardware manager. * @param *table The SMC DPM table structure to be populated. * @return 0 */ static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { int result; uint32_t count; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); table->MvddLevelCount = data->mvdd_voltage_table.count; for (count = 0; count < table->MvddLevelCount; count++) { result = iceland_populate_smc_voltage_table(hwmgr, &data->mvdd_voltage_table.entries[count], &table->MvddLevel[count]); PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDCI voltage table", return -EINVAL); /* GPIO voltage control */ if (ICELAND_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low; else table->MvddLevel[count].Smio = 0; } CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount); return 0; } int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr) { int i; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint8_t * hi_vid = data->power_tune_table.BapmVddCVidHiSidd; uint8_t * lo_vid = data->power_tune_table.BapmVddCVidLoSidd; PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table, "The CAC Leakage table does not exist!", return -EINVAL); PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8, "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL); PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count, "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) { lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1); hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2); } } else { PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL); } return 0; } int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr) { int i; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint8_t *vid = data->power_tune_table.VddCVid; PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8, "There should never be more than 8 entries for VddcVid!!!", return -EINVAL); for (i = 0; i < (int)data->vddc_voltage_table.count; i++) { vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value); } return 0; } /** * Preparation of voltage tables for SMC. * * @param hwmgr the address of the hardware manager * @param table the SMC DPM table structure to be populated * @return always 0 */ int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { int result; result = iceland_populate_smc_vddc_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate VDDC voltage table to SMC", return -1); result = iceland_populate_smc_vdd_ci_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate VDDCI voltage table to SMC", return -1); result = iceland_populate_smc_mvdd_table(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "can not populate MVDD voltage table to SMC", return -1); return 0; } /** * Re-generate the DPM level mask value * @param hwmgr the address of the hardware manager */ static uint32_t iceland_get_dpm_level_enable_mask_value( struct iceland_single_dpm_table * dpm_table) { uint32_t i; uint32_t mask_value = 0; for (i = dpm_table->count; i > 0; i--) { mask_value = mask_value << 1; if (dpm_table->dpm_levels[i-1].enabled) mask_value |= 0x1; else mask_value &= 0xFFFFFFFE; } return mask_value; } int iceland_populate_memory_timing_parameters( struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t memory_clock, struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs ) { uint32_t dramTiming; uint32_t dramTiming2; uint32_t burstTime; int result; result = atomctrl_set_engine_dram_timings_rv770(hwmgr, engine_clock, memory_clock); PP_ASSERT_WITH_CODE(result == 0, "Error calling VBIOS to set DRAM_TIMING.", return result); dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0); arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming); arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2); arb_regs->McArbBurstTime = (uint8_t)burstTime; return 0; } /** * Setup parameters for the MC ARB. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 * This function is to be called from the SetPowerState table. */ int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); int result = 0; SMU71_Discrete_MCArbDramTimingTable arb_regs; uint32_t i, j; memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable)); for (i = 0; i < data->dpm_table.sclk_table.count; i++) { for (j = 0; j < data->dpm_table.mclk_table.count; j++) { result = iceland_populate_memory_timing_parameters (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value, data->dpm_table.mclk_table.dpm_levels[j].value, &arb_regs.entries[i][j]); if (0 != result) { break; } } } if (0 == result) { result = smu7_copy_bytes_to_smc( hwmgr->smumgr, data->arb_table_start, (uint8_t *)&arb_regs, sizeof(SMU71_Discrete_MCArbDramTimingTable), data->sram_end ); } return result; } static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); struct iceland_dpm_table *dpm_table = &data->dpm_table; uint32_t i; /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */ for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { table->LinkLevel[i].PcieGenSpeed = (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1); table->LinkLevel[i].EnabledForActivity = 1; table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); } data->smc_state_table.LinkLevelCount = (uint8_t)dpm_table->pcie_speed_table.count; data->dpm_level_enable_mask.pcie_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); return 0; } static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { return 0; } uint8_t iceland_get_voltage_id(pp_atomctrl_voltage_table *voltage_table, uint32_t voltage) { uint8_t count = (uint8_t) (voltage_table->count); uint8_t i = 0; PP_ASSERT_WITH_CODE((NULL != voltage_table), "Voltage Table empty.", return 0;); PP_ASSERT_WITH_CODE((0 != count), "Voltage Table empty.", return 0;); for (i = 0; i < count; i++) { /* find first voltage bigger than requested */ if (voltage_table->entries[i].value >= voltage) return i; } /* voltage is bigger than max voltage in the table */ return i - 1; } static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { return 0; } static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { return 0; } static int iceland_populate_smc_samu_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { return 0; } static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *tab) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); if(ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) tab->SVI2Enable |= VDDC_ON_SVI2; if(ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_ci_control) tab->SVI2Enable |= VDDCI_ON_SVI2; else tab->MergedVddci = 1; if(ICELAND_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) tab->SVI2Enable |= MVDD_ON_SVI2; PP_ASSERT_WITH_CODE( tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) && (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL); return 0; } static int iceland_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table, uint32_t clock, uint32_t *vol) { uint32_t i = 0; /* clock - voltage dependency table is empty table */ if (allowed_clock_voltage_table->count == 0) return -EINVAL; for (i = 0; i < allowed_clock_voltage_table->count; i++) { /* find first sclk bigger than request */ if (allowed_clock_voltage_table->entries[i].clk >= clock) { *vol = allowed_clock_voltage_table->entries[i].v; return 0; } } /* sclk is bigger than max sclk in the dependence table */ *vol = allowed_clock_voltage_table->entries[i - 1].v; return 0; } static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock, bool strobe_mode) { uint8_t mc_para_index; if (strobe_mode) { if (memory_clock < 12500) { mc_para_index = 0x00; } else if (memory_clock > 47500) { mc_para_index = 0x0f; } else { mc_para_index = (uint8_t)((memory_clock - 10000) / 2500); } } else { if (memory_clock < 65000) { mc_para_index = 0x00; } else if (memory_clock > 135000) { mc_para_index = 0x0f; } else { mc_para_index = (uint8_t)((memory_clock - 60000) / 5000); } } return mc_para_index; } static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock) { uint8_t mc_para_index; if (memory_clock < 10000) { mc_para_index = 0; } else if (memory_clock >= 80000) { mc_para_index = 0x0f; } else { mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1); } return mc_para_index; } static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, uint32_t sclk, uint32_t *p_shed) { unsigned int i; /* use the minimum phase shedding */ *p_shed = 1; /* * PPGen ensures the phase shedding limits table is sorted * from lowest voltage/sclk/mclk to highest voltage/sclk/mclk. * VBIOS ensures the phase shedding masks table is sorted from * least phases enabled (phase shedding on) to most phases * enabled (phase shedding off). */ for (i = 0; i < pl->count; i++) { if (sclk < pl->entries[i].Sclk) { /* Enable phase shedding */ *p_shed = i; break; } } return 0; } static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl, uint32_t memory_clock, uint32_t *p_shed) { unsigned int i; /* use the minimum phase shedding */ *p_shed = 1; /* * PPGen ensures the phase shedding limits table is sorted * from lowest voltage/sclk/mclk to highest voltage/sclk/mclk. * VBIOS ensures the phase shedding masks table is sorted from * least phases enabled (phase shedding on) to most phases * enabled (phase shedding off). */ for (i = 0; i < pl->count; i++) { if (memory_clock < pl->entries[i].Mclk) { /* Enable phase shedding */ *p_shed = i; break; } } return 0; } /** * Populates the SMC MCLK structure using the provided memory clock * * @param hwmgr the address of the hardware manager * @param memory_clock the memory clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int iceland_calculate_mclk_params( struct pp_hwmgr *hwmgr, uint32_t memory_clock, SMU71_Discrete_MemoryLevel *mclk, bool strobe_mode, bool dllStateOn ) { const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL; uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL; uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL; uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1; uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2; uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1; uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2; pp_atomctrl_memory_clock_param mpll_param; int result; result = atomctrl_get_memory_pll_dividers_si(hwmgr, memory_clock, &mpll_param, strobe_mode); PP_ASSERT_WITH_CODE(0 == result, "Error retrieving Memory Clock Parameters from VBIOS.", return result); /* MPLL_FUNC_CNTL setup*/ mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl); /* MPLL_FUNC_CNTL_1 setup*/ mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf); mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac); mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1, MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode); /* MPLL_AD_FUNC_CNTL setup*/ mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl, MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); if (data->is_memory_GDDR5) { /* MPLL_DQ_FUNC_CNTL setup*/ mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel); mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl, MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MemorySpreadSpectrumSupport)) { /* ************************************ Fref = Reference Frequency NF = Feedback divider ratio NR = Reference divider ratio Fnom = Nominal VCO output frequency = Fref * NF / NR Fs = Spreading Rate D = Percentage down-spread / 2 Fint = Reference input frequency to PFD = Fref / NR NS = Spreading rate divider ratio = int(Fint / (2 * Fs)) CLKS = NS - 1 = ISS_STEP_NUM[11:0] NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2) CLKV = 65536 * NV = ISS_STEP_SIZE[25:0] ************************************* */ pp_atomctrl_internal_ss_info ss_info; uint32_t freq_nom; uint32_t tmp; uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr); /* for GDDR5 for all modes and DDR3 */ if (1 == mpll_param.qdr) freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider); else freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider); /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/ tmp = (freq_nom / reference_clock); tmp = tmp * tmp; if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) { /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */ /* ss.Info.speed_spectrum_rate -- in unit of khz */ /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */ /* = reference_clock * 5 / speed_spectrum_rate */ uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate; /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */ /* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */ uint32_t clkv = (uint32_t)((((131 * ss_info.speed_spectrum_percentage * ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom); mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv); mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks); } } /* MCLK_PWRMGT_CNTL setup */ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn); /* Save the result data to outpupt memory level structure */ mclk->MclkFrequency = memory_clock; mclk->MpllFuncCntl = mpll_func_cntl; mclk->MpllFuncCntl_1 = mpll_func_cntl_1; mclk->MpllFuncCntl_2 = mpll_func_cntl_2; mclk->MpllAdFuncCntl = mpll_ad_func_cntl; mclk->MpllDqFuncCntl = mpll_dq_func_cntl; mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl; mclk->DllCntl = dll_cntl; mclk->MpllSs1 = mpll_ss1; mclk->MpllSs2 = mpll_ss2; return 0; } static int iceland_populate_single_memory_level( struct pp_hwmgr *hwmgr, uint32_t memory_clock, SMU71_Discrete_MemoryLevel *memory_level ) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); int result = 0; bool dllStateOn; struct cgs_display_info info = {0}; if (NULL != hwmgr->dyn_state.vddc_dependency_on_mclk) { result = iceland_get_dependecy_volt_by_clk(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result); } if (data->vdd_ci_control == ICELAND_VOLTAGE_CONTROL_NONE) { memory_level->MinVddci = memory_level->MinVddc; } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) { result = iceland_get_dependecy_volt_by_clk(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk, memory_clock, &memory_level->MinVddci); PP_ASSERT_WITH_CODE((0 == result), "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result); } if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) { result = iceland_get_dependecy_volt_by_clk(hwmgr, hwmgr->dyn_state.mvdd_dependency_on_mclk, memory_clock, &memory_level->MinMvdd); PP_ASSERT_WITH_CODE((0 == result), "can not find MinMVDD voltage value from memory MVDD voltage dependency table", return result); } memory_level->MinVddcPhases = 1; if (data->vddc_phase_shed_control) { iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, memory_clock, &memory_level->MinVddcPhases); } memory_level->EnabledForThrottle = 1; memory_level->EnabledForActivity = 1; memory_level->UpHyst = 0; memory_level->DownHyst = 100; memory_level->VoltageDownHyst = 0; /* Indicates maximum activity level for this performance level.*/ memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target; memory_level->StutterEnable = 0; memory_level->StrobeEnable = 0; memory_level->EdcReadEnable = 0; memory_level->EdcWriteEnable = 0; memory_level->RttEnable = 0; /* default set to low watermark. Highest level will be set to high later.*/ memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; cgs_get_active_displays_info(hwmgr->device, &info); data->display_timing.num_existing_displays = info.display_count; //if ((data->mclk_stutter_mode_threshold != 0) && // (memory_clock <= data->mclk_stutter_mode_threshold) && // (data->is_uvd_enabled == 0) // && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1) // && (data->display_timing.num_existing_displays <= 2) // && (data->display_timing.num_existing_displays != 0)) // memory_level->StutterEnable = 1; /* decide strobe mode*/ memory_level->StrobeEnable = (data->mclk_strobe_mode_threshold != 0) && (memory_clock <= data->mclk_strobe_mode_threshold); /* decide EDC mode and memory clock ratio*/ if (data->is_memory_GDDR5) { memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock, memory_level->StrobeEnable); if ((data->mclk_edc_enable_threshold != 0) && (memory_clock > data->mclk_edc_enable_threshold)) { memory_level->EdcReadEnable = 1; } if ((data->mclk_edc_wr_enable_threshold != 0) && (memory_clock > data->mclk_edc_wr_enable_threshold)) { memory_level->EdcWriteEnable = 1; } if (memory_level->StrobeEnable) { if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >= ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) { dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; } else { dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0; } } else { dllStateOn = data->dll_defaule_on; } } else { memory_level->StrobeRatio = iceland_get_ddr3_mclk_frequency_ratio(memory_clock); dllStateOn = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0; } result = iceland_calculate_mclk_params(hwmgr, memory_clock, memory_level, memory_level->StrobeEnable, dllStateOn); if (0 == result) { memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases); memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE); memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE); /* MCLK frequency in units of 10KHz*/ CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency); /* Indicates maximum activity level for this performance level.*/ CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1); CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2); } return result; } /** * Populates the SMC MVDD structure using the provided memory clock. * * @param hwmgr the address of the hardware manager * @param mclk the MCLK value to be used in the decision if MVDD should be high or low. * @param voltage the SMC VOLTAGE structure to be populated */ int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk, SMU71_Discrete_VoltageLevel *voltage) { const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint32_t i = 0; if (ICELAND_VOLTAGE_CONTROL_NONE != data->mvdd_control) { /* find mvdd value which clock is more than request */ for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) { if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) { /* Always round to higher voltage. */ voltage->Voltage = data->mvdd_voltage_table.entries[i].value; break; } } PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count, "MVDD Voltage is outside the supported range.", return -1); } else { return -1; } return 0; } static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table) { int result = 0; const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); pp_atomctrl_clock_dividers_vi dividers; SMU71_Discrete_VoltageLevel voltage_level; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2; uint32_t dll_cntl = data->clock_registers.vDLL_CNTL; uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL; /* The ACPI state should not do DPM on DC (or ever).*/ table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; if (data->acpi_vddc) table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE); else table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pp_table * VOLTAGE_SCALE); table->ACPILevel.MinVddcPhases = (data->vddc_phase_shed_control) ? 0 : 1; /* assign zero for now*/ table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr); /* get the engine clock dividers for this clock value*/ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, table->ACPILevel.SclkFrequency, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* divider ID for required SCLK*/ table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider; table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; table->ACPILevel.DeepSleepDivId = 0; spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PWRON, 0); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_RESET, 1); spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL, 4); table->ACPILevel.CgSpllFuncCntl = spll_func_cntl; table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2; table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; table->ACPILevel.CcPwrDynRm = 0; table->ACPILevel.CcPwrDynRm1 = 0; /* For various features to be enabled/disabled while this level is active.*/ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); /* SCLK frequency in units of 10KHz*/ CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc; table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases; /* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/ if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level)) table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE); else table->MemoryACPILevel.MinMvdd = 0; /* Force reset on DLL*/ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1); /* Disable DLL in ACPIState*/ mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0); mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl, MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0); /* Enable DLL bypass signal*/ dll_cntl = PHM_SET_FIELD(dll_cntl, DLL_CNTL, MRDCK0_BYPASS, 0); dll_cntl = PHM_SET_FIELD(dll_cntl, DLL_CNTL, MRDCK1_BYPASS, 0); table->MemoryACPILevel.DllCntl = PP_HOST_TO_SMC_UL(dll_cntl); table->MemoryACPILevel.MclkPwrmgtCntl = PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl); table->MemoryACPILevel.MpllAdFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL); table->MemoryACPILevel.MpllDqFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL); table->MemoryACPILevel.MpllFuncCntl = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL); table->MemoryACPILevel.MpllFuncCntl_1 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1); table->MemoryACPILevel.MpllFuncCntl_2 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2); table->MemoryACPILevel.MpllSs1 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1); table->MemoryACPILevel.MpllSs2 = PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2); table->MemoryACPILevel.EnabledForThrottle = 0; table->MemoryACPILevel.EnabledForActivity = 0; table->MemoryACPILevel.UpHyst = 0; table->MemoryACPILevel.DownHyst = 100; table->MemoryACPILevel.VoltageDownHyst = 0; /* Indicates maximum activity level for this performance level.*/ table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target); table->MemoryACPILevel.StutterEnable = 0; table->MemoryACPILevel.StrobeEnable = 0; table->MemoryACPILevel.EdcReadEnable = 0; table->MemoryACPILevel.EdcWriteEnable = 0; table->MemoryACPILevel.RttEnable = 0; return result; } static int iceland_find_boot_level(struct iceland_single_dpm_table *table, uint32_t value, uint32_t *boot_level) { int result = 0; uint32_t i; for (i = 0; i < table->count; i++) { if (value == table->dpm_levels[i].value) { *boot_level = i; result = 0; } } return result; } /** * Calculates the SCLK dividers using the provided engine clock * * @param hwmgr the address of the hardware manager * @param engine_clock the engine clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr, uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk) { const iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); pp_atomctrl_clock_dividers_vi dividers; uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL; uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3; uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4; uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM; uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2; uint32_t reference_clock; uint32_t reference_divider; uint32_t fbdiv; int result; /* get the engine clock dividers for this clock value*/ result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, ÷rs); PP_ASSERT_WITH_CODE(result == 0, "Error retrieving Engine Clock dividers from VBIOS.", return result); /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/ reference_clock = atomctrl_get_reference_clock(hwmgr); reference_divider = 1 + dividers.uc_pll_ref_div; /* low 14 bits is fraction and high 12 bits is divider*/ fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF; /* SPLL_FUNC_CNTL setup*/ spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div); spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div); /* SPLL_FUNC_CNTL_3 setup*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv); /* set to use fractional accumulation*/ spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport)) { pp_atomctrl_internal_ss_info ss_info; uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div; if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) { /* * ss_info.speed_spectrum_percentage -- in unit of 0.01% * ss_info.speed_spectrum_rate -- in unit of khz */ /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */ uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate); /* clkv = 2 * D * fbdiv / NS */ uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS); cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1); cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV); } } sclk->SclkFrequency = engine_clock; sclk->CgSpllFuncCntl3 = spll_func_cntl_3; sclk->CgSpllFuncCntl4 = spll_func_cntl_4; sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum; sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2; sclk->SclkDid = (uint8_t)dividers.pll_post_divider; return 0; } static uint8_t iceland_get_sleep_divider_id_from_clock(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint32_t min_engine_clock_in_sr) { uint32_t i, temp; uint32_t min = (min_engine_clock_in_sr > ICELAND_MINIMUM_ENGINE_CLOCK) ? min_engine_clock_in_sr : ICELAND_MINIMUM_ENGINE_CLOCK; PP_ASSERT_WITH_CODE((engine_clock >= min), "Engine clock can't satisfy stutter requirement!", return 0); for (i = ICELAND_MAX_DEEPSLEEP_DIVIDER_ID;; i--) { temp = engine_clock / (1 << i); if(temp >= min || i == 0) break; } return (uint8_t)i; } /** * Populates single SMC SCLK structure using the provided engine clock * * @param hwmgr the address of the hardware manager * @param engine_clock the engine clock to use to populate the structure * @param sclk the SMC SCLK structure to be populated */ static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr, uint32_t engine_clock, uint16_t sclk_activity_level_threshold, SMU71_Discrete_GraphicsLevel *graphic_level) { int result; uint32_t threshold; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level); /* populate graphics levels*/ result = iceland_get_dependecy_volt_by_clk(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock, &graphic_level->MinVddc); PP_ASSERT_WITH_CODE((0 == result), "can not find VDDC voltage value for VDDC engine clock dependency table", return result); /* SCLK frequency in units of 10KHz*/ graphic_level->SclkFrequency = engine_clock; /* * Minimum VDDC phases required to support this level, it * should get from dependence table. */ graphic_level->MinVddcPhases = 1; if (data->vddc_phase_shed_control) { iceland_populate_phase_value_based_on_sclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table, engine_clock, &graphic_level->MinVddcPhases); } /* Indicates maximum activity level for this performance level. 50% for now*/ graphic_level->ActivityLevel = sclk_activity_level_threshold; graphic_level->CcPwrDynRm = 0; graphic_level->CcPwrDynRm1 = 0; /* this level can be used if activity is high enough.*/ graphic_level->EnabledForActivity = 1; /* this level can be used for throttling.*/ graphic_level->EnabledForThrottle = 1; graphic_level->UpHyst = 0; graphic_level->DownHyst = 100; graphic_level->VoltageDownHyst = 0; graphic_level->PowerThrottle = 0; threshold = engine_clock * data->fast_watermark_threshold / 100; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { graphic_level->DeepSleepDivId = iceland_get_sleep_divider_id_from_clock(hwmgr, engine_clock, data->display_timing.min_clock_insr); } /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/ graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; if (0 == result) { graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE); /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/ CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency); CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1); } return result; } /** * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states * * @param hwmgr the address of the hardware manager */ static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); struct iceland_dpm_table *dpm_table = &data->dpm_table; int result = 0; uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU71_Discrete_DpmTable, GraphicsLevel); uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) * SMU71_MAX_LEVELS_GRAPHICS; SMU71_Discrete_GraphicsLevel *levels = data->smc_state_table.GraphicsLevel; uint32_t i; uint8_t highest_pcie_level_enabled = 0, lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0, count = 0; memset(levels, 0x00, level_array_size); for (i = 0; i < dpm_table->sclk_table.count; i++) { result = iceland_populate_single_graphic_level(hwmgr, dpm_table->sclk_table.dpm_levels[i].value, (uint16_t)data->activity_target[i], &(data->smc_state_table.GraphicsLevel[i])); if (0 != result) return result; /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ if (i > 1) data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0; } /* set highest level watermark to high */ if (dpm_table->sclk_table.count > 1) data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; data->smc_state_table.GraphicsDpmLevelCount = (uint8_t)dpm_table->sclk_table.count; data->dpm_level_enable_mask.sclk_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (highest_pcie_level_enabled + 1))) != 0) { highest_pcie_level_enabled++; } while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << lowest_pcie_level_enabled)) == 0) { lowest_pcie_level_enabled++; } while ((count < highest_pcie_level_enabled) && ((data->dpm_level_enable_mask.pcie_dpm_enable_mask & (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) { count++; } mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ? (lowest_pcie_level_enabled + 1 + count) : highest_pcie_level_enabled; /* set pcieDpmLevel to highest_pcie_level_enabled*/ for (i = 2; i < dpm_table->sclk_table.count; i++) { data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled; } /* set pcieDpmLevel to lowest_pcie_level_enabled*/ data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled; /* set pcieDpmLevel to mid_pcie_level_enabled*/ data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled; /* level count will send to smc once at init smc table and never change*/ result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end); if (0 != result) return result; return 0; } /** * Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states * * @param hwmgr the address of the hardware manager */ static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); struct iceland_dpm_table *dpm_table = &data->dpm_table; int result; /* populate MCLK dpm table to SMU7 */ uint32_t level_array_adress = data->dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel); uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY; SMU71_Discrete_MemoryLevel *levels = data->smc_state_table.MemoryLevel; uint32_t i; memset(levels, 0x00, level_array_size); for (i = 0; i < dpm_table->mclk_table.count; i++) { PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), "can not populate memory level as memory clock is zero", return -1); result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value, &(data->smc_state_table.MemoryLevel[i])); if (0 != result) { return result; } } /* Only enable level 0 for now.*/ data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1; /* * in order to prevent MC activity from stutter mode to push DPM up. * the UVD change complements this by putting the MCLK in a higher state * by default such that we are not effected by up threshold or and MCLK DPM latency. */ data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F; CONVERT_FROM_HOST_TO_SMC_US(data->smc_state_table.MemoryLevel[0].ActivityLevel); data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count; data->dpm_level_enable_mask.mclk_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); /* set highest level watermark to high*/ data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH; /* level count will send to smc once at init smc table and never change*/ result = smu7_copy_bytes_to_smc(hwmgr->smumgr, level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size, data->sram_end); if (0 != result) { return result; } return 0; } struct ICELAND_DLL_SPEED_SETTING { uint16_t Min; /* Minimum Data Rate*/ uint16_t Max; /* Maximum Data Rate*/ uint32_t dll_speed; /* The desired DLL_SPEED setting*/ }; static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_Ulv *pstate) { int result = 0; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint32_t voltage_response_time, ulv_voltage; pstate->CcPwrDynRm = 0; pstate->CcPwrDynRm1 = 0; //backbiasResponseTime is use for ULV state voltage value. result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage); PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;); if(!ulv_voltage) { data->ulv.ulv_supported = false; return 0; } if (ICELAND_VOLTAGE_CONTROL_BY_SVID2 != data->voltage_control) { /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) { pstate->VddcOffset = 0; } else { /* used in SMIO Mode. not implemented for now. this is backup only for CI. */ pstate->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage); } } else { /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */ if(ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v) { pstate->VddcOffsetVid = 0; } else { /* used in SVI2 Mode */ pstate->VddcOffsetVid = (uint8_t)((hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage) * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); } } /* used in SVI2 Mode to shed phase */ pstate->VddcPhase = (data->vddc_phase_shed_control) ? 0 : 1; if (0 == result) { CONVERT_FROM_HOST_TO_SMC_UL(pstate->CcPwrDynRm); CONVERT_FROM_HOST_TO_SMC_UL(pstate->CcPwrDynRm1); CONVERT_FROM_HOST_TO_SMC_US(pstate->VddcOffset); } return result; } static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr, SMU71_Discrete_Ulv *ulv) { return iceland_populate_ulv_level(hwmgr, ulv); } static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint8_t count, level; count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count); for (level = 0; level < count; level++) { if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk >= data->vbios_boot_state.sclk_bootup_value) { data->smc_state_table.GraphicsBootLevel = level; break; } } count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count); for (level = 0; level < count; level++) { if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk >= data->vbios_boot_state.mclk_bootup_value) { data->smc_state_table.MemoryBootLevel = level; break; } } return 0; } /** * Initializes the SMC table and uploads it * * @param hwmgr the address of the powerplay hardware manager. * @param pInput the pointer to input data (PowerState) * @return always 0 */ static int iceland_init_smc_table(struct pp_hwmgr *hwmgr) { int result; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); SMU71_Discrete_DpmTable *table = &(data->smc_state_table); const struct phw_iceland_ulv_parm *ulv = &(data->ulv); result = iceland_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to setup default DPM tables!", return result;); memset(&(data->smc_state_table), 0x00, sizeof(data->smc_state_table)); if (ICELAND_VOLTAGE_CONTROL_NONE != data->voltage_control) { iceland_populate_smc_voltage_tables(hwmgr, table); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) { table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StepVddc)) { table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; } if (data->is_memory_GDDR5) { table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; } if (ulv->ulv_supported) { result = iceland_populate_ulv_state(hwmgr, &data->ulv_setting); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ULV state!", return result;); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_ULV_PARAMETER, ulv->ch_ulv_parameter); } result = iceland_populate_smc_link_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Link Level!", return result;); result = iceland_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Graphics Level!", return result;); result = iceland_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Memory Level!", return result;); result = iceland_populate_smc_acpi_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACPI Level!", return result;); result = iceland_populate_smc_vce_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize VCE Level!", return result;); result = iceland_populate_smc_acp_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize ACP Level!", return result;); result = iceland_populate_smc_samu_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize SAMU Level!", return result;); /* * Since only the initial state is completely set up at this * point (the other states are just copies of the boot state) * we only need to populate the ARB settings for the initial * state. */ result = iceland_program_memory_timing_parameters(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to Write ARB settings for the initial state.", return result;); result = iceland_populate_smc_uvd_level(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize UVD Level!", return result;); table->GraphicsBootLevel = 0; table->MemoryBootLevel = 0; /* find boot level from dpm table */ result = iceland_find_boot_level(&(data->dpm_table.sclk_table), data->vbios_boot_state.sclk_bootup_value, (uint32_t *)&(data->smc_state_table.GraphicsBootLevel)); if (result) pr_warning("VBIOS did not find boot engine clock value in dependency table.\n"); result = iceland_find_boot_level(&(data->dpm_table.mclk_table), data->vbios_boot_state.mclk_bootup_value, (uint32_t *)&(data->smc_state_table.MemoryBootLevel)); if (result) pr_warning("VBIOS did not find boot memory clock value in dependency table.\n"); table->BootVddc = data->vbios_boot_state.vddc_bootup_value; if (ICELAND_VOLTAGE_CONTROL_NONE == data->vdd_ci_control) { table->BootVddci = table->BootVddc; } else { table->BootVddci = data->vbios_boot_state.vddci_bootup_value; } table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value; result = iceland_populate_smc_initial_state(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result); result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result); table->GraphicsVoltageChangeEnable = 1; table->GraphicsThermThrottleEnable = 1; table->GraphicsInterval = 1; table->VoltageInterval = 1; table->ThermalInterval = 1; table->TemperatureLimitHigh = (data->thermal_temp_setting.temperature_high * ICELAND_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; table->TemperatureLimitLow = (data->thermal_temp_setting.temperature_low * ICELAND_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES; table->MemoryVoltageChangeEnable = 1; table->MemoryInterval = 1; table->VoltageResponseTime = 0; table->PhaseResponseTime = 0; table->MemoryThermThrottleEnable = 1; table->PCIeBootLinkLevel = 0; table->PCIeGenInterval = 1; result = iceland_populate_smc_svi2_config(hwmgr, table); PP_ASSERT_WITH_CODE(0 == result, "Failed to populate SVI2 setting!", return result); table->ThermGpio = 17; table->SclkStepSize = 0x4000; CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid); CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid); CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE); table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE); table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE); /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ result = smu7_copy_bytes_to_smc(hwmgr->smumgr, data->dpm_table_start + offsetof(SMU71_Discrete_DpmTable, SystemFlags), (uint8_t *)&(table->SystemFlags), sizeof(SMU71_Discrete_DpmTable) - 3 * sizeof(SMU71_PIDController), data->sram_end); PP_ASSERT_WITH_CODE(0 == result, "Failed to upload dpm data to SMC memory!", return result); /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */ result = smu7_copy_bytes_to_smc(hwmgr->smumgr, data->ulv_settings_start, (uint8_t *)&(data->ulv_setting), sizeof(SMU71_Discrete_Ulv), data->sram_end); #if 0 /* Notify SMC to follow new GPIO scheme */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition)) { if (0 == iceland_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_UseNewGPIOScheme)) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); } #endif return result; } int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr, SMU71_Discrete_MCRegisters *mc_reg_table) { const struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint32_t i, j; for (i = 0, j = 0; j < data->iceland_mc_reg_table.last; j++) { if (data->iceland_mc_reg_table.validflag & 1<address[] array out of boundary", return -1); mc_reg_table->address[i].s0 = PP_HOST_TO_SMC_US(data->iceland_mc_reg_table.mc_reg_address[j].s0); mc_reg_table->address[i].s1 = PP_HOST_TO_SMC_US(data->iceland_mc_reg_table.mc_reg_address[j].s1); i++; } } mc_reg_table->last = (uint8_t)i; return 0; } /* convert register values from driver to SMC format */ void iceland_convert_mc_registers( const phw_iceland_mc_reg_entry * pEntry, SMU71_Discrete_MCRegisterSet *pData, uint32_t numEntries, uint32_t validflag) { uint32_t i, j; for (i = 0, j = 0; j < numEntries; j++) { if (validflag & 1<value[i] = PP_HOST_TO_SMC_UL(pEntry->mc_data[j]); i++; } } } /* find the entry in the memory range table, then populate the value to SMC's iceland_mc_reg_table */ int iceland_convert_mc_reg_table_entry_to_smc( struct pp_hwmgr *hwmgr, const uint32_t memory_clock, SMU71_Discrete_MCRegisterSet *mc_reg_table_data ) { const iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint32_t i = 0; for (i = 0; i < data->iceland_mc_reg_table.num_entries; i++) { if (memory_clock <= data->iceland_mc_reg_table.mc_reg_table_entry[i].mclk_max) { break; } } if ((i == data->iceland_mc_reg_table.num_entries) && (i > 0)) --i; iceland_convert_mc_registers(&data->iceland_mc_reg_table.mc_reg_table_entry[i], mc_reg_table_data, data->iceland_mc_reg_table.last, data->iceland_mc_reg_table.validflag); return 0; } int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr, SMU71_Discrete_MCRegisters *mc_reg_table) { int result = 0; iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); int res; uint32_t i; for (i = 0; i < data->dpm_table.mclk_table.count; i++) { res = iceland_convert_mc_reg_table_entry_to_smc( hwmgr, data->dpm_table.mclk_table.dpm_levels[i].value, &mc_reg_table->data[i] ); if (0 != res) result = res; } return result; } int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr) { int result; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); memset(&data->mc_reg_table, 0x00, sizeof(SMU71_Discrete_MCRegisters)); result = iceland_populate_mc_reg_address(hwmgr, &(data->mc_reg_table)); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize MCRegTable for the MC register addresses!", return result;); result = iceland_convert_mc_reg_table_to_smc(hwmgr, &data->mc_reg_table); PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize MCRegTable for driver state!", return result;); return smu7_copy_bytes_to_smc(hwmgr->smumgr, data->mc_reg_table_start, (uint8_t *)&data->mc_reg_table, sizeof(SMU71_Discrete_MCRegisters), data->sram_end); } int iceland_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_display) { PPSMC_Msg msg = has_display? (PPSMC_Msg)PPSMC_HasDisplay : (PPSMC_Msg)PPSMC_NoDisplay; return (smum_send_msg_to_smc(hwmgr->smumgr, msg) == 0) ? 0 : -1; } int iceland_enable_sclk_control(struct pp_hwmgr *hwmgr) { PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, SCLK_PWRMGT_OFF, 0); return 0; } int iceland_enable_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* enable SCLK dpm */ if (0 == data->sclk_dpm_key_disabled) { PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_DPM_Enable)), "Failed to enable SCLK DPM during DPM Start Function!", return -1); } /* enable MCLK dpm */ if (0 == data->mclk_dpm_key_disabled) { PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_Enable)), "Failed to enable MCLK DPM during DPM Start Function!", return -1); PHM_WRITE_FIELD(hwmgr->device, MC_SEQ_CNTL_3, CAC_EN, 0x1); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x05);/* CH0,1 read */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x05);/* CH2,3 read */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x100005);/*Read */ udelay(10); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC0_CNTL, 0x400005);/* CH0,1 write */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_MC1_CNTL, 0x400005);/* CH2,3 write */ cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixLCAC_CPL_CNTL, 0x500005);/* write */ } return 0; } int iceland_start_dpm(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* enable general power management */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, GLOBAL_PWRMGT_EN, 1); /* enable sclk deep sleep */ PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SCLK_PWRMGT_CNTL, DYNAMIC_PM_EN, 1); /* prepare for PCIE DPM */ PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SOFT_REGISTERS_TABLE_12, VoltageChangeTimeout, 0x1000); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, SWRST_COMMAND_1, RESETLC, 0x0); PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_Voltage_Cntl_Enable)), "Failed to enable voltage DPM during DPM Start Function!", return -1); if (0 != iceland_enable_sclk_mclk_dpm(hwmgr)) { PP_ASSERT_WITH_CODE(0, "Failed to enable Sclk DPM and Mclk DPM!", return -1); } /* enable PCIE dpm */ if (0 == data->pcie_dpm_key_disabled) { PP_ASSERT_WITH_CODE( (0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_PCIeDPM_Enable)), "Failed to enable pcie DPM during DPM Start Function!", return -1 ); } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_Falcon_QuickTransition)) { smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_EnableACDCGPIOInterrupt); } return 0; } static void iceland_set_dpm_event_sources(struct pp_hwmgr *hwmgr, uint32_t sources) { bool protection; enum DPM_EVENT_SRC src; switch (sources) { default: printk(KERN_ERR "Unknown throttling event sources."); /* fall through */ case 0: protection = false; /* src is unused */ break; case (1 << PHM_AutoThrottleSource_Thermal): protection = true; src = DPM_EVENT_SRC_DIGITAL; break; case (1 << PHM_AutoThrottleSource_External): protection = true; src = DPM_EVENT_SRC_EXTERNAL; break; case (1 << PHM_AutoThrottleSource_External) | (1 << PHM_AutoThrottleSource_Thermal): protection = true; src = DPM_EVENT_SRC_DIGITAL_OR_EXTERNAL; break; } /* Order matters - don't enable thermal protection for the wrong source. */ if (protection) { PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_THERMAL_CTRL, DPM_EVENT_SRC, src); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, !phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalController)); } else PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, GENERAL_PWRMGT, THERMAL_PROTECTION_DIS, 1); } static int iceland_enable_auto_throttle_source(struct pp_hwmgr *hwmgr, PHM_AutoThrottleSource source) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); if (!(data->active_auto_throttle_sources & (1 << source))) { data->active_auto_throttle_sources |= 1 << source; iceland_set_dpm_event_sources(hwmgr, data->active_auto_throttle_sources); } return 0; } static int iceland_enable_thermal_auto_throttle(struct pp_hwmgr *hwmgr) { return iceland_enable_auto_throttle_source(hwmgr, PHM_AutoThrottleSource_Thermal); } /** * Programs the Deep Sleep registers * * @param pHwMgr the address of the powerplay hardware manager. * @param pInput the pointer to input data (PhwEvergreen_DisplayConfiguration) * @param pOutput the pointer to output data (unused) * @param pStorage the pointer to temporary storage (unused) * @param Result the last failure code (unused) * @return always 0 */ static int iceland_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_ON) != 0) PP_ASSERT_WITH_CODE(false, "Attempt to enable Master Deep Sleep switch failed!", return -EINVAL); } else { if (smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MASTER_DeepSleep_OFF) != 0) PP_ASSERT_WITH_CODE(false, "Attempt to disable Master Deep Sleep switch failed!", return -EINVAL); } return 0; } static int iceland_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; if (cf_iceland_voltage_control(hwmgr)) { tmp_result = iceland_enable_voltage_control(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable voltage control!", return tmp_result); tmp_result = iceland_construct_voltage_tables(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to contruct voltage tables!", return tmp_result); } tmp_result = iceland_initialize_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize MC reg table!", return tmp_result); tmp_result = iceland_program_static_screen_threshold_parameters(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program static screen threshold parameters!", return tmp_result); tmp_result = iceland_enable_display_gap(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable display gap!", return tmp_result); tmp_result = iceland_program_voting_clients(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program voting clients!", return tmp_result); tmp_result = iceland_upload_firmware(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload firmware header!", return tmp_result); tmp_result = iceland_process_firmware_header(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to process firmware header!", return tmp_result); tmp_result = iceland_initial_switch_from_arb_f0_to_f1(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize switch from ArbF0 to F1!", return tmp_result); tmp_result = iceland_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to initialize SMC table!", return tmp_result); tmp_result = iceland_populate_initial_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate initialize MC Reg table!", return tmp_result); tmp_result = iceland_populate_pm_fuses(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate PM fuses!", return tmp_result); /* enable SCLK control */ tmp_result = iceland_enable_sclk_control(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable SCLK control!", return tmp_result); tmp_result = iceland_enable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to enable deep sleep!", return tmp_result); /* enable DPM */ tmp_result = iceland_start_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to start DPM!", return tmp_result); tmp_result = iceland_enable_smc_cac(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable SMC CAC!", return tmp_result); tmp_result = iceland_enable_power_containment(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable power containment!", return tmp_result); tmp_result = iceland_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to power control set level!", result = tmp_result); tmp_result = iceland_enable_thermal_auto_throttle(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to enable thermal auto throttle!", result = tmp_result); return result; } static int iceland_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { return phm_hwmgr_backend_fini(hwmgr); } static void iceland_initialize_dpm_defaults(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct phw_iceland_ulv_parm *ulv; ulv = &data->ulv; ulv->ch_ulv_parameter = PPICELAND_CGULVPARAMETER_DFLT; data->voting_rights_clients0 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT0; data->voting_rights_clients1 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT1; data->voting_rights_clients2 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT2; data->voting_rights_clients3 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT3; data->voting_rights_clients4 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT4; data->voting_rights_clients5 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT5; data->voting_rights_clients6 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT6; data->voting_rights_clients7 = PPICELAND_VOTINGRIGHTSCLIENTS_DFLT7; data->static_screen_threshold_unit = PPICELAND_STATICSCREENTHRESHOLDUNIT_DFLT; data->static_screen_threshold = PPICELAND_STATICSCREENTHRESHOLD_DFLT; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ABM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_NonABMSupportInPPLib); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicACTiming); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMemoryTransition); iceland_initialize_power_tune_defaults(hwmgr); data->mclk_strobe_mode_threshold = 40000; data->mclk_stutter_mode_threshold = 30000; data->mclk_edc_enable_threshold = 40000; data->mclk_edc_wr_enable_threshold = 40000; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMCLS); data->pcie_gen_performance.max = PP_PCIEGen1; data->pcie_gen_performance.min = PP_PCIEGen3; data->pcie_gen_power_saving.max = PP_PCIEGen1; data->pcie_gen_power_saving.min = PP_PCIEGen3; data->pcie_lane_performance.max = 0; data->pcie_lane_performance.min = 16; data->pcie_lane_power_saving.max = 0; data->pcie_lane_power_saving.min = 16; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification); } static int iceland_get_evv_voltage(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); uint16_t virtual_voltage_id; uint16_t vddc = 0; uint16_t i; /* the count indicates actual number of entries */ data->vddc_leakage.count = 0; data->vddci_leakage.count = 0; if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) { pr_err("Iceland should always support EVV\n"); return -EINVAL; } /* retrieve voltage for leakage ID (0xff01 + i) */ for (i = 0; i < ICELAND_MAX_LEAKAGE_COUNT; i++) { virtual_voltage_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; PP_ASSERT_WITH_CODE((0 == atomctrl_get_voltage_evv(hwmgr, virtual_voltage_id, &vddc)), "Error retrieving EVV voltage value!\n", continue); if (vddc >= 2000) pr_warning("Invalid VDDC value!\n"); if (vddc != 0 && vddc != virtual_voltage_id) { data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = vddc; data->vddc_leakage.leakage_id[data->vddc_leakage.count] = virtual_voltage_id; data->vddc_leakage.count++; } } return 0; } static void iceland_patch_with_vddc_leakage(struct pp_hwmgr *hwmgr, uint32_t *vddc) { iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint32_t leakage_index; struct phw_iceland_leakage_voltage *leakage_table = &data->vddc_leakage; /* search for leakage voltage ID 0xff01 ~ 0xff08 */ for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) { /* * If this voltage matches a leakage voltage ID, patch * with actual leakage voltage. */ if (leakage_table->leakage_id[leakage_index] == *vddc) { /* * Need to make sure vddc is less than 2v or * else, it could burn the ASIC. */ if (leakage_table->actual_voltage[leakage_index] >= 2000) pr_warning("Invalid VDDC value!\n"); *vddc = leakage_table->actual_voltage[leakage_index]; /* we found leakage voltage */ break; } } if (*vddc >= ATOM_VIRTUAL_VOLTAGE_ID0) pr_warning("Voltage value looks like a Leakage ID but it's not patched\n"); } static void iceland_patch_with_vddci_leakage(struct pp_hwmgr *hwmgr, uint32_t *vddci) { iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint32_t leakage_index; struct phw_iceland_leakage_voltage *leakage_table = &data->vddci_leakage; /* search for leakage voltage ID 0xff01 ~ 0xff08 */ for (leakage_index = 0; leakage_index < leakage_table->count; leakage_index++) { /* * If this voltage matches a leakage voltage ID, patch * with actual leakage voltage. */ if (leakage_table->leakage_id[leakage_index] == *vddci) { *vddci = leakage_table->actual_voltage[leakage_index]; /* we found leakage voltage */ break; } } if (*vddci >= ATOM_VIRTUAL_VOLTAGE_ID0) pr_warning("Voltage value looks like a Leakage ID but it's not patched\n"); } static int iceland_patch_vddc(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table *tab) { uint16_t i; if (tab) for (i = 0; i < tab->count; i++) iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v); return 0; } static int iceland_patch_vddci(struct pp_hwmgr *hwmgr, struct phm_clock_voltage_dependency_table *tab) { uint16_t i; if (tab) for (i = 0; i < tab->count; i++) iceland_patch_with_vddci_leakage(hwmgr, &tab->entries[i].v); return 0; } static int iceland_patch_vce_vddc(struct pp_hwmgr *hwmgr, struct phm_vce_clock_voltage_dependency_table *tab) { uint16_t i; if (tab) for (i = 0; i < tab->count; i++) iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v); return 0; } static int iceland_patch_uvd_vddc(struct pp_hwmgr *hwmgr, struct phm_uvd_clock_voltage_dependency_table *tab) { uint16_t i; if (tab) for (i = 0; i < tab->count; i++) iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v); return 0; } static int iceland_patch_vddc_shed_limit(struct pp_hwmgr *hwmgr, struct phm_phase_shedding_limits_table *tab) { uint16_t i; if (tab) for (i = 0; i < tab->count; i++) iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].Voltage); return 0; } static int iceland_patch_samu_vddc(struct pp_hwmgr *hwmgr, struct phm_samu_clock_voltage_dependency_table *tab) { uint16_t i; if (tab) for (i = 0; i < tab->count; i++) iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v); return 0; } static int iceland_patch_acp_vddc(struct pp_hwmgr *hwmgr, struct phm_acp_clock_voltage_dependency_table *tab) { uint16_t i; if (tab) for (i = 0; i < tab->count; i++) iceland_patch_with_vddc_leakage(hwmgr, &tab->entries[i].v); return 0; } static int iceland_patch_limits_vddc(struct pp_hwmgr *hwmgr, struct phm_clock_and_voltage_limits *tab) { if (tab) { iceland_patch_with_vddc_leakage(hwmgr, (uint32_t *)&tab->vddc); iceland_patch_with_vddci_leakage(hwmgr, (uint32_t *)&tab->vddci); } return 0; } static int iceland_patch_cac_vddc(struct pp_hwmgr *hwmgr, struct phm_cac_leakage_table *tab) { uint32_t i; uint32_t vddc; if (tab) { for (i = 0; i < tab->count; i++) { vddc = (uint32_t)(tab->entries[i].Vddc); iceland_patch_with_vddc_leakage(hwmgr, &vddc); tab->entries[i].Vddc = (uint16_t)vddc; } } return 0; } static int iceland_patch_dependency_tables_with_leakage(struct pp_hwmgr *hwmgr) { int tmp; tmp = iceland_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_sclk); if(tmp) return -EINVAL; tmp = iceland_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dependency_on_mclk); if(tmp) return -EINVAL; tmp = iceland_patch_vddc(hwmgr, hwmgr->dyn_state.vddc_dep_on_dal_pwrl); if(tmp) return -EINVAL; tmp = iceland_patch_vddci(hwmgr, hwmgr->dyn_state.vddci_dependency_on_mclk); if(tmp) return -EINVAL; tmp = iceland_patch_vce_vddc(hwmgr, hwmgr->dyn_state.vce_clock_voltage_dependency_table); if(tmp) return -EINVAL; tmp = iceland_patch_uvd_vddc(hwmgr, hwmgr->dyn_state.uvd_clock_voltage_dependency_table); if(tmp) return -EINVAL; tmp = iceland_patch_samu_vddc(hwmgr, hwmgr->dyn_state.samu_clock_voltage_dependency_table); if(tmp) return -EINVAL; tmp = iceland_patch_acp_vddc(hwmgr, hwmgr->dyn_state.acp_clock_voltage_dependency_table); if(tmp) return -EINVAL; tmp = iceland_patch_vddc_shed_limit(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table); if(tmp) return -EINVAL; tmp = iceland_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_ac); if(tmp) return -EINVAL; tmp = iceland_patch_limits_vddc(hwmgr, &hwmgr->dyn_state.max_clock_voltage_on_dc); if(tmp) return -EINVAL; tmp = iceland_patch_cac_vddc(hwmgr, hwmgr->dyn_state.cac_leakage_table); if(tmp) return -EINVAL; return 0; } static int iceland_set_private_var_based_on_pptale(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *allowed_sclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_sclk; struct phm_clock_voltage_dependency_table *allowed_mclk_vddc_table = hwmgr->dyn_state.vddc_dependency_on_mclk; struct phm_clock_voltage_dependency_table *allowed_mclk_vddci_table = hwmgr->dyn_state.vddci_dependency_on_mclk; PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table != NULL, "VDDC dependency on SCLK table is missing. This table is mandatory\n", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_sclk_vddc_table->count >= 1, "VDDC dependency on SCLK table has to have is missing. This table is mandatory\n", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table != NULL, "VDDC dependency on MCLK table is missing. This table is mandatory\n", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vddc_table->count >= 1, "VDD dependency on MCLK table has to have is missing. This table is mandatory\n", return -EINVAL); data->min_vddc_in_pp_table = (uint16_t)allowed_sclk_vddc_table->entries[0].v; data->max_vddc_in_pp_table = (uint16_t)allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].clk; hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = allowed_mclk_vddc_table->entries[allowed_mclk_vddc_table->count - 1].clk; hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = allowed_sclk_vddc_table->entries[allowed_sclk_vddc_table->count - 1].v; if (allowed_mclk_vddci_table != NULL && allowed_mclk_vddci_table->count >= 1) { data->min_vddci_in_pp_table = (uint16_t)allowed_mclk_vddci_table->entries[0].v; data->max_vddci_in_pp_table = (uint16_t)allowed_mclk_vddci_table->entries[allowed_mclk_vddci_table->count - 1].v; } if (hwmgr->dyn_state.vddci_dependency_on_mclk != NULL && hwmgr->dyn_state.vddci_dependency_on_mclk->count > 1) hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = hwmgr->dyn_state.vddci_dependency_on_mclk->entries[hwmgr->dyn_state.vddci_dependency_on_mclk->count - 1].v; return 0; } static int iceland_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr) { uint32_t table_size; struct phm_clock_voltage_dependency_table *table_clk_vlt; hwmgr->dyn_state.mclk_sclk_ratio = 4; hwmgr->dyn_state.sclk_mclk_delta = 15000; /* 150 MHz */ hwmgr->dyn_state.vddc_vddci_delta = 200; /* 200mV */ /* initialize vddc_dep_on_dal_pwrl table */ table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record); table_clk_vlt = (struct phm_clock_voltage_dependency_table *)kzalloc(table_size, GFP_KERNEL); if (NULL == table_clk_vlt) { pr_err("[ powerplay ] Can not allocate space for vddc_dep_on_dal_pwrl! \n"); return -ENOMEM; } else { table_clk_vlt->count = 4; table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW; table_clk_vlt->entries[0].v = 0; table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW; table_clk_vlt->entries[1].v = 720; table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL; table_clk_vlt->entries[2].v = 810; table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE; table_clk_vlt->entries[3].v = 900; hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt; } return 0; } /** * Initializes the Volcanic Islands Hardware Manager * * @param hwmgr the address of the powerplay hardware manager. * @return 1 if success; otherwise appropriate error code. */ static int iceland_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; SMU71_Discrete_DpmTable *table = NULL; iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); pp_atomctrl_gpio_pin_assignment gpio_pin_assignment; bool stay_in_boot; struct phw_iceland_ulv_parm *ulv; struct cgs_system_info sys_info = {0}; PP_ASSERT_WITH_CODE((NULL != hwmgr), "Invalid Parameter!", return -EINVAL;); data->dll_defaule_on = 0; data->sram_end = SMC_RAM_END; data->activity_target[0] = PPICELAND_TARGETACTIVITY_DFLT; data->activity_target[1] = PPICELAND_TARGETACTIVITY_DFLT; data->activity_target[2] = PPICELAND_TARGETACTIVITY_DFLT; data->activity_target[3] = PPICELAND_TARGETACTIVITY_DFLT; data->activity_target[4] = PPICELAND_TARGETACTIVITY_DFLT; data->activity_target[5] = PPICELAND_TARGETACTIVITY_DFLT; data->activity_target[6] = PPICELAND_TARGETACTIVITY_DFLT; data->activity_target[7] = PPICELAND_TARGETACTIVITY_DFLT; data->mclk_activity_target = PPICELAND_MCLK_TARGETACTIVITY_DFLT; data->sclk_dpm_key_disabled = 0; data->mclk_dpm_key_disabled = 0; data->pcie_dpm_key_disabled = 0; data->pcc_monitor_enabled = 0; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); data->gpio_debug = 0; data->engine_clock_data = 0; data->memory_clock_data = 0; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleepAboveLow); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TablelessHardwareInterface); /* Initializes DPM default values. */ iceland_initialize_dpm_defaults(hwmgr); /* Enable Platform EVV support. */ phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV); /* Get leakage voltage based on leakage ID. */ result = iceland_get_evv_voltage(hwmgr); if (result) goto failed; /** * Patch our voltage dependency table with actual leakage * voltage. We need to perform leakage translation before it's * used by other functions such as * iceland_set_hwmgr_variables_based_on_pptable. */ result = iceland_patch_dependency_tables_with_leakage(hwmgr); if (result) goto failed; /* Parse pptable data read from VBIOS. */ result = iceland_set_private_var_based_on_pptale(hwmgr); if (result) goto failed; /* ULV support */ ulv = &(data->ulv); ulv->ulv_supported = 1; /* Initalize Dynamic State Adjustment Rule Settings*/ result = iceland_initializa_dynamic_state_adjustment_rule_settings(hwmgr); if (result) { pr_err("[ powerplay ] iceland_initializa_dynamic_state_adjustment_rule_settings failed!\n"); goto failed; } data->voltage_control = ICELAND_VOLTAGE_CONTROL_NONE; data->vdd_ci_control = ICELAND_VOLTAGE_CONTROL_NONE; data->mvdd_control = ICELAND_VOLTAGE_CONTROL_NONE; /* * Hardcode thermal temperature settings for now, these will * be overwritten if a custom policy exists. */ data->thermal_temp_setting.temperature_low = 99500; data->thermal_temp_setting.temperature_high = 100000; data->thermal_temp_setting.temperature_shutdown = 104000; data->uvd_enabled = false; table = &data->smc_state_table; if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin_assignment)) { table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } else { table->VRHotGpio = ICELAND_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); } if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin_assignment)) { table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } else { table->AcDcGpio = ICELAND_UNUSED_GPIO_PIN; phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); } /* * If ucGPIO_ID=VDDC_PCC_GPIO_PINID in GPIO_LUTable, Peak. * Current Control feature is enabled and we should program * PCC HW register */ if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_PCC_GPIO_PINID, &gpio_pin_assignment)) { uint32_t temp_reg = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL); switch (gpio_pin_assignment.uc_gpio_pin_bit_shift) { case 0: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x1); break; case 1: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW_MODE, 0x2); break; case 2: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, GNB_SLOW, 0x1); break; case 3: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, FORCE_NB_PS1, 0x1); break; case 4: temp_reg = PHM_SET_FIELD(temp_reg, CNB_PWRMGT_CNTL, DPM_ENABLED, 0x1); break; default: pr_warning("[ powerplay ] Failed to setup PCC HW register! Wrong GPIO assigned for VDDC_PCC_GPIO_PINID!\n"); break; } cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCNB_PWRMGT_CNTL, temp_reg); } phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMU7); if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_GPIO_LUT)) data->voltage_control = ICELAND_VOLTAGE_CONTROL_BY_GPIO; else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) data->voltage_control = ICELAND_VOLTAGE_CONTROL_BY_SVID2; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI)) { if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) data->vdd_ci_control = ICELAND_VOLTAGE_CONTROL_BY_GPIO; else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_SVID2)) data->vdd_ci_control = ICELAND_VOLTAGE_CONTROL_BY_SVID2; } if (data->vdd_ci_control == ICELAND_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableMVDDControl)) { if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_GPIO_LUT)) data->mvdd_control = ICELAND_VOLTAGE_CONTROL_BY_GPIO; else if (atomctrl_is_voltage_controled_by_gpio_v3(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) data->mvdd_control = ICELAND_VOLTAGE_CONTROL_BY_SVID2; } if (data->mvdd_control == ICELAND_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableMVDDControl); data->vddc_phase_shed_control = false; stay_in_boot = phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StayInBootState); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ActivityReporting); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GFXClockGatingSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MemorySpreadSpectrumSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EngineSpreadSpectrumSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPCIEGen2Support); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMC); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisablePowerGating); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_BACO); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ThermalAutoThrottling); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableLSClockGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SamuDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AcpDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6inACSupport); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnablePlatformPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PauseMMSessions); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PauseMMSessions); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GFXClockGatingManagedInCAIL); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_IcelandULPSSWWorkAround); /* iceland doesn't support UVD and VCE */ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS; result = cgs_query_system_info(hwmgr->device, &sys_info); if (!result) { if (sys_info.value & AMD_PG_SUPPORT_UVD) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); if (sys_info.value & AMD_PG_SUPPORT_VCE) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); data->is_tlu_enabled = false; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = ICELAND_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PCIE_GEN_INFO; result = cgs_query_system_info(hwmgr->device, &sys_info); if (result) data->pcie_gen_cap = AMDGPU_DEFAULT_PCIE_GEN_MASK; else data->pcie_gen_cap = (uint32_t)sys_info.value; if (data->pcie_gen_cap & CAIL_PCIE_LINK_SPEED_SUPPORT_GEN3) data->pcie_spc_cap = 20; sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PCIE_MLW; result = cgs_query_system_info(hwmgr->device, &sys_info); if (result) data->pcie_lane_cap = AMDGPU_DEFAULT_PCIE_MLW_MASK; else data->pcie_lane_cap = (uint32_t)sys_info.value; } else { /* Ignore return value in here, we are cleaning up a mess. */ iceland_hwmgr_backend_fini(hwmgr); } return 0; failed: return result; } static int iceland_get_num_of_entries(struct pp_hwmgr *hwmgr) { int result; unsigned long ret = 0; result = pp_tables_get_num_of_entries(hwmgr, &ret); return result ? 0 : ret; } static const unsigned long PhwIceland_Magic = (unsigned long)(PHM_VIslands_Magic); struct iceland_power_state *cast_phw_iceland_power_state( struct pp_hw_power_state *hw_ps) { if (hw_ps == NULL) return NULL; PP_ASSERT_WITH_CODE((PhwIceland_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL); return (struct iceland_power_state *)hw_ps; } static int iceland_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *prequest_ps, const struct pp_power_state *pcurrent_ps) { struct iceland_power_state *iceland_ps = cast_phw_iceland_power_state(&prequest_ps->hardware); uint32_t sclk; uint32_t mclk; struct PP_Clocks minimum_clocks = {0}; bool disable_mclk_switching; bool disable_mclk_switching_for_frame_lock; struct cgs_display_info info = {0}; const struct phm_clock_and_voltage_limits *max_limits; uint32_t i; iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); int32_t count; int32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; data->battery_state = (PP_StateUILabel_Battery == prequest_ps->classification.ui_label); PP_ASSERT_WITH_CODE(iceland_ps->performance_level_count == 2, "VI should always have 2 performance levels", ); max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? &(hwmgr->dyn_state.max_clock_voltage_on_ac) : &(hwmgr->dyn_state.max_clock_voltage_on_dc); if (PP_PowerSource_DC == hwmgr->power_source) { for (i = 0; i < iceland_ps->performance_level_count; i++) { if (iceland_ps->performance_levels[i].memory_clock > max_limits->mclk) iceland_ps->performance_levels[i].memory_clock = max_limits->mclk; if (iceland_ps->performance_levels[i].engine_clock > max_limits->sclk) iceland_ps->performance_levels[i].engine_clock = max_limits->sclk; } } iceland_ps->vce_clocks.EVCLK = hwmgr->vce_arbiter.evclk; iceland_ps->vce_clocks.ECCLK = hwmgr->vce_arbiter.ecclk; cgs_get_active_displays_info(hwmgr->device, &info); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); stable_pstate_sclk = (max_limits->sclk * 75) / 100; for (count = hwmgr->dyn_state.vddc_dependency_on_sclk->count-1; count >= 0; count--) { if (stable_pstate_sclk >= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk) { stable_pstate_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[count].clk; break; } } if (count < 0) stable_pstate_sclk = hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].clk; stable_pstate_mclk = max_limits->mclk; minimum_clocks.engineClock = stable_pstate_sclk; minimum_clocks.memoryClock = stable_pstate_mclk; } if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; iceland_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; if (0 != hwmgr->gfx_arbiter.sclk_over_drive) { PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock), "Overdrive sclk exceeds limit", hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock); if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) iceland_ps->performance_levels[1].engine_clock = hwmgr->gfx_arbiter.sclk_over_drive; } if (0 != hwmgr->gfx_arbiter.mclk_over_drive) { PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock), "Overdrive mclk exceeds limit", hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock); if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) iceland_ps->performance_levels[1].memory_clock = hwmgr->gfx_arbiter.mclk_over_drive; } disable_mclk_switching_for_frame_lock = phm_cap_enabled( hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); disable_mclk_switching = (1 < info.display_count) || disable_mclk_switching_for_frame_lock; sclk = iceland_ps->performance_levels[0].engine_clock; mclk = iceland_ps->performance_levels[0].memory_clock; if (disable_mclk_switching) mclk = iceland_ps->performance_levels[iceland_ps->performance_level_count - 1].memory_clock; if (sclk < minimum_clocks.engineClock) sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock; if (mclk < minimum_clocks.memoryClock) mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock; iceland_ps->performance_levels[0].engine_clock = sclk; iceland_ps->performance_levels[0].memory_clock = mclk; iceland_ps->performance_levels[1].engine_clock = (iceland_ps->performance_levels[1].engine_clock >= iceland_ps->performance_levels[0].engine_clock) ? iceland_ps->performance_levels[1].engine_clock : iceland_ps->performance_levels[0].engine_clock; if (disable_mclk_switching) { if (mclk < iceland_ps->performance_levels[1].memory_clock) mclk = iceland_ps->performance_levels[1].memory_clock; iceland_ps->performance_levels[0].memory_clock = mclk; iceland_ps->performance_levels[1].memory_clock = mclk; } else { if (iceland_ps->performance_levels[1].memory_clock < iceland_ps->performance_levels[0].memory_clock) iceland_ps->performance_levels[1].memory_clock = iceland_ps->performance_levels[0].memory_clock; } if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) { for (i=0; i < iceland_ps->performance_level_count; i++) { iceland_ps->performance_levels[i].engine_clock = stable_pstate_sclk; iceland_ps->performance_levels[i].memory_clock = stable_pstate_mclk; iceland_ps->performance_levels[i].pcie_gen = data->pcie_gen_performance.max; iceland_ps->performance_levels[i].pcie_lane = data->pcie_gen_performance.max; } } return 0; } static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr) { /* * We return the status of Voltage Control instead of checking SCLK/MCLK DPM * because we may have test scenarios that need us intentionly disable SCLK/MCLK DPM, * whereas voltage control is a fundemental change that will not be disabled */ return (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON) ? 1 : 0); } /** * force DPM power State * * @param hwmgr: the address of the powerplay hardware manager. * @param n : DPM level * @return The response that came from the SMC. */ int iceland_dpm_force_state(struct pp_hwmgr *hwmgr, uint32_t n) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr), "Trying to force SCLK when DPM is disabled", return -1;); if (0 == data->sclk_dpm_key_disabled) return (0 == smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, PPSMC_MSG_DPM_ForceState, n) ? 0 : 1); return 0; } /** * force DPM power State * * @param hwmgr: the address of the powerplay hardware manager. * @param n : DPM level * @return The response that came from the SMC. */ int iceland_dpm_force_state_mclk(struct pp_hwmgr *hwmgr, uint32_t n) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* Checking if DPM is running. If we discover hang because of this, we should skip this message. */ PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr), "Trying to Force MCLK when DPM is disabled", return -1;); if (0 == data->mclk_dpm_key_disabled) return (0 == smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, PPSMC_MSG_MCLKDPM_ForceState, n) ? 0 : 1); return 0; } /** * force DPM power State * * @param hwmgr: the address of the powerplay hardware manager. * @param n : DPM level * @return The response that came from the SMC. */ int iceland_dpm_force_state_pcie(struct pp_hwmgr *hwmgr, uint32_t n) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr), "Trying to Force PCIE level when DPM is disabled", return -1;); if (0 == data->pcie_dpm_key_disabled) return (0 == smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, PPSMC_MSG_PCIeDPM_ForceLevel, n) ? 0 : 1); return 0; } static int iceland_force_dpm_highest(struct pp_hwmgr *hwmgr) { uint32_t level, tmp; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); if (0 == data->sclk_dpm_key_disabled) { /* SCLK */ if (data->dpm_level_enable_mask.sclk_dpm_enable_mask != 0) { level = 0; tmp = data->dpm_level_enable_mask.sclk_dpm_enable_mask; while (tmp >>= 1) level++ ; if (0 != level) { PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state(hwmgr, level)), "force highest sclk dpm state failed!", return -1); PHM_WAIT_INDIRECT_FIELD(hwmgr->device, SMC_IND, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX, level); } } } if (0 == data->mclk_dpm_key_disabled) { /* MCLK */ if (data->dpm_level_enable_mask.mclk_dpm_enable_mask != 0) { level = 0; tmp = data->dpm_level_enable_mask.mclk_dpm_enable_mask; while (tmp >>= 1) level++ ; if (0 != level) { PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state_mclk(hwmgr, level)), "force highest mclk dpm state failed!", return -1); PHM_WAIT_INDIRECT_FIELD(hwmgr->device, SMC_IND, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_MCLK_INDEX, level); } } } if (0 == data->pcie_dpm_key_disabled) { /* PCIE */ if (data->dpm_level_enable_mask.pcie_dpm_enable_mask != 0) { level = 0; tmp = data->dpm_level_enable_mask.pcie_dpm_enable_mask; while (tmp >>= 1) level++ ; if (0 != level) { PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state_pcie(hwmgr, level)), "force highest pcie dpm state failed!", return -1); } } } return 0; } static uint32_t iceland_get_lowest_enable_level(struct pp_hwmgr *hwmgr, uint32_t level_mask) { uint32_t level = 0; while (0 == (level_mask & (1 << level))) level++; return level; } static int iceland_force_dpm_lowest(struct pp_hwmgr *hwmgr) { uint32_t level; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); /* for now force only sclk */ if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) { level = iceland_get_lowest_enable_level(hwmgr, data->dpm_level_enable_mask.sclk_dpm_enable_mask); PP_ASSERT_WITH_CODE((0 == iceland_dpm_force_state(hwmgr, level)), "force sclk dpm state failed!", return -1); PHM_WAIT_INDIRECT_FIELD(hwmgr->device, SMC_IND, TARGET_AND_CURRENT_PROFILE_INDEX, CURR_SCLK_INDEX, level); } return 0; } int iceland_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); PP_ASSERT_WITH_CODE (0 == iceland_is_dpm_running(hwmgr), "Trying to Unforce DPM when DPM is disabled. Returning without sending SMC message.", return -1); if (0 == data->sclk_dpm_key_disabled) { PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc( hwmgr->smumgr, PPSMC_MSG_NoForcedLevel)), "unforce sclk dpm state failed!", return -1); } if (0 == data->mclk_dpm_key_disabled) { PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc( hwmgr->smumgr, PPSMC_MSG_MCLKDPM_NoForcedLevel)), "unforce mclk dpm state failed!", return -1); } if (0 == data->pcie_dpm_key_disabled) { PP_ASSERT_WITH_CODE((0 == smum_send_msg_to_smc( hwmgr->smumgr, PPSMC_MSG_PCIeDPM_UnForceLevel)), "unforce pcie level failed!", return -1); } return 0; } static int iceland_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = iceland_force_dpm_highest(hwmgr); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_LOW: ret = iceland_force_dpm_lowest(hwmgr); if (ret) return ret; break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = iceland_unforce_dpm_levels(hwmgr); if (ret) return ret; break; default: break; } hwmgr->dpm_level = level; return ret; } const struct iceland_power_state *cast_const_phw_iceland_power_state( const struct pp_hw_power_state *hw_ps) { if (hw_ps == NULL) return NULL; PP_ASSERT_WITH_CODE((PhwIceland_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL); return (const struct iceland_power_state *)hw_ps; } static int iceland_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state); struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_single_dpm_table *psclk_table = &(data->dpm_table.sclk_table); uint32_t sclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].engine_clock; struct iceland_single_dpm_table *pmclk_table = &(data->dpm_table.mclk_table); uint32_t mclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].memory_clock; struct PP_Clocks min_clocks = {0}; uint32_t i; struct cgs_display_info info = {0}; data->need_update_smu7_dpm_table = 0; for (i = 0; i < psclk_table->count; i++) { if (sclk == psclk_table->dpm_levels[i].value) break; } if (i >= psclk_table->count) data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; else { /* * TODO: Check SCLK in DAL's minimum clocks in case DeepSleep * divider update is required. */ if(data->display_timing.min_clock_insr != min_clocks.engineClockInSR) data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_SCLK; } for (i = 0; i < pmclk_table->count; i++) { if (mclk == pmclk_table->dpm_levels[i].value) break; } if (i >= pmclk_table->count) data->need_update_smu7_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; cgs_get_active_displays_info(hwmgr->device, &info); if (data->display_timing.num_existing_displays != info.display_count) data->need_update_smu7_dpm_table |= DPMTABLE_UPDATE_MCLK; return 0; } static uint16_t iceland_get_maximum_link_speed(struct pp_hwmgr *hwmgr, const struct iceland_power_state *hw_ps) { uint32_t i; uint32_t pcie_speed, max_speed = 0; for (i = 0; i < hw_ps->performance_level_count; i++) { pcie_speed = hw_ps->performance_levels[i].pcie_gen; if (max_speed < pcie_speed) max_speed = pcie_speed; } return max_speed; } static uint16_t iceland_get_current_pcie_speed(struct pp_hwmgr *hwmgr) { uint32_t speed_cntl = 0; speed_cntl = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__PCIE, ixPCIE_LC_SPEED_CNTL); return((uint16_t)PHM_GET_FIELD(speed_cntl, PCIE_LC_SPEED_CNTL, LC_CURRENT_DATA_RATE)); } static int iceland_request_link_speed_change_before_state_change(struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); const struct iceland_power_state *iceland_nps = cast_const_phw_iceland_power_state(states->pnew_state); const struct iceland_power_state *iceland_cps = cast_const_phw_iceland_power_state(states->pcurrent_state); uint16_t target_link_speed = iceland_get_maximum_link_speed(hwmgr, iceland_nps); uint16_t current_link_speed; if (data->force_pcie_gen == PP_PCIEGenInvalid) current_link_speed = iceland_get_maximum_link_speed(hwmgr, iceland_cps); else current_link_speed = data->force_pcie_gen; data->force_pcie_gen = PP_PCIEGenInvalid; data->pspp_notify_required = false; if (target_link_speed > current_link_speed) { switch(target_link_speed) { case PP_PCIEGen3: if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN3, false)) break; data->force_pcie_gen = PP_PCIEGen2; if (current_link_speed == PP_PCIEGen2) break; case PP_PCIEGen2: if (0 == acpi_pcie_perf_request(hwmgr->device, PCIE_PERF_REQ_GEN2, false)) break; default: data->force_pcie_gen = iceland_get_current_pcie_speed(hwmgr); break; } } else { if (target_link_speed < current_link_speed) data->pspp_notify_required = true; } return 0; } static int iceland_freeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); if (0 == data->need_update_smu7_dpm_table) return 0; if ((0 == data->sclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { PP_ASSERT_WITH_CODE( 0 == iceland_is_dpm_running(hwmgr), "Trying to freeze SCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE( 0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_FreezeLevel), "Failed to freeze SCLK DPM during FreezeSclkMclkDPM Function!", return -1); } if ((0 == data->mclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr), "Trying to freeze MCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE( 0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_FreezeLevel), "Failed to freeze MCLK DPM during FreezeSclkMclkDPM Function!", return -1); } return 0; } static int iceland_populate_and_upload_sclk_mclk_dpm_levels(struct pp_hwmgr *hwmgr, const void *input) { int result = 0; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state); struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint32_t sclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].engine_clock; uint32_t mclk = iceland_ps->performance_levels[iceland_ps->performance_level_count-1].memory_clock; struct iceland_dpm_table *pdpm_table = &data->dpm_table; struct iceland_dpm_table *pgolden_dpm_table = &data->golden_dpm_table; uint32_t dpm_count, clock_percent; uint32_t i; if (0 == data->need_update_smu7_dpm_table) return 0; if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_SCLK) { pdpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value = sclk; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { /* * Need to do calculation based on the golden DPM table * as the Heatmap GPU Clock axis is also based on the default values */ PP_ASSERT_WITH_CODE( (pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value != 0), "Divide by 0!", return -1); dpm_count = pdpm_table->sclk_table.count < 2 ? 0 : pdpm_table->sclk_table.count-2; for (i = dpm_count; i > 1; i--) { if (sclk > pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value) { clock_percent = ((sclk - pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value)*100) / pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value; pdpm_table->sclk_table.dpm_levels[i].value = pgolden_dpm_table->sclk_table.dpm_levels[i].value + (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100; } else if (pgolden_dpm_table->sclk_table.dpm_levels[pdpm_table->sclk_table.count-1].value > sclk) { clock_percent = ((pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value - sclk)*100) / pgolden_dpm_table->sclk_table.dpm_levels[pgolden_dpm_table->sclk_table.count-1].value; pdpm_table->sclk_table.dpm_levels[i].value = pgolden_dpm_table->sclk_table.dpm_levels[i].value - (pgolden_dpm_table->sclk_table.dpm_levels[i].value * clock_percent)/100; } else pdpm_table->sclk_table.dpm_levels[i].value = pgolden_dpm_table->sclk_table.dpm_levels[i].value; } } } if (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK) { pdpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value = mclk; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinACSupport) || phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_OD6PlusinDCSupport)) { PP_ASSERT_WITH_CODE( (pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value != 0), "Divide by 0!", return -1); dpm_count = pdpm_table->mclk_table.count < 2? 0 : pdpm_table->mclk_table.count-2; for (i = dpm_count; i > 1; i--) { if (mclk > pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value) { clock_percent = ((mclk - pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value)*100) / pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value; pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value + (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100; } else if (pgolden_dpm_table->mclk_table.dpm_levels[pdpm_table->mclk_table.count-1].value > mclk) { clock_percent = ((pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value - mclk)*100) / pgolden_dpm_table->mclk_table.dpm_levels[pgolden_dpm_table->mclk_table.count-1].value; pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value - (pgolden_dpm_table->mclk_table.dpm_levels[i].value * clock_percent)/100; } else pdpm_table->mclk_table.dpm_levels[i].value = pgolden_dpm_table->mclk_table.dpm_levels[i].value; } } } if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) { result = iceland_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate SCLK during PopulateNewDPMClocksStates Function!", return result); } if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { /*populate MCLK dpm table to SMU7 */ result = iceland_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "Failed to populate MCLK during PopulateNewDPMClocksStates Function!", return result); } return result; } static int iceland_trim_single_dpm_states(struct pp_hwmgr *hwmgr, struct iceland_single_dpm_table *pdpm_table, uint32_t low_limit, uint32_t high_limit) { uint32_t i; for (i = 0; i < pdpm_table->count; i++) { if ((pdpm_table->dpm_levels[i].value < low_limit) || (pdpm_table->dpm_levels[i].value > high_limit)) pdpm_table->dpm_levels[i].enabled = false; else pdpm_table->dpm_levels[i].enabled = true; } return 0; } static int iceland_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct iceland_power_state *hw_state) { int result = 0; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint32_t high_limit_count; PP_ASSERT_WITH_CODE((hw_state->performance_level_count >= 1), "power state did not have any performance level", return -1); high_limit_count = (1 == hw_state->performance_level_count) ? 0: 1; iceland_trim_single_dpm_states(hwmgr, &(data->dpm_table.sclk_table), hw_state->performance_levels[0].engine_clock, hw_state->performance_levels[high_limit_count].engine_clock); iceland_trim_single_dpm_states(hwmgr, &(data->dpm_table.mclk_table), hw_state->performance_levels[0].memory_clock, hw_state->performance_levels[high_limit_count].memory_clock); return result; } static int iceland_generate_dpm_level_enable_mask(struct pp_hwmgr *hwmgr, const void *input) { int result; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state); result = iceland_trim_dpm_states(hwmgr, iceland_ps); if (0 != result) return result; data->dpm_level_enable_mask.sclk_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&data->dpm_table.sclk_table); data->dpm_level_enable_mask.mclk_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&data->dpm_table.mclk_table); data->last_mclk_dpm_enable_mask = data->dpm_level_enable_mask.mclk_dpm_enable_mask; if (data->uvd_enabled && (data->dpm_level_enable_mask.mclk_dpm_enable_mask & 1)) data->dpm_level_enable_mask.mclk_dpm_enable_mask &= 0xFFFFFFFE; data->dpm_level_enable_mask.pcie_dpm_enable_mask = iceland_get_dpm_level_enable_mask_value(&data->dpm_table.pcie_speed_table); return 0; } static int iceland_update_vce_dpm(struct pp_hwmgr *hwmgr, const void *input) { return 0; } static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkThrottleLowNotification) && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) { data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold; low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); result = smu7_copy_bytes_to_smc( hwmgr->smumgr, data->dpm_table_start + offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold), (uint8_t *)&low_sclk_interrupt_threshold, sizeof(uint32_t), data->sram_end ); } return result; } static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); uint32_t address; int32_t result; if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) return 0; memset(&data->mc_reg_table, 0, sizeof(SMU71_Discrete_MCRegisters)); result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(data->mc_reg_table)); if(result != 0) return result; address = data->mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]); return smu7_copy_bytes_to_smc(hwmgr->smumgr, address, (uint8_t *)&data->mc_reg_table.data[0], sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count, data->sram_end); } static int iceland_program_memory_timing_parameters_conditionally(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); if (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK)) return iceland_program_memory_timing_parameters(hwmgr); return 0; } static int iceland_unfreeze_sclk_mclk_dpm(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); if (0 == data->need_update_smu7_dpm_table) return 0; if ((0 == data->sclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK))) { PP_ASSERT_WITH_CODE(0 == iceland_is_dpm_running(hwmgr), "Trying to Unfreeze SCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE( 0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel), "Failed to unfreeze SCLK DPM during UnFreezeSclkMclkDPM Function!", return -1); } if ((0 == data->mclk_dpm_key_disabled) && (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK)) { PP_ASSERT_WITH_CODE( 0 == iceland_is_dpm_running(hwmgr), "Trying to Unfreeze MCLK DPM when DPM is disabled", ); PP_ASSERT_WITH_CODE( 0 == smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel), "Failed to unfreeze MCLK DPM during UnFreezeSclkMclkDPM Function!", return -1); } data->need_update_smu7_dpm_table = 0; return 0; } static int iceland_notify_link_speed_change_after_state_change(struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); const struct iceland_power_state *iceland_ps = cast_const_phw_iceland_power_state(states->pnew_state); uint16_t target_link_speed = iceland_get_maximum_link_speed(hwmgr, iceland_ps); uint8_t request; if (data->pspp_notify_required || data->pcie_performance_request) { if (target_link_speed == PP_PCIEGen3) request = PCIE_PERF_REQ_GEN3; else if (target_link_speed == PP_PCIEGen2) request = PCIE_PERF_REQ_GEN2; else request = PCIE_PERF_REQ_GEN1; if(request == PCIE_PERF_REQ_GEN1 && iceland_get_current_pcie_speed(hwmgr) > 0) { data->pcie_performance_request = false; return 0; } if (0 != acpi_pcie_perf_request(hwmgr->device, request, false)) { if (PP_PCIEGen2 == target_link_speed) printk("PSPP request to switch to Gen2 from Gen3 Failed!"); else printk("PSPP request to switch to Gen1 from Gen2 Failed!"); } } data->pcie_performance_request = false; return 0; } int iceland_upload_dpm_level_enable_mask(struct pp_hwmgr *hwmgr) { PPSMC_Result result; iceland_hwmgr *data = (iceland_hwmgr *)(hwmgr->backend); if (0 == data->sclk_dpm_key_disabled) { /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ if (0 != iceland_is_dpm_running(hwmgr)) printk(KERN_ERR "[ powerplay ] Trying to set Enable Sclk Mask when DPM is disabled \n"); if (0 != data->dpm_level_enable_mask.sclk_dpm_enable_mask) { result = smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, (PPSMC_Msg)PPSMC_MSG_SCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.sclk_dpm_enable_mask); PP_ASSERT_WITH_CODE((0 == result), "Set Sclk Dpm enable Mask failed", return -1); } } if (0 == data->mclk_dpm_key_disabled) { /* Checking if DPM is running. If we discover hang because of this, we should skip this message.*/ if (0 != iceland_is_dpm_running(hwmgr)) printk(KERN_ERR "[ powerplay ] Trying to set Enable Mclk Mask when DPM is disabled \n"); if (0 != data->dpm_level_enable_mask.mclk_dpm_enable_mask) { result = smum_send_msg_to_smc_with_parameter( hwmgr->smumgr, (PPSMC_Msg)PPSMC_MSG_MCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.mclk_dpm_enable_mask); PP_ASSERT_WITH_CODE((0 == result), "Set Mclk Dpm enable Mask failed", return -1); } } return 0; } static int iceland_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { int tmp_result, result = 0; tmp_result = iceland_find_dpm_states_clocks_in_dpm_table(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to find DPM states clocks in DPM table!", result = tmp_result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { tmp_result = iceland_request_link_speed_change_before_state_change(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to request link speed change before state change!", result = tmp_result); } tmp_result = iceland_freeze_sclk_mclk_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to freeze SCLK MCLK DPM!", result = tmp_result); tmp_result = iceland_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result); tmp_result = iceland_generate_dpm_level_enable_mask(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to generate DPM level enabled mask!", result = tmp_result); tmp_result = iceland_update_vce_dpm(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update VCE DPM!", result = tmp_result); tmp_result = iceland_update_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to update SCLK threshold!", result = tmp_result); tmp_result = iceland_update_and_upload_mc_reg_table(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload MC reg table!", result = tmp_result); tmp_result = iceland_program_memory_timing_parameters_conditionally(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to program memory timing parameters!", result = tmp_result); tmp_result = iceland_unfreeze_sclk_mclk_dpm(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to unfreeze SCLK MCLK DPM!", result = tmp_result); tmp_result = iceland_upload_dpm_level_enable_mask(hwmgr); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to upload DPM level enabled mask!", result = tmp_result); if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PCIEPerformanceRequest)) { tmp_result = iceland_notify_link_speed_change_after_state_change(hwmgr, input); PP_ASSERT_WITH_CODE((0 == tmp_result), "Failed to notify link speed change after state change!", result = tmp_result); } return result; } static int iceland_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct iceland_power_state); } static int iceland_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct iceland_power_state *iceland_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; iceland_ps = cast_phw_iceland_power_state(&ps->hardware); if (low) return iceland_ps->performance_levels[0].memory_clock; else return iceland_ps->performance_levels[iceland_ps->performance_level_count-1].memory_clock; } static int iceland_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct iceland_power_state *iceland_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; iceland_ps = cast_phw_iceland_power_state(&ps->hardware); if (low) return iceland_ps->performance_levels[0].engine_clock; else return iceland_ps->performance_levels[iceland_ps->performance_level_count-1].engine_clock; } static int iceland_get_current_pcie_lane_number( struct pp_hwmgr *hwmgr) { uint32_t link_width; link_width = PHM_READ_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__PCIE, PCIE_LC_LINK_WIDTH_CNTL, LC_LINK_WIDTH_RD); PP_ASSERT_WITH_CODE((7 >= link_width), "Invalid PCIe lane width!", return 0); return decode_pcie_lane_width(link_width); } static int iceland_dpm_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_power_state *ps = (struct iceland_power_state *)hw_ps; ATOM_FIRMWARE_INFO_V2_2 *fw_info; uint16_t size; uint8_t frev, crev; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); /* First retrieve the Boot clocks and VDDC from the firmware info table. * We assume here that fw_info is unchanged if this call fails. */ fw_info = (ATOM_FIRMWARE_INFO_V2_2 *)cgs_atom_get_data_table( hwmgr->device, index, &size, &frev, &crev); if (!fw_info) /* During a test, there is no firmware info table. */ return 0; /* Patch the state. */ data->vbios_boot_state.sclk_bootup_value = le32_to_cpu(fw_info->ulDefaultEngineClock); data->vbios_boot_state.mclk_bootup_value = le32_to_cpu(fw_info->ulDefaultMemoryClock); data->vbios_boot_state.mvdd_bootup_value = le16_to_cpu(fw_info->usBootUpMVDDCVoltage); data->vbios_boot_state.vddc_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCVoltage); data->vbios_boot_state.vddci_bootup_value = le16_to_cpu(fw_info->usBootUpVDDCIVoltage); data->vbios_boot_state.pcie_gen_bootup_value = iceland_get_current_pcie_speed(hwmgr); data->vbios_boot_state.pcie_lane_bootup_value = (uint16_t)iceland_get_current_pcie_lane_number(hwmgr); /* set boot power state */ ps->performance_levels[0].memory_clock = data->vbios_boot_state.mclk_bootup_value; ps->performance_levels[0].engine_clock = data->vbios_boot_state.sclk_bootup_value; ps->performance_levels[0].pcie_gen = data->vbios_boot_state.pcie_gen_bootup_value; ps->performance_levels[0].pcie_lane = data->vbios_boot_state.pcie_lane_bootup_value; return 0; } static int iceland_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *power_state, unsigned int index, const void *clock_info) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_power_state *iceland_power_state = cast_phw_iceland_power_state(power_state); const ATOM_PPLIB_CI_CLOCK_INFO *visland_clk_info = clock_info; struct iceland_performance_level *performance_level; uint32_t engine_clock, memory_clock; uint16_t pcie_gen_from_bios; engine_clock = visland_clk_info->ucEngineClockHigh << 16 | visland_clk_info->usEngineClockLow; memory_clock = visland_clk_info->ucMemoryClockHigh << 16 | visland_clk_info->usMemoryClockLow; if (!(data->mc_micro_code_feature & DISABLE_MC_LOADMICROCODE) && memory_clock > data->highest_mclk) data->highest_mclk = memory_clock; performance_level = &(iceland_power_state->performance_levels [iceland_power_state->performance_level_count++]); PP_ASSERT_WITH_CODE( (iceland_power_state->performance_level_count < SMU71_MAX_LEVELS_GRAPHICS), "Performance levels exceeds SMC limit!", return -1); PP_ASSERT_WITH_CODE( (iceland_power_state->performance_level_count <= hwmgr->platform_descriptor.hardwareActivityPerformanceLevels), "Performance levels exceeds Driver limit!", return -1); /* Performance levels are arranged from low to high. */ performance_level->memory_clock = memory_clock; performance_level->engine_clock = engine_clock; pcie_gen_from_bios = visland_clk_info->ucPCIEGen; performance_level->pcie_gen = get_pcie_gen_support(data->pcie_gen_cap, pcie_gen_from_bios); performance_level->pcie_lane = get_pcie_lane_support(data->pcie_lane_cap, visland_clk_info->usPCIELane); return 0; } static int iceland_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *state) { int result; struct iceland_power_state *ps; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct phm_clock_voltage_dependency_table *dep_mclk_table = hwmgr->dyn_state.vddci_dependency_on_mclk; memset(&state->hardware, 0x00, sizeof(struct pp_hw_power_state)); state->hardware.magic = PHM_VIslands_Magic; ps = (struct iceland_power_state *)(&state->hardware); result = pp_tables_get_entry(hwmgr, entry_index, state, iceland_get_pp_table_entry_callback_func); /* * This is the earliest time we have all the dependency table * and the VBIOS boot state as * PP_Tables_GetPowerPlayTableEntry retrieves the VBIOS boot * state if there is only one VDDCI/MCLK level, check if it's * the same as VBIOS boot state */ if (dep_mclk_table != NULL && dep_mclk_table->count == 1) { if (dep_mclk_table->entries[0].clk != data->vbios_boot_state.mclk_bootup_value) printk(KERN_ERR "Single MCLK entry VDDCI/MCLK dependency table " "does not match VBIOS boot MCLK level"); if (dep_mclk_table->entries[0].v != data->vbios_boot_state.vddci_bootup_value) printk(KERN_ERR "Single VDDCI entry VDDCI/MCLK dependency table " "does not match VBIOS boot VDDCI level"); } /* set DC compatible flag if this state supports DC */ if (!state->validation.disallowOnDC) ps->dc_compatible = true; if (state->classification.flags & PP_StateClassificationFlag_ACPI) data->acpi_pcie_gen = ps->performance_levels[0].pcie_gen; else if (0 != (state->classification.flags & PP_StateClassificationFlag_Boot)) { if (data->bacos.best_match == 0xffff) { /* For C.I. use boot state as base BACO state */ data->bacos.best_match = PP_StateClassificationFlag_Boot; data->bacos.performance_level = ps->performance_levels[0]; } } ps->uvd_clocks.VCLK = state->uvd_clocks.VCLK; ps->uvd_clocks.DCLK = state->uvd_clocks.DCLK; if (!result) { uint32_t i; switch (state->classification.ui_label) { case PP_StateUILabel_Performance: data->use_pcie_performance_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_performance.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_performance.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_performance.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_performance.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_performance.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_performance.min = ps->performance_levels[i].pcie_lane; } break; case PP_StateUILabel_Battery: data->use_pcie_power_saving_levels = true; for (i = 0; i < ps->performance_level_count; i++) { if (data->pcie_gen_power_saving.max < ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.max = ps->performance_levels[i].pcie_gen; if (data->pcie_gen_power_saving.min > ps->performance_levels[i].pcie_gen) data->pcie_gen_power_saving.min = ps->performance_levels[i].pcie_gen; if (data->pcie_lane_power_saving.max < ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.max = ps->performance_levels[i].pcie_lane; if (data->pcie_lane_power_saving.min > ps->performance_levels[i].pcie_lane) data->pcie_lane_power_saving.min = ps->performance_levels[i].pcie_lane; } break; default: break; } } return 0; } static void iceland_print_current_perforce_level(struct pp_hwmgr *hwmgr, struct seq_file *m) { uint32_t sclk, mclk, activity_percent; uint32_t offset; struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetSclkFrequency)); sclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); smum_send_msg_to_smc(hwmgr->smumgr, (PPSMC_Msg)(PPSMC_MSG_API_GetMclkFrequency)); mclk = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); seq_printf(m, "\n [ mclk ]: %u MHz\n\n [ sclk ]: %u MHz\n", mclk/100, sclk/100); offset = data->soft_regs_start + offsetof(SMU71_SoftRegisters, AverageGraphicsActivity); activity_percent = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset); activity_percent += 0x80; activity_percent >>= 8; seq_printf(m, "\n [GPU load]: %u%%\n\n", activity_percent > 100 ? 100 : activity_percent); seq_printf(m, "uvd %sabled\n", data->uvd_power_gated ? "dis" : "en"); seq_printf(m, "vce %sabled\n", data->vce_power_gated ? "dis" : "en"); } int iceland_notify_smc_display_config_after_ps_adjustment(struct pp_hwmgr *hwmgr) { uint32_t num_active_displays = 0; struct cgs_display_info info = {0}; info.mode_info = NULL; cgs_get_active_displays_info(hwmgr->device, &info); num_active_displays = info.display_count; if (num_active_displays > 1) /* to do && (pHwMgr->pPECI->displayConfiguration.bMultiMonitorInSync != TRUE)) */ iceland_notify_smc_display_change(hwmgr, false); else iceland_notify_smc_display_change(hwmgr, true); return 0; } /** * Programs the display gap * * @param hwmgr the address of the powerplay hardware manager. * @return always OK */ int iceland_program_display_gap(struct pp_hwmgr *hwmgr) { uint32_t num_active_displays = 0; uint32_t display_gap = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL); uint32_t display_gap2; uint32_t pre_vbi_time_in_us; uint32_t frame_time_in_us; uint32_t ref_clock; uint32_t refresh_rate = 0; struct cgs_display_info info = {0}; struct cgs_mode_info mode_info; info.mode_info = &mode_info; cgs_get_active_displays_info(hwmgr->device, &info); num_active_displays = info.display_count; display_gap = PHM_SET_FIELD(display_gap, CG_DISPLAY_GAP_CNTL, DISP_GAP, (num_active_displays > 0)? DISPLAY_GAP_VBLANK_OR_WM : DISPLAY_GAP_IGNORE); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL, display_gap); ref_clock = mode_info.ref_clock; refresh_rate = mode_info.refresh_rate; if(0 == refresh_rate) refresh_rate = 60; frame_time_in_us = 1000000 / refresh_rate; pre_vbi_time_in_us = frame_time_in_us - 200 - mode_info.vblank_time_us; display_gap2 = pre_vbi_time_in_us * (ref_clock / 100); cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_DISPLAY_GAP_CNTL2, display_gap2); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SOFT_REGISTERS_TABLE_4, PreVBlankGap, 0x64); PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SOFT_REGISTERS_TABLE_5, VBlankTimeout, (frame_time_in_us - pre_vbi_time_in_us)); if (num_active_displays == 1) iceland_notify_smc_display_change(hwmgr, true); return 0; } int iceland_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { iceland_program_display_gap(hwmgr); return 0; } /** * Set maximum target operating fan output PWM * * @param pHwMgr: the address of the powerplay hardware manager. * @param usMaxFanPwm: max operating fan PWM in percents * @return The response that came from the SMC. */ static int iceland_set_max_fan_pwm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) { hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanPWM = us_max_fan_pwm; if (phm_is_hw_access_blocked(hwmgr)) return 0; return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanPwmMax, us_max_fan_pwm) ? 0 : -1); } /** * Set maximum target operating fan output RPM * * @param pHwMgr: the address of the powerplay hardware manager. * @param usMaxFanRpm: max operating fan RPM value. * @return The response that came from the SMC. */ static int iceland_set_max_fan_rpm_output(struct pp_hwmgr *hwmgr, uint16_t us_max_fan_pwm) { hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM = us_max_fan_pwm; if (phm_is_hw_access_blocked(hwmgr)) return 0; return (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanRpmMax, us_max_fan_pwm) ? 0 : -1); } static int iceland_dpm_set_interrupt_state(void *private_data, unsigned src_id, unsigned type, int enabled) { uint32_t cg_thermal_int; struct pp_hwmgr *hwmgr = ((struct pp_eventmgr *)private_data)->hwmgr; if (hwmgr == NULL) return -EINVAL; switch (type) { case AMD_THERMAL_IRQ_LOW_TO_HIGH: if (enabled) { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } else { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTH_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } break; case AMD_THERMAL_IRQ_HIGH_TO_LOW: if (enabled) { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int |= CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } else { cg_thermal_int = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT); cg_thermal_int &= ~CG_THERMAL_INT_CTRL__THERM_INTL_MASK_MASK; cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixCG_THERMAL_INT, cg_thermal_int); } break; default: break; } return 0; } static int iceland_register_internal_thermal_interrupt(struct pp_hwmgr *hwmgr, const void *thermal_interrupt_info) { int result; const struct pp_interrupt_registration_info *info = (const struct pp_interrupt_registration_info *)thermal_interrupt_info; if (info == NULL) return -EINVAL; result = cgs_add_irq_source(hwmgr->device, 230, AMD_THERMAL_IRQ_LAST, iceland_dpm_set_interrupt_state, info->call_back, info->context); if (result) return -EINVAL; result = cgs_add_irq_source(hwmgr->device, 231, AMD_THERMAL_IRQ_LAST, iceland_dpm_set_interrupt_state, info->call_back, info->context); if (result) return -EINVAL; return 0; } static bool iceland_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); bool is_update_required = false; struct cgs_display_info info = {0,0,NULL}; cgs_get_active_displays_info(hwmgr->device, &info); if (data->display_timing.num_existing_displays != info.display_count) is_update_required = true; /* TO DO NEED TO GET DEEP SLEEP CLOCK FROM DAL if (phm_cap_enabled(hwmgr->hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) { cgs_get_min_clock_settings(hwmgr->device, &min_clocks); if(min_clocks.engineClockInSR != data->display_timing.minClockInSR) is_update_required = true; */ return is_update_required; } static inline bool iceland_are_power_levels_equal(const struct iceland_performance_level *pl1, const struct iceland_performance_level *pl2) { return ((pl1->memory_clock == pl2->memory_clock) && (pl1->engine_clock == pl2->engine_clock) && (pl1->pcie_gen == pl2->pcie_gen) && (pl1->pcie_lane == pl2->pcie_lane)); } int iceland_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) { const struct iceland_power_state *psa = cast_const_phw_iceland_power_state(pstate1); const struct iceland_power_state *psb = cast_const_phw_iceland_power_state(pstate2); int i; if (equal == NULL || psa == NULL || psb == NULL) return -EINVAL; /* If the two states don't even have the same number of performance levels they cannot be the same state. */ if (psa->performance_level_count != psb->performance_level_count) { *equal = false; return 0; } for (i = 0; i < psa->performance_level_count; i++) { if (!iceland_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { /* If we have found even one performance level pair that is different the states are different. */ *equal = false; return 0; } } /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ *equal = ((psa->uvd_clocks.VCLK == psb->uvd_clocks.VCLK) && (psa->uvd_clocks.DCLK == psb->uvd_clocks.DCLK)); *equal &= ((psa->vce_clocks.EVCLK == psb->vce_clocks.EVCLK) && (psa->vce_clocks.ECCLK == psb->vce_clocks.ECCLK)); *equal &= (psa->sclk_threshold == psb->sclk_threshold); *equal &= (psa->acp_clk == psb->acp_clk); return 0; } static int iceland_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { if (mode) { /* stop auto-manage */ if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl)) iceland_fan_ctrl_stop_smc_fan_control(hwmgr); iceland_fan_ctrl_set_static_mode(hwmgr, mode); } else /* restart auto-manage */ iceland_fan_ctrl_reset_fan_speed_to_default(hwmgr); return 0; } static int iceland_get_fan_control_mode(struct pp_hwmgr *hwmgr) { if (hwmgr->fan_ctrl_is_in_default_mode) return hwmgr->fan_ctrl_default_mode; else return PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL2, FDO_PWM_MODE); } static int iceland_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_MANUAL) return -EINVAL; switch (type) { case PP_SCLK: if (!data->sclk_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.sclk_dpm_enable_mask & mask); break; case PP_MCLK: if (!data->mclk_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_MCLKDPM_SetEnabledMask, data->dpm_level_enable_mask.mclk_dpm_enable_mask & mask); break; case PP_PCIE: { uint32_t tmp = mask & data->dpm_level_enable_mask.pcie_dpm_enable_mask; uint32_t level = 0; while (tmp >>= 1) level++; if (!data->pcie_dpm_key_disabled) smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_PCIeDPM_ForceLevel, level); break; } default: break; } return 0; } static int iceland_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); struct iceland_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); struct iceland_single_dpm_table *pcie_table = &(data->dpm_table.pcie_speed_table); int i, now, size = 0; uint32_t clock, pcie_speed; switch (type) { case PP_SCLK: smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetSclkFrequency); clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); for (i = 0; i < sclk_table->count; i++) { if (clock > sclk_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < sclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_MCLK: smum_send_msg_to_smc(hwmgr->smumgr, PPSMC_MSG_API_GetMclkFrequency); clock = cgs_read_register(hwmgr->device, mmSMC_MSG_ARG_0); for (i = 0; i < mclk_table->count; i++) { if (clock > mclk_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < mclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, mclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_PCIE: pcie_speed = iceland_get_current_pcie_speed(hwmgr); for (i = 0; i < pcie_table->count; i++) { if (pcie_speed != pcie_table->dpm_levels[i].value) continue; break; } now = i; for (i = 0; i < pcie_table->count; i++) size += sprintf(buf + size, "%d: %s %s\n", i, (pcie_table->dpm_levels[i].value == 0) ? "2.5GB, x8" : (pcie_table->dpm_levels[i].value == 1) ? "5.0GB, x16" : (pcie_table->dpm_levels[i].value == 2) ? "8.0GB, x16" : "", (i == now) ? "*" : ""); break; default: break; } return size; } static int iceland_get_sclk_od(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_single_dpm_table *sclk_table = &(data->dpm_table.sclk_table); struct iceland_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.sclk_table); int value; value = (sclk_table->dpm_levels[sclk_table->count - 1].value - golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value) * 100 / golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; return value; } static int iceland_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.sclk_table); struct pp_power_state *ps; struct iceland_power_state *iceland_ps; if (value > 20) value = 20; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; iceland_ps = cast_phw_iceland_power_state(&ps->hardware); iceland_ps->performance_levels[iceland_ps->performance_level_count - 1].engine_clock = golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value * value / 100 + golden_sclk_table->dpm_levels[golden_sclk_table->count - 1].value; return 0; } static int iceland_get_mclk_od(struct pp_hwmgr *hwmgr) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_single_dpm_table *mclk_table = &(data->dpm_table.mclk_table); struct iceland_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mclk_table); int value; value = (mclk_table->dpm_levels[mclk_table->count - 1].value - golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value) * 100 / golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; return value; } uint32_t iceland_get_xclk(struct pp_hwmgr *hwmgr) { uint32_t reference_clock; uint32_t tc; uint32_t divide; ATOM_FIRMWARE_INFO *fw_info; uint16_t size; uint8_t frev, crev; int index = GetIndexIntoMasterTable(DATA, FirmwareInfo); tc = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL_2, MUX_TCLK_TO_XCLK); if (tc) return TCLK; fw_info = (ATOM_FIRMWARE_INFO *)cgs_atom_get_data_table(hwmgr->device, index, &size, &frev, &crev); if (!fw_info) return 0; reference_clock = le16_to_cpu(fw_info->usReferenceClock); divide = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_CLKPIN_CNTL, XTALIN_DIVIDE); if (0 != divide) return reference_clock / 4; return reference_clock; } static int iceland_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct iceland_hwmgr *data = (struct iceland_hwmgr *)(hwmgr->backend); struct iceland_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mclk_table); struct pp_power_state *ps; struct iceland_power_state *iceland_ps; if (value > 20) value = 20; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; iceland_ps = cast_phw_iceland_power_state(&ps->hardware); iceland_ps->performance_levels[iceland_ps->performance_level_count - 1].memory_clock = golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value * value / 100 + golden_mclk_table->dpm_levels[golden_mclk_table->count - 1].value; return 0; } static const struct pp_hwmgr_func iceland_hwmgr_funcs = { .backend_init = &iceland_hwmgr_backend_init, .backend_fini = &iceland_hwmgr_backend_fini, .asic_setup = &iceland_setup_asic_task, .dynamic_state_management_enable = &iceland_enable_dpm_tasks, .apply_state_adjust_rules = iceland_apply_state_adjust_rules, .force_dpm_level = &iceland_force_dpm_level, .power_state_set = iceland_set_power_state_tasks, .get_power_state_size = iceland_get_power_state_size, .get_mclk = iceland_dpm_get_mclk, .get_sclk = iceland_dpm_get_sclk, .patch_boot_state = iceland_dpm_patch_boot_state, .get_pp_table_entry = iceland_get_pp_table_entry, .get_num_of_pp_table_entries = iceland_get_num_of_entries, .print_current_perforce_level = iceland_print_current_perforce_level, .powerdown_uvd = iceland_phm_powerdown_uvd, .powergate_uvd = iceland_phm_powergate_uvd, .powergate_vce = iceland_phm_powergate_vce, .disable_clock_power_gating = iceland_phm_disable_clock_power_gating, .update_clock_gatings = iceland_phm_update_clock_gatings, .notify_smc_display_config_after_ps_adjustment = iceland_notify_smc_display_config_after_ps_adjustment, .display_config_changed = iceland_display_configuration_changed_task, .set_max_fan_pwm_output = iceland_set_max_fan_pwm_output, .set_max_fan_rpm_output = iceland_set_max_fan_rpm_output, .get_temperature = iceland_thermal_get_temperature, .stop_thermal_controller = iceland_thermal_stop_thermal_controller, .get_fan_speed_info = iceland_fan_ctrl_get_fan_speed_info, .get_fan_speed_percent = iceland_fan_ctrl_get_fan_speed_percent, .set_fan_speed_percent = iceland_fan_ctrl_set_fan_speed_percent, .reset_fan_speed_to_default = iceland_fan_ctrl_reset_fan_speed_to_default, .get_fan_speed_rpm = iceland_fan_ctrl_get_fan_speed_rpm, .set_fan_speed_rpm = iceland_fan_ctrl_set_fan_speed_rpm, .uninitialize_thermal_controller = iceland_thermal_ctrl_uninitialize_thermal_controller, .register_internal_thermal_interrupt = iceland_register_internal_thermal_interrupt, .check_smc_update_required_for_display_configuration = iceland_check_smc_update_required_for_display_configuration, .check_states_equal = iceland_check_states_equal, .set_fan_control_mode = iceland_set_fan_control_mode, .get_fan_control_mode = iceland_get_fan_control_mode, .force_clock_level = iceland_force_clock_level, .print_clock_levels = iceland_print_clock_levels, .get_sclk_od = iceland_get_sclk_od, .set_sclk_od = iceland_set_sclk_od, .get_mclk_od = iceland_get_mclk_od, .set_mclk_od = iceland_set_mclk_od, }; int iceland_hwmgr_init(struct pp_hwmgr *hwmgr) { iceland_hwmgr *data; data = kzalloc (sizeof(iceland_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; memset(data, 0x00, sizeof(iceland_hwmgr)); hwmgr->backend = data; hwmgr->hwmgr_func = &iceland_hwmgr_funcs; hwmgr->pptable_func = &pptable_funcs; /* thermal */ pp_iceland_thermal_initialize(hwmgr); return 0; }