/* * wm8903.c -- WM8903 ALSA SoC Audio driver * * Copyright 2008 Wolfson Microelectronics * * Author: Mark Brown * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * TODO: * - TDM mode configuration. * - Mic detect. * - Digital microphone support. * - Interrupt support (mic detect and sequencer). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "wm8903.h" struct wm8903_priv { int sysclk; /* Reference counts */ int charge_pump_users; int class_w_users; int playback_active; int capture_active; struct snd_pcm_substream *master_substream; struct snd_pcm_substream *slave_substream; }; /* Register defaults at reset */ static u16 wm8903_reg_defaults[] = { 0x8903, /* R0 - SW Reset and ID */ 0x0000, /* R1 - Revision Number */ 0x0000, /* R2 */ 0x0000, /* R3 */ 0x0018, /* R4 - Bias Control 0 */ 0x0000, /* R5 - VMID Control 0 */ 0x0000, /* R6 - Mic Bias Control 0 */ 0x0000, /* R7 */ 0x0001, /* R8 - Analogue DAC 0 */ 0x0000, /* R9 */ 0x0001, /* R10 - Analogue ADC 0 */ 0x0000, /* R11 */ 0x0000, /* R12 - Power Management 0 */ 0x0000, /* R13 - Power Management 1 */ 0x0000, /* R14 - Power Management 2 */ 0x0000, /* R15 - Power Management 3 */ 0x0000, /* R16 - Power Management 4 */ 0x0000, /* R17 - Power Management 5 */ 0x0000, /* R18 - Power Management 6 */ 0x0000, /* R19 */ 0x0400, /* R20 - Clock Rates 0 */ 0x0D07, /* R21 - Clock Rates 1 */ 0x0000, /* R22 - Clock Rates 2 */ 0x0000, /* R23 */ 0x0050, /* R24 - Audio Interface 0 */ 0x0242, /* R25 - Audio Interface 1 */ 0x0008, /* R26 - Audio Interface 2 */ 0x0022, /* R27 - Audio Interface 3 */ 0x0000, /* R28 */ 0x0000, /* R29 */ 0x00C0, /* R30 - DAC Digital Volume Left */ 0x00C0, /* R31 - DAC Digital Volume Right */ 0x0000, /* R32 - DAC Digital 0 */ 0x0000, /* R33 - DAC Digital 1 */ 0x0000, /* R34 */ 0x0000, /* R35 */ 0x00C0, /* R36 - ADC Digital Volume Left */ 0x00C0, /* R37 - ADC Digital Volume Right */ 0x0000, /* R38 - ADC Digital 0 */ 0x0073, /* R39 - Digital Microphone 0 */ 0x09BF, /* R40 - DRC 0 */ 0x3241, /* R41 - DRC 1 */ 0x0020, /* R42 - DRC 2 */ 0x0000, /* R43 - DRC 3 */ 0x0085, /* R44 - Analogue Left Input 0 */ 0x0085, /* R45 - Analogue Right Input 0 */ 0x0044, /* R46 - Analogue Left Input 1 */ 0x0044, /* R47 - Analogue Right Input 1 */ 0x0000, /* R48 */ 0x0000, /* R49 */ 0x0008, /* R50 - Analogue Left Mix 0 */ 0x0004, /* R51 - Analogue Right Mix 0 */ 0x0000, /* R52 - Analogue Spk Mix Left 0 */ 0x0000, /* R53 - Analogue Spk Mix Left 1 */ 0x0000, /* R54 - Analogue Spk Mix Right 0 */ 0x0000, /* R55 - Analogue Spk Mix Right 1 */ 0x0000, /* R56 */ 0x002D, /* R57 - Analogue OUT1 Left */ 0x002D, /* R58 - Analogue OUT1 Right */ 0x0039, /* R59 - Analogue OUT2 Left */ 0x0039, /* R60 - Analogue OUT2 Right */ 0x0100, /* R61 */ 0x0139, /* R62 - Analogue OUT3 Left */ 0x0139, /* R63 - Analogue OUT3 Right */ 0x0000, /* R64 */ 0x0000, /* R65 - Analogue SPK Output Control 0 */ 0x0000, /* R66 */ 0x0010, /* R67 - DC Servo 0 */ 0x0100, /* R68 */ 0x00A4, /* R69 - DC Servo 2 */ 0x0807, /* R70 */ 0x0000, /* R71 */ 0x0000, /* R72 */ 0x0000, /* R73 */ 0x0000, /* R74 */ 0x0000, /* R75 */ 0x0000, /* R76 */ 0x0000, /* R77 */ 0x0000, /* R78 */ 0x000E, /* R79 */ 0x0000, /* R80 */ 0x0000, /* R81 */ 0x0000, /* R82 */ 0x0000, /* R83 */ 0x0000, /* R84 */ 0x0000, /* R85 */ 0x0000, /* R86 */ 0x0006, /* R87 */ 0x0000, /* R88 */ 0x0000, /* R89 */ 0x0000, /* R90 - Analogue HP 0 */ 0x0060, /* R91 */ 0x0000, /* R92 */ 0x0000, /* R93 */ 0x0000, /* R94 - Analogue Lineout 0 */ 0x0060, /* R95 */ 0x0000, /* R96 */ 0x0000, /* R97 */ 0x0000, /* R98 - Charge Pump 0 */ 0x1F25, /* R99 */ 0x2B19, /* R100 */ 0x01C0, /* R101 */ 0x01EF, /* R102 */ 0x2B00, /* R103 */ 0x0000, /* R104 - Class W 0 */ 0x01C0, /* R105 */ 0x1C10, /* R106 */ 0x0000, /* R107 */ 0x0000, /* R108 - Write Sequencer 0 */ 0x0000, /* R109 - Write Sequencer 1 */ 0x0000, /* R110 - Write Sequencer 2 */ 0x0000, /* R111 - Write Sequencer 3 */ 0x0000, /* R112 - Write Sequencer 4 */ 0x0000, /* R113 */ 0x0000, /* R114 - Control Interface */ 0x0000, /* R115 */ 0x00A8, /* R116 - GPIO Control 1 */ 0x00A8, /* R117 - GPIO Control 2 */ 0x00A8, /* R118 - GPIO Control 3 */ 0x0220, /* R119 - GPIO Control 4 */ 0x01A0, /* R120 - GPIO Control 5 */ 0x0000, /* R121 - Interrupt Status 1 */ 0xFFFF, /* R122 - Interrupt Status 1 Mask */ 0x0000, /* R123 - Interrupt Polarity 1 */ 0x0000, /* R124 */ 0x0003, /* R125 */ 0x0000, /* R126 - Interrupt Control */ 0x0000, /* R127 */ 0x0005, /* R128 */ 0x0000, /* R129 - Control Interface Test 1 */ 0x0000, /* R130 */ 0x0000, /* R131 */ 0x0000, /* R132 */ 0x0000, /* R133 */ 0x0000, /* R134 */ 0x03FF, /* R135 */ 0x0007, /* R136 */ 0x0040, /* R137 */ 0x0000, /* R138 */ 0x0000, /* R139 */ 0x0000, /* R140 */ 0x0000, /* R141 */ 0x0000, /* R142 */ 0x0000, /* R143 */ 0x0000, /* R144 */ 0x0000, /* R145 */ 0x0000, /* R146 */ 0x0000, /* R147 */ 0x4000, /* R148 */ 0x6810, /* R149 - Charge Pump Test 1 */ 0x0004, /* R150 */ 0x0000, /* R151 */ 0x0000, /* R152 */ 0x0000, /* R153 */ 0x0000, /* R154 */ 0x0000, /* R155 */ 0x0000, /* R156 */ 0x0000, /* R157 */ 0x0000, /* R158 */ 0x0000, /* R159 */ 0x0000, /* R160 */ 0x0000, /* R161 */ 0x0000, /* R162 */ 0x0000, /* R163 */ 0x0028, /* R164 - Clock Rate Test 4 */ 0x0004, /* R165 */ 0x0000, /* R166 */ 0x0060, /* R167 */ 0x0000, /* R168 */ 0x0000, /* R169 */ 0x0000, /* R170 */ 0x0000, /* R171 */ 0x0000, /* R172 - Analogue Output Bias 0 */ }; static unsigned int wm8903_read_reg_cache(struct snd_soc_codec *codec, unsigned int reg) { u16 *cache = codec->reg_cache; BUG_ON(reg >= ARRAY_SIZE(wm8903_reg_defaults)); return cache[reg]; } static unsigned int wm8903_hw_read(struct snd_soc_codec *codec, u8 reg) { struct i2c_msg xfer[2]; u16 data; int ret; struct i2c_client *client = codec->control_data; /* Write register */ xfer[0].addr = client->addr; xfer[0].flags = 0; xfer[0].len = 1; xfer[0].buf = ® /* Read data */ xfer[1].addr = client->addr; xfer[1].flags = I2C_M_RD; xfer[1].len = 2; xfer[1].buf = (u8 *)&data; ret = i2c_transfer(client->adapter, xfer, 2); if (ret != 2) { pr_err("i2c_transfer returned %d\n", ret); return 0; } return (data >> 8) | ((data & 0xff) << 8); } static unsigned int wm8903_read(struct snd_soc_codec *codec, unsigned int reg) { switch (reg) { case WM8903_SW_RESET_AND_ID: case WM8903_REVISION_NUMBER: case WM8903_INTERRUPT_STATUS_1: case WM8903_WRITE_SEQUENCER_4: return wm8903_hw_read(codec, reg); default: return wm8903_read_reg_cache(codec, reg); } } static void wm8903_write_reg_cache(struct snd_soc_codec *codec, u16 reg, unsigned int value) { u16 *cache = codec->reg_cache; BUG_ON(reg >= ARRAY_SIZE(wm8903_reg_defaults)); switch (reg) { case WM8903_SW_RESET_AND_ID: case WM8903_REVISION_NUMBER: break; default: cache[reg] = value; break; } } static int wm8903_write(struct snd_soc_codec *codec, unsigned int reg, unsigned int value) { u8 data[3]; wm8903_write_reg_cache(codec, reg, value); /* Data format is 1 byte of address followed by 2 bytes of data */ data[0] = reg; data[1] = (value >> 8) & 0xff; data[2] = value & 0xff; if (codec->hw_write(codec->control_data, data, 3) == 2) return 0; else return -EIO; } static int wm8903_run_sequence(struct snd_soc_codec *codec, unsigned int start) { u16 reg[5]; struct i2c_client *i2c = codec->control_data; BUG_ON(start > 48); /* Enable the sequencer */ reg[0] = wm8903_read(codec, WM8903_WRITE_SEQUENCER_0); reg[0] |= WM8903_WSEQ_ENA; wm8903_write(codec, WM8903_WRITE_SEQUENCER_0, reg[0]); dev_dbg(&i2c->dev, "Starting sequence at %d\n", start); wm8903_write(codec, WM8903_WRITE_SEQUENCER_3, start | WM8903_WSEQ_START); /* Wait for it to complete. If we have the interrupt wired up then * we could block waiting for an interrupt, though polling may still * be desirable for diagnostic purposes. */ do { msleep(10); reg[4] = wm8903_read(codec, WM8903_WRITE_SEQUENCER_4); } while (reg[4] & WM8903_WSEQ_BUSY); dev_dbg(&i2c->dev, "Sequence complete\n"); /* Disable the sequencer again */ wm8903_write(codec, WM8903_WRITE_SEQUENCER_0, reg[0] & ~WM8903_WSEQ_ENA); return 0; } static void wm8903_sync_reg_cache(struct snd_soc_codec *codec, u16 *cache) { int i; /* There really ought to be something better we can do here :/ */ for (i = 0; i < ARRAY_SIZE(wm8903_reg_defaults); i++) cache[i] = wm8903_hw_read(codec, i); } static void wm8903_reset(struct snd_soc_codec *codec) { wm8903_write(codec, WM8903_SW_RESET_AND_ID, 0); } #define WM8903_OUTPUT_SHORT 0x8 #define WM8903_OUTPUT_OUT 0x4 #define WM8903_OUTPUT_INT 0x2 #define WM8903_OUTPUT_IN 0x1 /* * Event for headphone and line out amplifier power changes. Special * power up/down sequences are required in order to maximise pop/click * performance. */ static int wm8903_output_event(struct snd_soc_dapm_widget *w, struct snd_kcontrol *kcontrol, int event) { struct snd_soc_codec *codec = w->codec; struct wm8903_priv *wm8903 = codec->private_data; struct i2c_client *i2c = codec->control_data; u16 val; u16 reg; int shift; u16 cp_reg = wm8903_read(codec, WM8903_CHARGE_PUMP_0); switch (w->reg) { case WM8903_POWER_MANAGEMENT_2: reg = WM8903_ANALOGUE_HP_0; break; case WM8903_POWER_MANAGEMENT_3: reg = WM8903_ANALOGUE_LINEOUT_0; break; default: BUG(); } switch (w->shift) { case 0: shift = 0; break; case 1: shift = 4; break; default: BUG(); } if (event & SND_SOC_DAPM_PRE_PMU) { val = wm8903_read(codec, reg); /* Short the output */ val &= ~(WM8903_OUTPUT_SHORT << shift); wm8903_write(codec, reg, val); wm8903->charge_pump_users++; dev_dbg(&i2c->dev, "Charge pump use count now %d\n", wm8903->charge_pump_users); if (wm8903->charge_pump_users == 1) { dev_dbg(&i2c->dev, "Enabling charge pump\n"); wm8903_write(codec, WM8903_CHARGE_PUMP_0, cp_reg | WM8903_CP_ENA); mdelay(4); } } if (event & SND_SOC_DAPM_POST_PMU) { val = wm8903_read(codec, reg); val |= (WM8903_OUTPUT_IN << shift); wm8903_write(codec, reg, val); val |= (WM8903_OUTPUT_INT << shift); wm8903_write(codec, reg, val); /* Turn on the output ENA_OUTP */ val |= (WM8903_OUTPUT_OUT << shift); wm8903_write(codec, reg, val); /* Remove the short */ val |= (WM8903_OUTPUT_SHORT << shift); wm8903_write(codec, reg, val); } if (event & SND_SOC_DAPM_PRE_PMD) { val = wm8903_read(codec, reg); /* Short the output */ val &= ~(WM8903_OUTPUT_SHORT << shift); wm8903_write(codec, reg, val); /* Then disable the intermediate and output stages */ val &= ~((WM8903_OUTPUT_OUT | WM8903_OUTPUT_INT | WM8903_OUTPUT_IN) << shift); wm8903_write(codec, reg, val); } if (event & SND_SOC_DAPM_POST_PMD) { wm8903->charge_pump_users--; dev_dbg(&i2c->dev, "Charge pump use count now %d\n", wm8903->charge_pump_users); if (wm8903->charge_pump_users == 0) { dev_dbg(&i2c->dev, "Disabling charge pump\n"); wm8903_write(codec, WM8903_CHARGE_PUMP_0, cp_reg & ~WM8903_CP_ENA); } } return 0; } /* * When used with DAC outputs only the WM8903 charge pump supports * operation in class W mode, providing very low power consumption * when used with digital sources. Enable and disable this mode * automatically depending on the mixer configuration. * * All the relevant controls are simple switches. */ static int wm8903_class_w_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol); struct snd_soc_codec *codec = widget->codec; struct wm8903_priv *wm8903 = codec->private_data; struct i2c_client *i2c = codec->control_data; u16 reg; int ret; reg = wm8903_read(codec, WM8903_CLASS_W_0); /* Turn it off if we're about to enable bypass */ if (ucontrol->value.integer.value[0]) { if (wm8903->class_w_users == 0) { dev_dbg(&i2c->dev, "Disabling Class W\n"); wm8903_write(codec, WM8903_CLASS_W_0, reg & ~(WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V)); } wm8903->class_w_users++; } /* Implement the change */ ret = snd_soc_dapm_put_volsw(kcontrol, ucontrol); /* If we've just disabled the last bypass path turn Class W on */ if (!ucontrol->value.integer.value[0]) { if (wm8903->class_w_users == 1) { dev_dbg(&i2c->dev, "Enabling Class W\n"); wm8903_write(codec, WM8903_CLASS_W_0, reg | WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V); } wm8903->class_w_users--; } dev_dbg(&i2c->dev, "Bypass use count now %d\n", wm8903->class_w_users); return ret; } #define SOC_DAPM_SINGLE_W(xname, reg, shift, max, invert) \ { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ .info = snd_soc_info_volsw, \ .get = snd_soc_dapm_get_volsw, .put = wm8903_class_w_put, \ .private_value = SOC_SINGLE_VALUE(reg, shift, max, invert) } /* ALSA can only do steps of .01dB */ static const DECLARE_TLV_DB_SCALE(digital_tlv, -7200, 75, 1); static const DECLARE_TLV_DB_SCALE(out_tlv, -5700, 100, 0); static const DECLARE_TLV_DB_SCALE(drc_tlv_thresh, 0, 75, 0); static const DECLARE_TLV_DB_SCALE(drc_tlv_amp, -2250, 75, 0); static const DECLARE_TLV_DB_SCALE(drc_tlv_min, 0, 600, 0); static const DECLARE_TLV_DB_SCALE(drc_tlv_max, 1200, 600, 0); static const DECLARE_TLV_DB_SCALE(drc_tlv_startup, -300, 50, 0); static const char *drc_slope_text[] = { "1", "1/2", "1/4", "1/8", "1/16", "0" }; static const struct soc_enum drc_slope_r0 = SOC_ENUM_SINGLE(WM8903_DRC_2, 3, 6, drc_slope_text); static const struct soc_enum drc_slope_r1 = SOC_ENUM_SINGLE(WM8903_DRC_2, 0, 6, drc_slope_text); static const char *drc_attack_text[] = { "instantaneous", "363us", "762us", "1.45ms", "2.9ms", "5.8ms", "11.6ms", "23.2ms", "46.4ms", "92.8ms", "185.6ms" }; static const struct soc_enum drc_attack = SOC_ENUM_SINGLE(WM8903_DRC_1, 12, 11, drc_attack_text); static const char *drc_decay_text[] = { "186ms", "372ms", "743ms", "1.49s", "2.97s", "5.94s", "11.89s", "23.87s", "47.56s" }; static const struct soc_enum drc_decay = SOC_ENUM_SINGLE(WM8903_DRC_1, 8, 9, drc_decay_text); static const char *drc_ff_delay_text[] = { "5 samples", "9 samples" }; static const struct soc_enum drc_ff_delay = SOC_ENUM_SINGLE(WM8903_DRC_0, 5, 2, drc_ff_delay_text); static const char *drc_qr_decay_text[] = { "0.725ms", "1.45ms", "5.8ms" }; static const struct soc_enum drc_qr_decay = SOC_ENUM_SINGLE(WM8903_DRC_1, 4, 3, drc_qr_decay_text); static const char *drc_smoothing_text[] = { "Low", "Medium", "High" }; static const struct soc_enum drc_smoothing = SOC_ENUM_SINGLE(WM8903_DRC_0, 11, 3, drc_smoothing_text); static const char *soft_mute_text[] = { "Fast (fs/2)", "Slow (fs/32)" }; static const struct soc_enum soft_mute = SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 10, 2, soft_mute_text); static const char *mute_mode_text[] = { "Hard", "Soft" }; static const struct soc_enum mute_mode = SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 9, 2, mute_mode_text); static const char *dac_deemphasis_text[] = { "Disabled", "32kHz", "44.1kHz", "48kHz" }; static const struct soc_enum dac_deemphasis = SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 1, 4, dac_deemphasis_text); static const char *companding_text[] = { "ulaw", "alaw" }; static const struct soc_enum dac_companding = SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 0, 2, companding_text); static const struct soc_enum adc_companding = SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 2, 2, companding_text); static const char *input_mode_text[] = { "Single-Ended", "Differential Line", "Differential Mic" }; static const struct soc_enum linput_mode_enum = SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 0, 3, input_mode_text); static const struct soc_enum rinput_mode_enum = SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 0, 3, input_mode_text); static const char *linput_mux_text[] = { "IN1L", "IN2L", "IN3L" }; static const struct soc_enum linput_enum = SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 2, 3, linput_mux_text); static const struct soc_enum linput_inv_enum = SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 4, 3, linput_mux_text); static const char *rinput_mux_text[] = { "IN1R", "IN2R", "IN3R" }; static const struct soc_enum rinput_enum = SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 2, 3, rinput_mux_text); static const struct soc_enum rinput_inv_enum = SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 4, 3, rinput_mux_text); static const struct snd_kcontrol_new wm8903_snd_controls[] = { /* Input PGAs - No TLV since the scale depends on PGA mode */ SOC_SINGLE("Left Input PGA Switch", WM8903_ANALOGUE_LEFT_INPUT_0, 7, 1, 0), SOC_SINGLE("Left Input PGA Volume", WM8903_ANALOGUE_LEFT_INPUT_0, 0, 31, 0), SOC_SINGLE("Left Input PGA Common Mode Switch", WM8903_ANALOGUE_LEFT_INPUT_1, 6, 1, 0), SOC_SINGLE("Right Input PGA Switch", WM8903_ANALOGUE_RIGHT_INPUT_0, 7, 1, 0), SOC_SINGLE("Right Input PGA Volume", WM8903_ANALOGUE_RIGHT_INPUT_0, 0, 31, 0), SOC_SINGLE("Right Input PGA Common Mode Switch", WM8903_ANALOGUE_RIGHT_INPUT_1, 6, 1, 0), /* ADCs */ SOC_SINGLE("DRC Switch", WM8903_DRC_0, 15, 1, 0), SOC_ENUM("DRC Compressor Slope R0", drc_slope_r0), SOC_ENUM("DRC Compressor Slope R1", drc_slope_r1), SOC_SINGLE_TLV("DRC Compressor Threashold Volume", WM8903_DRC_3, 5, 124, 1, drc_tlv_thresh), SOC_SINGLE_TLV("DRC Volume", WM8903_DRC_3, 0, 30, 1, drc_tlv_amp), SOC_SINGLE_TLV("DRC Minimum Gain Volume", WM8903_DRC_1, 2, 3, 1, drc_tlv_min), SOC_SINGLE_TLV("DRC Maximum Gain Volume", WM8903_DRC_1, 0, 3, 0, drc_tlv_max), SOC_ENUM("DRC Attack Rate", drc_attack), SOC_ENUM("DRC Decay Rate", drc_decay), SOC_ENUM("DRC FF Delay", drc_ff_delay), SOC_SINGLE("DRC Anticlip Switch", WM8903_DRC_0, 1, 1, 0), SOC_SINGLE("DRC QR Switch", WM8903_DRC_0, 2, 1, 0), SOC_SINGLE_TLV("DRC QR Threashold Volume", WM8903_DRC_0, 6, 3, 0, drc_tlv_max), SOC_ENUM("DRC QR Decay Rate", drc_qr_decay), SOC_SINGLE("DRC Smoothing Switch", WM8903_DRC_0, 3, 1, 0), SOC_SINGLE("DRC Smoothing Hysteresis Switch", WM8903_DRC_0, 0, 1, 0), SOC_ENUM("DRC Smoothing Threashold", drc_smoothing), SOC_SINGLE_TLV("DRC Startup Volume", WM8903_DRC_0, 6, 18, 0, drc_tlv_startup), SOC_DOUBLE_R_TLV("Digital Capture Volume", WM8903_ADC_DIGITAL_VOLUME_LEFT, WM8903_ADC_DIGITAL_VOLUME_RIGHT, 1, 96, 0, digital_tlv), SOC_ENUM("ADC Companding Mode", adc_companding), SOC_SINGLE("ADC Companding Switch", WM8903_AUDIO_INTERFACE_0, 3, 1, 0), /* DAC */ SOC_DOUBLE_R_TLV("Digital Playback Volume", WM8903_DAC_DIGITAL_VOLUME_LEFT, WM8903_DAC_DIGITAL_VOLUME_RIGHT, 1, 120, 0, digital_tlv), SOC_ENUM("DAC Soft Mute Rate", soft_mute), SOC_ENUM("DAC Mute Mode", mute_mode), SOC_SINGLE("DAC Mono Switch", WM8903_DAC_DIGITAL_1, 12, 1, 0), SOC_ENUM("DAC De-emphasis", dac_deemphasis), SOC_SINGLE("DAC Sloping Stopband Filter Switch", WM8903_DAC_DIGITAL_1, 11, 1, 0), SOC_ENUM("DAC Companding Mode", dac_companding), SOC_SINGLE("DAC Companding Switch", WM8903_AUDIO_INTERFACE_0, 1, 1, 0), /* Headphones */ SOC_DOUBLE_R("Headphone Switch", WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT, 8, 1, 1), SOC_DOUBLE_R("Headphone ZC Switch", WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT, 6, 1, 0), SOC_DOUBLE_R_TLV("Headphone Volume", WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT, 0, 63, 0, out_tlv), /* Line out */ SOC_DOUBLE_R("Line Out Switch", WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT, 8, 1, 1), SOC_DOUBLE_R("Line Out ZC Switch", WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT, 6, 1, 0), SOC_DOUBLE_R_TLV("Line Out Volume", WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT, 0, 63, 0, out_tlv), /* Speaker */ SOC_DOUBLE_R("Speaker Switch", WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT, 8, 1, 1), SOC_DOUBLE_R("Speaker ZC Switch", WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT, 6, 1, 0), SOC_DOUBLE_R_TLV("Speaker Volume", WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT, 0, 63, 0, out_tlv), }; static int wm8903_add_controls(struct snd_soc_codec *codec) { int err, i; for (i = 0; i < ARRAY_SIZE(wm8903_snd_controls); i++) { err = snd_ctl_add(codec->card, snd_soc_cnew(&wm8903_snd_controls[i], codec, NULL)); if (err < 0) return err; } return 0; } static const struct snd_kcontrol_new linput_mode_mux = SOC_DAPM_ENUM("Left Input Mode Mux", linput_mode_enum); static const struct snd_kcontrol_new rinput_mode_mux = SOC_DAPM_ENUM("Right Input Mode Mux", rinput_mode_enum); static const struct snd_kcontrol_new linput_mux = SOC_DAPM_ENUM("Left Input Mux", linput_enum); static const struct snd_kcontrol_new linput_inv_mux = SOC_DAPM_ENUM("Left Inverting Input Mux", linput_inv_enum); static const struct snd_kcontrol_new rinput_mux = SOC_DAPM_ENUM("Right Input Mux", rinput_enum); static const struct snd_kcontrol_new rinput_inv_mux = SOC_DAPM_ENUM("Right Inverting Input Mux", rinput_inv_enum); static const struct snd_kcontrol_new left_output_mixer[] = { SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_LEFT_MIX_0, 3, 1, 0), SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_LEFT_MIX_0, 2, 1, 0), SOC_DAPM_SINGLE_W("Left Bypass Switch", WM8903_ANALOGUE_LEFT_MIX_0, 1, 1, 0), SOC_DAPM_SINGLE_W("Right Bypass Switch", WM8903_ANALOGUE_LEFT_MIX_0, 1, 1, 0), }; static const struct snd_kcontrol_new right_output_mixer[] = { SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 3, 1, 0), SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 2, 1, 0), SOC_DAPM_SINGLE_W("Left Bypass Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 1, 1, 0), SOC_DAPM_SINGLE_W("Right Bypass Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 1, 1, 0), }; static const struct snd_kcontrol_new left_speaker_mixer[] = { SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 3, 1, 0), SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 2, 1, 0), SOC_DAPM_SINGLE("Left Bypass Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 1, 1, 0), SOC_DAPM_SINGLE("Right Bypass Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 1, 1, 0), }; static const struct snd_kcontrol_new right_speaker_mixer[] = { SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 3, 1, 0), SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 2, 1, 0), SOC_DAPM_SINGLE("Left Bypass Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 1, 1, 0), SOC_DAPM_SINGLE("Right Bypass Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 1, 1, 0), }; static const struct snd_soc_dapm_widget wm8903_dapm_widgets[] = { SND_SOC_DAPM_INPUT("IN1L"), SND_SOC_DAPM_INPUT("IN1R"), SND_SOC_DAPM_INPUT("IN2L"), SND_SOC_DAPM_INPUT("IN2R"), SND_SOC_DAPM_INPUT("IN3L"), SND_SOC_DAPM_INPUT("IN3R"), SND_SOC_DAPM_OUTPUT("HPOUTL"), SND_SOC_DAPM_OUTPUT("HPOUTR"), SND_SOC_DAPM_OUTPUT("LINEOUTL"), SND_SOC_DAPM_OUTPUT("LINEOUTR"), SND_SOC_DAPM_OUTPUT("LOP"), SND_SOC_DAPM_OUTPUT("LON"), SND_SOC_DAPM_OUTPUT("ROP"), SND_SOC_DAPM_OUTPUT("RON"), SND_SOC_DAPM_MICBIAS("Mic Bias", WM8903_MIC_BIAS_CONTROL_0, 0, 0), SND_SOC_DAPM_MUX("Left Input Mux", SND_SOC_NOPM, 0, 0, &linput_mux), SND_SOC_DAPM_MUX("Left Input Inverting Mux", SND_SOC_NOPM, 0, 0, &linput_inv_mux), SND_SOC_DAPM_MUX("Left Input Mode Mux", SND_SOC_NOPM, 0, 0, &linput_mode_mux), SND_SOC_DAPM_MUX("Right Input Mux", SND_SOC_NOPM, 0, 0, &rinput_mux), SND_SOC_DAPM_MUX("Right Input Inverting Mux", SND_SOC_NOPM, 0, 0, &rinput_inv_mux), SND_SOC_DAPM_MUX("Right Input Mode Mux", SND_SOC_NOPM, 0, 0, &rinput_mode_mux), SND_SOC_DAPM_PGA("Left Input PGA", WM8903_POWER_MANAGEMENT_0, 1, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Input PGA", WM8903_POWER_MANAGEMENT_0, 0, 0, NULL, 0), SND_SOC_DAPM_ADC("ADCL", "Left HiFi Capture", WM8903_POWER_MANAGEMENT_6, 1, 0), SND_SOC_DAPM_ADC("ADCR", "Right HiFi Capture", WM8903_POWER_MANAGEMENT_6, 0, 0), SND_SOC_DAPM_DAC("DACL", "Left Playback", WM8903_POWER_MANAGEMENT_6, 3, 0), SND_SOC_DAPM_DAC("DACR", "Right Playback", WM8903_POWER_MANAGEMENT_6, 2, 0), SND_SOC_DAPM_MIXER("Left Output Mixer", WM8903_POWER_MANAGEMENT_1, 1, 0, left_output_mixer, ARRAY_SIZE(left_output_mixer)), SND_SOC_DAPM_MIXER("Right Output Mixer", WM8903_POWER_MANAGEMENT_1, 0, 0, right_output_mixer, ARRAY_SIZE(right_output_mixer)), SND_SOC_DAPM_MIXER("Left Speaker Mixer", WM8903_POWER_MANAGEMENT_4, 1, 0, left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer)), SND_SOC_DAPM_MIXER("Right Speaker Mixer", WM8903_POWER_MANAGEMENT_4, 0, 0, right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer)), SND_SOC_DAPM_PGA_E("Left Headphone Output PGA", WM8903_POWER_MANAGEMENT_2, 1, 0, NULL, 0, wm8903_output_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("Right Headphone Output PGA", WM8903_POWER_MANAGEMENT_2, 0, 0, NULL, 0, wm8903_output_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("Left Line Output PGA", WM8903_POWER_MANAGEMENT_3, 1, 0, NULL, 0, wm8903_output_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA_E("Right Line Output PGA", WM8903_POWER_MANAGEMENT_3, 0, 0, NULL, 0, wm8903_output_event, SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD), SND_SOC_DAPM_PGA("Left Speaker PGA", WM8903_POWER_MANAGEMENT_5, 1, 0, NULL, 0), SND_SOC_DAPM_PGA("Right Speaker PGA", WM8903_POWER_MANAGEMENT_5, 0, 0, NULL, 0), }; static const struct snd_soc_dapm_route intercon[] = { { "Left Input Mux", "IN1L", "IN1L" }, { "Left Input Mux", "IN2L", "IN2L" }, { "Left Input Mux", "IN3L", "IN3L" }, { "Left Input Inverting Mux", "IN1L", "IN1L" }, { "Left Input Inverting Mux", "IN2L", "IN2L" }, { "Left Input Inverting Mux", "IN3L", "IN3L" }, { "Right Input Mux", "IN1R", "IN1R" }, { "Right Input Mux", "IN2R", "IN2R" }, { "Right Input Mux", "IN3R", "IN3R" }, { "Right Input Inverting Mux", "IN1R", "IN1R" }, { "Right Input Inverting Mux", "IN2R", "IN2R" }, { "Right Input Inverting Mux", "IN3R", "IN3R" }, { "Left Input Mode Mux", "Single-Ended", "Left Input Inverting Mux" }, { "Left Input Mode Mux", "Differential Line", "Left Input Mux" }, { "Left Input Mode Mux", "Differential Line", "Left Input Inverting Mux" }, { "Left Input Mode Mux", "Differential Mic", "Left Input Mux" }, { "Left Input Mode Mux", "Differential Mic", "Left Input Inverting Mux" }, { "Right Input Mode Mux", "Single-Ended", "Right Input Inverting Mux" }, { "Right Input Mode Mux", "Differential Line", "Right Input Mux" }, { "Right Input Mode Mux", "Differential Line", "Right Input Inverting Mux" }, { "Right Input Mode Mux", "Differential Mic", "Right Input Mux" }, { "Right Input Mode Mux", "Differential Mic", "Right Input Inverting Mux" }, { "Left Input PGA", NULL, "Left Input Mode Mux" }, { "Right Input PGA", NULL, "Right Input Mode Mux" }, { "ADCL", NULL, "Left Input PGA" }, { "ADCR", NULL, "Right Input PGA" }, { "Left Output Mixer", "Left Bypass Switch", "Left Input PGA" }, { "Left Output Mixer", "Right Bypass Switch", "Right Input PGA" }, { "Left Output Mixer", "DACL Switch", "DACL" }, { "Left Output Mixer", "DACR Switch", "DACR" }, { "Right Output Mixer", "Left Bypass Switch", "Left Input PGA" }, { "Right Output Mixer", "Right Bypass Switch", "Right Input PGA" }, { "Right Output Mixer", "DACL Switch", "DACL" }, { "Right Output Mixer", "DACR Switch", "DACR" }, { "Left Speaker Mixer", "Left Bypass Switch", "Left Input PGA" }, { "Left Speaker Mixer", "Right Bypass Switch", "Right Input PGA" }, { "Left Speaker Mixer", "DACL Switch", "DACL" }, { "Left Speaker Mixer", "DACR Switch", "DACR" }, { "Right Speaker Mixer", "Left Bypass Switch", "Left Input PGA" }, { "Right Speaker Mixer", "Right Bypass Switch", "Right Input PGA" }, { "Right Speaker Mixer", "DACL Switch", "DACL" }, { "Right Speaker Mixer", "DACR Switch", "DACR" }, { "Left Line Output PGA", NULL, "Left Output Mixer" }, { "Right Line Output PGA", NULL, "Right Output Mixer" }, { "Left Headphone Output PGA", NULL, "Left Output Mixer" }, { "Right Headphone Output PGA", NULL, "Right Output Mixer" }, { "Left Speaker PGA", NULL, "Left Speaker Mixer" }, { "Right Speaker PGA", NULL, "Right Speaker Mixer" }, { "HPOUTL", NULL, "Left Headphone Output PGA" }, { "HPOUTR", NULL, "Right Headphone Output PGA" }, { "LINEOUTL", NULL, "Left Line Output PGA" }, { "LINEOUTR", NULL, "Right Line Output PGA" }, { "LOP", NULL, "Left Speaker PGA" }, { "LON", NULL, "Left Speaker PGA" }, { "ROP", NULL, "Right Speaker PGA" }, { "RON", NULL, "Right Speaker PGA" }, }; static int wm8903_add_widgets(struct snd_soc_codec *codec) { snd_soc_dapm_new_controls(codec, wm8903_dapm_widgets, ARRAY_SIZE(wm8903_dapm_widgets)); snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon)); snd_soc_dapm_new_widgets(codec); return 0; } static int wm8903_set_bias_level(struct snd_soc_codec *codec, enum snd_soc_bias_level level) { struct i2c_client *i2c = codec->control_data; u16 reg, reg2; switch (level) { case SND_SOC_BIAS_ON: case SND_SOC_BIAS_PREPARE: reg = wm8903_read(codec, WM8903_VMID_CONTROL_0); reg &= ~(WM8903_VMID_RES_MASK); reg |= WM8903_VMID_RES_50K; wm8903_write(codec, WM8903_VMID_CONTROL_0, reg); break; case SND_SOC_BIAS_STANDBY: if (codec->bias_level == SND_SOC_BIAS_OFF) { wm8903_run_sequence(codec, 0); wm8903_sync_reg_cache(codec, codec->reg_cache); /* Enable low impedence charge pump output */ reg = wm8903_read(codec, WM8903_CONTROL_INTERFACE_TEST_1); wm8903_write(codec, WM8903_CONTROL_INTERFACE_TEST_1, reg | WM8903_TEST_KEY); reg2 = wm8903_read(codec, WM8903_CHARGE_PUMP_TEST_1); wm8903_write(codec, WM8903_CHARGE_PUMP_TEST_1, reg2 | WM8903_CP_SW_KELVIN_MODE_MASK); wm8903_write(codec, WM8903_CONTROL_INTERFACE_TEST_1, reg); /* By default no bypass paths are enabled so * enable Class W support. */ dev_dbg(&i2c->dev, "Enabling Class W\n"); wm8903_write(codec, WM8903_CLASS_W_0, reg | WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V); } reg = wm8903_read(codec, WM8903_VMID_CONTROL_0); reg &= ~(WM8903_VMID_RES_MASK); reg |= WM8903_VMID_RES_250K; wm8903_write(codec, WM8903_VMID_CONTROL_0, reg); break; case SND_SOC_BIAS_OFF: wm8903_run_sequence(codec, 32); break; } codec->bias_level = level; return 0; } static int wm8903_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id, unsigned int freq, int dir) { struct snd_soc_codec *codec = codec_dai->codec; struct wm8903_priv *wm8903 = codec->private_data; wm8903->sysclk = freq; return 0; } static int wm8903_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt) { struct snd_soc_codec *codec = codec_dai->codec; u16 aif1 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_1); aif1 &= ~(WM8903_LRCLK_DIR | WM8903_BCLK_DIR | WM8903_AIF_FMT_MASK | WM8903_AIF_LRCLK_INV | WM8903_AIF_BCLK_INV); switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBS_CFS: break; case SND_SOC_DAIFMT_CBS_CFM: aif1 |= WM8903_LRCLK_DIR; break; case SND_SOC_DAIFMT_CBM_CFM: aif1 |= WM8903_LRCLK_DIR | WM8903_BCLK_DIR; break; case SND_SOC_DAIFMT_CBM_CFS: aif1 |= WM8903_BCLK_DIR; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: aif1 |= 0x3; break; case SND_SOC_DAIFMT_DSP_B: aif1 |= 0x3 | WM8903_AIF_LRCLK_INV; break; case SND_SOC_DAIFMT_I2S: aif1 |= 0x2; break; case SND_SOC_DAIFMT_RIGHT_J: aif1 |= 0x1; break; case SND_SOC_DAIFMT_LEFT_J: break; default: return -EINVAL; } /* Clock inversion */ switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_DSP_A: case SND_SOC_DAIFMT_DSP_B: /* frame inversion not valid for DSP modes */ switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: aif1 |= WM8903_AIF_BCLK_INV; break; default: return -EINVAL; } break; case SND_SOC_DAIFMT_I2S: case SND_SOC_DAIFMT_RIGHT_J: case SND_SOC_DAIFMT_LEFT_J: switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_IF: aif1 |= WM8903_AIF_BCLK_INV | WM8903_AIF_LRCLK_INV; break; case SND_SOC_DAIFMT_IB_NF: aif1 |= WM8903_AIF_BCLK_INV; break; case SND_SOC_DAIFMT_NB_IF: aif1 |= WM8903_AIF_LRCLK_INV; break; default: return -EINVAL; } break; default: return -EINVAL; } wm8903_write(codec, WM8903_AUDIO_INTERFACE_1, aif1); return 0; } static int wm8903_digital_mute(struct snd_soc_dai *codec_dai, int mute) { struct snd_soc_codec *codec = codec_dai->codec; u16 reg; reg = wm8903_read(codec, WM8903_DAC_DIGITAL_1); if (mute) reg |= WM8903_DAC_MUTE; else reg &= ~WM8903_DAC_MUTE; wm8903_write(codec, WM8903_DAC_DIGITAL_1, reg); return 0; } /* Lookup table for CLK_SYS/fs ratio. 256fs or more is recommended * for optimal performance so we list the lower rates first and match * on the last match we find. */ static struct { int div; int rate; int mode; int mclk_div; } clk_sys_ratios[] = { { 64, 0x0, 0x0, 1 }, { 68, 0x0, 0x1, 1 }, { 125, 0x0, 0x2, 1 }, { 128, 0x1, 0x0, 1 }, { 136, 0x1, 0x1, 1 }, { 192, 0x2, 0x0, 1 }, { 204, 0x2, 0x1, 1 }, { 64, 0x0, 0x0, 2 }, { 68, 0x0, 0x1, 2 }, { 125, 0x0, 0x2, 2 }, { 128, 0x1, 0x0, 2 }, { 136, 0x1, 0x1, 2 }, { 192, 0x2, 0x0, 2 }, { 204, 0x2, 0x1, 2 }, { 250, 0x2, 0x2, 1 }, { 256, 0x3, 0x0, 1 }, { 272, 0x3, 0x1, 1 }, { 384, 0x4, 0x0, 1 }, { 408, 0x4, 0x1, 1 }, { 375, 0x4, 0x2, 1 }, { 512, 0x5, 0x0, 1 }, { 544, 0x5, 0x1, 1 }, { 500, 0x5, 0x2, 1 }, { 768, 0x6, 0x0, 1 }, { 816, 0x6, 0x1, 1 }, { 750, 0x6, 0x2, 1 }, { 1024, 0x7, 0x0, 1 }, { 1088, 0x7, 0x1, 1 }, { 1000, 0x7, 0x2, 1 }, { 1408, 0x8, 0x0, 1 }, { 1496, 0x8, 0x1, 1 }, { 1536, 0x9, 0x0, 1 }, { 1632, 0x9, 0x1, 1 }, { 1500, 0x9, 0x2, 1 }, { 250, 0x2, 0x2, 2 }, { 256, 0x3, 0x0, 2 }, { 272, 0x3, 0x1, 2 }, { 384, 0x4, 0x0, 2 }, { 408, 0x4, 0x1, 2 }, { 375, 0x4, 0x2, 2 }, { 512, 0x5, 0x0, 2 }, { 544, 0x5, 0x1, 2 }, { 500, 0x5, 0x2, 2 }, { 768, 0x6, 0x0, 2 }, { 816, 0x6, 0x1, 2 }, { 750, 0x6, 0x2, 2 }, { 1024, 0x7, 0x0, 2 }, { 1088, 0x7, 0x1, 2 }, { 1000, 0x7, 0x2, 2 }, { 1408, 0x8, 0x0, 2 }, { 1496, 0x8, 0x1, 2 }, { 1536, 0x9, 0x0, 2 }, { 1632, 0x9, 0x1, 2 }, { 1500, 0x9, 0x2, 2 }, }; /* CLK_SYS/BCLK ratios - multiplied by 10 due to .5s */ static struct { int ratio; int div; } bclk_divs[] = { { 10, 0 }, { 15, 1 }, { 20, 2 }, { 30, 3 }, { 40, 4 }, { 50, 5 }, { 55, 6 }, { 60, 7 }, { 80, 8 }, { 100, 9 }, { 110, 10 }, { 120, 11 }, { 160, 12 }, { 200, 13 }, { 220, 14 }, { 240, 15 }, { 250, 16 }, { 300, 17 }, { 320, 18 }, { 440, 19 }, { 480, 20 }, }; /* Sample rates for DSP */ static struct { int rate; int value; } sample_rates[] = { { 8000, 0 }, { 11025, 1 }, { 12000, 2 }, { 16000, 3 }, { 22050, 4 }, { 24000, 5 }, { 32000, 6 }, { 44100, 7 }, { 48000, 8 }, { 88200, 9 }, { 96000, 10 }, { 0, 0 }, }; static int wm8903_startup(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_device *socdev = rtd->socdev; struct snd_soc_codec *codec = socdev->codec; struct wm8903_priv *wm8903 = codec->private_data; struct i2c_client *i2c = codec->control_data; struct snd_pcm_runtime *master_runtime; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) wm8903->playback_active++; else wm8903->capture_active++; /* The DAI has shared clocks so if we already have a playback or * capture going then constrain this substream to match it. */ if (wm8903->master_substream) { master_runtime = wm8903->master_substream->runtime; dev_dbg(&i2c->dev, "Constraining to %d bits at %dHz\n", master_runtime->sample_bits, master_runtime->rate); snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_RATE, master_runtime->rate, master_runtime->rate); snd_pcm_hw_constraint_minmax(substream->runtime, SNDRV_PCM_HW_PARAM_SAMPLE_BITS, master_runtime->sample_bits, master_runtime->sample_bits); wm8903->slave_substream = substream; } else wm8903->master_substream = substream; return 0; } static void wm8903_shutdown(struct snd_pcm_substream *substream) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_device *socdev = rtd->socdev; struct snd_soc_codec *codec = socdev->codec; struct wm8903_priv *wm8903 = codec->private_data; if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) wm8903->playback_active--; else wm8903->capture_active--; if (wm8903->master_substream == substream) wm8903->master_substream = wm8903->slave_substream; wm8903->slave_substream = NULL; } static int wm8903_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_soc_pcm_runtime *rtd = substream->private_data; struct snd_soc_device *socdev = rtd->socdev; struct snd_soc_codec *codec = socdev->codec; struct wm8903_priv *wm8903 = codec->private_data; struct i2c_client *i2c = codec->control_data; int fs = params_rate(params); int bclk; int bclk_div; int i; int dsp_config; int clk_config; int best_val; int cur_val; int clk_sys; u16 aif1 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_1); u16 aif2 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_2); u16 aif3 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_3); u16 clock0 = wm8903_read(codec, WM8903_CLOCK_RATES_0); u16 clock1 = wm8903_read(codec, WM8903_CLOCK_RATES_1); if (substream == wm8903->slave_substream) { dev_dbg(&i2c->dev, "Ignoring hw_params for slave substream\n"); return 0; } /* Configure sample rate logic for DSP - choose nearest rate */ dsp_config = 0; best_val = abs(sample_rates[dsp_config].rate - fs); for (i = 1; i < ARRAY_SIZE(sample_rates); i++) { cur_val = abs(sample_rates[i].rate - fs); if (cur_val <= best_val) { dsp_config = i; best_val = cur_val; } } /* Constraints should stop us hitting this but let's make sure */ if (wm8903->capture_active) switch (sample_rates[dsp_config].rate) { case 88200: case 96000: dev_err(&i2c->dev, "%dHz unsupported by ADC\n", fs); return -EINVAL; default: break; } dev_dbg(&i2c->dev, "DSP fs = %dHz\n", sample_rates[dsp_config].rate); clock1 &= ~WM8903_SAMPLE_RATE_MASK; clock1 |= sample_rates[dsp_config].value; aif1 &= ~WM8903_AIF_WL_MASK; bclk = 2 * fs; switch (params_format(params)) { case SNDRV_PCM_FORMAT_S16_LE: bclk *= 16; break; case SNDRV_PCM_FORMAT_S20_3LE: bclk *= 20; aif1 |= 0x4; break; case SNDRV_PCM_FORMAT_S24_LE: bclk *= 24; aif1 |= 0x8; break; case SNDRV_PCM_FORMAT_S32_LE: bclk *= 32; aif1 |= 0xc; break; default: return -EINVAL; } dev_dbg(&i2c->dev, "MCLK = %dHz, target sample rate = %dHz\n", wm8903->sysclk, fs); /* We may not have an MCLK which allows us to generate exactly * the clock we want, particularly with USB derived inputs, so * approximate. */ clk_config = 0; best_val = abs((wm8903->sysclk / (clk_sys_ratios[0].mclk_div * clk_sys_ratios[0].div)) - fs); for (i = 1; i < ARRAY_SIZE(clk_sys_ratios); i++) { cur_val = abs((wm8903->sysclk / (clk_sys_ratios[i].mclk_div * clk_sys_ratios[i].div)) - fs); if (cur_val <= best_val) { clk_config = i; best_val = cur_val; } } if (clk_sys_ratios[clk_config].mclk_div == 2) { clock0 |= WM8903_MCLKDIV2; clk_sys = wm8903->sysclk / 2; } else { clock0 &= ~WM8903_MCLKDIV2; clk_sys = wm8903->sysclk; } clock1 &= ~(WM8903_CLK_SYS_RATE_MASK | WM8903_CLK_SYS_MODE_MASK); clock1 |= clk_sys_ratios[clk_config].rate << WM8903_CLK_SYS_RATE_SHIFT; clock1 |= clk_sys_ratios[clk_config].mode << WM8903_CLK_SYS_MODE_SHIFT; dev_dbg(&i2c->dev, "CLK_SYS_RATE=%x, CLK_SYS_MODE=%x div=%d\n", clk_sys_ratios[clk_config].rate, clk_sys_ratios[clk_config].mode, clk_sys_ratios[clk_config].div); dev_dbg(&i2c->dev, "Actual CLK_SYS = %dHz\n", clk_sys); /* We may not get quite the right frequency if using * approximate clocks so look for the closest match that is * higher than the target (we need to ensure that there enough * BCLKs to clock out the samples). */ bclk_div = 0; best_val = ((clk_sys * 10) / bclk_divs[0].ratio) - bclk; i = 1; while (i < ARRAY_SIZE(bclk_divs)) { cur_val = ((clk_sys * 10) / bclk_divs[i].ratio) - bclk; if (cur_val < 0) /* BCLK table is sorted */ break; bclk_div = i; best_val = cur_val; i++; } aif2 &= ~WM8903_BCLK_DIV_MASK; aif3 &= ~WM8903_LRCLK_RATE_MASK; dev_dbg(&i2c->dev, "BCLK ratio %d for %dHz - actual BCLK = %dHz\n", bclk_divs[bclk_div].ratio / 10, bclk, (clk_sys * 10) / bclk_divs[bclk_div].ratio); aif2 |= bclk_divs[bclk_div].div; aif3 |= bclk / fs; wm8903_write(codec, WM8903_CLOCK_RATES_0, clock0); wm8903_write(codec, WM8903_CLOCK_RATES_1, clock1); wm8903_write(codec, WM8903_AUDIO_INTERFACE_1, aif1); wm8903_write(codec, WM8903_AUDIO_INTERFACE_2, aif2); wm8903_write(codec, WM8903_AUDIO_INTERFACE_3, aif3); return 0; } #define WM8903_PLAYBACK_RATES (SNDRV_PCM_RATE_8000 |\ SNDRV_PCM_RATE_11025 | \ SNDRV_PCM_RATE_16000 | \ SNDRV_PCM_RATE_22050 | \ SNDRV_PCM_RATE_32000 | \ SNDRV_PCM_RATE_44100 | \ SNDRV_PCM_RATE_48000 | \ SNDRV_PCM_RATE_88200 | \ SNDRV_PCM_RATE_96000) #define WM8903_CAPTURE_RATES (SNDRV_PCM_RATE_8000 |\ SNDRV_PCM_RATE_11025 | \ SNDRV_PCM_RATE_16000 | \ SNDRV_PCM_RATE_22050 | \ SNDRV_PCM_RATE_32000 | \ SNDRV_PCM_RATE_44100 | \ SNDRV_PCM_RATE_48000) #define WM8903_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\ SNDRV_PCM_FMTBIT_S20_3LE |\ SNDRV_PCM_FMTBIT_S24_LE) struct snd_soc_dai wm8903_dai = { .name = "WM8903", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 2, .rates = WM8903_PLAYBACK_RATES, .formats = WM8903_FORMATS, }, .capture = { .stream_name = "Capture", .channels_min = 2, .channels_max = 2, .rates = WM8903_CAPTURE_RATES, .formats = WM8903_FORMATS, }, .ops = { .startup = wm8903_startup, .shutdown = wm8903_shutdown, .hw_params = wm8903_hw_params, }, .dai_ops = { .digital_mute = wm8903_digital_mute, .set_fmt = wm8903_set_dai_fmt, .set_sysclk = wm8903_set_dai_sysclk } }; EXPORT_SYMBOL_GPL(wm8903_dai); static int wm8903_suspend(struct platform_device *pdev, pm_message_t state) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct snd_soc_codec *codec = socdev->codec; wm8903_set_bias_level(codec, SND_SOC_BIAS_OFF); return 0; } static int wm8903_resume(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct snd_soc_codec *codec = socdev->codec; struct i2c_client *i2c = codec->control_data; int i; u16 *reg_cache = codec->reg_cache; u16 *tmp_cache = kmemdup(codec->reg_cache, sizeof(wm8903_reg_defaults), GFP_KERNEL); /* Bring the codec back up to standby first to minimise pop/clicks */ wm8903_set_bias_level(codec, SND_SOC_BIAS_STANDBY); wm8903_set_bias_level(codec, codec->suspend_bias_level); /* Sync back everything else */ if (tmp_cache) { for (i = 2; i < ARRAY_SIZE(wm8903_reg_defaults); i++) if (tmp_cache[i] != reg_cache[i]) wm8903_write(codec, i, tmp_cache[i]); } else { dev_err(&i2c->dev, "Failed to allocate temporary cache\n"); } return 0; } /* * initialise the WM8903 driver * register the mixer and dsp interfaces with the kernel */ static int wm8903_init(struct snd_soc_device *socdev) { struct snd_soc_codec *codec = socdev->codec; struct i2c_client *i2c = codec->control_data; int ret = 0; u16 val; val = wm8903_hw_read(codec, WM8903_SW_RESET_AND_ID); if (val != wm8903_reg_defaults[WM8903_SW_RESET_AND_ID]) { dev_err(&i2c->dev, "Device with ID register %x is not a WM8903\n", val); return -ENODEV; } codec->name = "WM8903"; codec->owner = THIS_MODULE; codec->read = wm8903_read; codec->write = wm8903_write; codec->bias_level = SND_SOC_BIAS_OFF; codec->set_bias_level = wm8903_set_bias_level; codec->dai = &wm8903_dai; codec->num_dai = 1; codec->reg_cache_size = ARRAY_SIZE(wm8903_reg_defaults); codec->reg_cache = kmemdup(wm8903_reg_defaults, sizeof(wm8903_reg_defaults), GFP_KERNEL); if (codec->reg_cache == NULL) { dev_err(&i2c->dev, "Failed to allocate register cache\n"); return -ENOMEM; } val = wm8903_read(codec, WM8903_REVISION_NUMBER); dev_info(&i2c->dev, "WM8903 revision %d\n", val & WM8903_CHIP_REV_MASK); wm8903_reset(codec); /* register pcms */ ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1); if (ret < 0) { dev_err(&i2c->dev, "failed to create pcms\n"); goto pcm_err; } /* SYSCLK is required for pretty much anything */ wm8903_write(codec, WM8903_CLOCK_RATES_2, WM8903_CLK_SYS_ENA); /* power on device */ wm8903_set_bias_level(codec, SND_SOC_BIAS_STANDBY); /* Latch volume update bits */ val = wm8903_read(codec, WM8903_ADC_DIGITAL_VOLUME_LEFT); val |= WM8903_ADCVU; wm8903_write(codec, WM8903_ADC_DIGITAL_VOLUME_LEFT, val); wm8903_write(codec, WM8903_ADC_DIGITAL_VOLUME_RIGHT, val); val = wm8903_read(codec, WM8903_DAC_DIGITAL_VOLUME_LEFT); val |= WM8903_DACVU; wm8903_write(codec, WM8903_DAC_DIGITAL_VOLUME_LEFT, val); wm8903_write(codec, WM8903_DAC_DIGITAL_VOLUME_RIGHT, val); val = wm8903_read(codec, WM8903_ANALOGUE_OUT1_LEFT); val |= WM8903_HPOUTVU; wm8903_write(codec, WM8903_ANALOGUE_OUT1_LEFT, val); wm8903_write(codec, WM8903_ANALOGUE_OUT1_RIGHT, val); val = wm8903_read(codec, WM8903_ANALOGUE_OUT2_LEFT); val |= WM8903_LINEOUTVU; wm8903_write(codec, WM8903_ANALOGUE_OUT2_LEFT, val); wm8903_write(codec, WM8903_ANALOGUE_OUT2_RIGHT, val); val = wm8903_read(codec, WM8903_ANALOGUE_OUT3_LEFT); val |= WM8903_SPKVU; wm8903_write(codec, WM8903_ANALOGUE_OUT3_LEFT, val); wm8903_write(codec, WM8903_ANALOGUE_OUT3_RIGHT, val); /* Enable DAC soft mute by default */ val = wm8903_read(codec, WM8903_DAC_DIGITAL_1); val |= WM8903_DAC_MUTEMODE; wm8903_write(codec, WM8903_DAC_DIGITAL_1, val); wm8903_add_controls(codec); wm8903_add_widgets(codec); ret = snd_soc_register_card(socdev); if (ret < 0) { dev_err(&i2c->dev, "wm8903: failed to register card\n"); goto card_err; } return ret; card_err: snd_soc_free_pcms(socdev); snd_soc_dapm_free(socdev); pcm_err: kfree(codec->reg_cache); return ret; } static struct snd_soc_device *wm8903_socdev; static int wm8903_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct snd_soc_device *socdev = wm8903_socdev; struct snd_soc_codec *codec = socdev->codec; int ret; i2c_set_clientdata(i2c, codec); codec->control_data = i2c; ret = wm8903_init(socdev); if (ret < 0) dev_err(&i2c->dev, "Device initialisation failed\n"); return ret; } static int wm8903_i2c_remove(struct i2c_client *client) { struct snd_soc_codec *codec = i2c_get_clientdata(client); kfree(codec->reg_cache); return 0; } /* i2c codec control layer */ static const struct i2c_device_id wm8903_i2c_id[] = { { "wm8903", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, wm8903_i2c_id); static struct i2c_driver wm8903_i2c_driver = { .driver = { .name = "WM8903", .owner = THIS_MODULE, }, .probe = wm8903_i2c_probe, .remove = wm8903_i2c_remove, .id_table = wm8903_i2c_id, }; static struct i2c_client *wm8903_i2c_device; static int wm8903_probe(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct wm8903_setup_data *setup; struct snd_soc_codec *codec; struct wm8903_priv *wm8903; struct i2c_board_info board_info; struct i2c_adapter *adapter; int ret = 0; setup = socdev->codec_data; if (!setup->i2c_address) { dev_err(&pdev->dev, "No codec address provided\n"); return -ENODEV; } codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL); if (codec == NULL) return -ENOMEM; wm8903 = kzalloc(sizeof(struct wm8903_priv), GFP_KERNEL); if (wm8903 == NULL) { ret = -ENOMEM; goto err_codec; } codec->private_data = wm8903; socdev->codec = codec; mutex_init(&codec->mutex); INIT_LIST_HEAD(&codec->dapm_widgets); INIT_LIST_HEAD(&codec->dapm_paths); wm8903_socdev = socdev; codec->hw_write = (hw_write_t)i2c_master_send; ret = i2c_add_driver(&wm8903_i2c_driver); if (ret != 0) { dev_err(&pdev->dev, "can't add i2c driver"); goto err_priv; } else { memset(&board_info, 0, sizeof(board_info)); strlcpy(board_info.type, "wm8903", I2C_NAME_SIZE); board_info.addr = setup->i2c_address; adapter = i2c_get_adapter(setup->i2c_bus); if (!adapter) { dev_err(&pdev->dev, "Can't get I2C bus %d\n", setup->i2c_bus); goto err_adapter; } wm8903_i2c_device = i2c_new_device(adapter, &board_info); i2c_put_adapter(adapter); if (wm8903_i2c_device == NULL) { dev_err(&pdev->dev, "I2C driver registration failed\n"); ret = -ENODEV; goto err_adapter; } } return ret; err_adapter: i2c_del_driver(&wm8903_i2c_driver); err_priv: kfree(codec->private_data); err_codec: kfree(codec); return ret; } /* power down chip */ static int wm8903_remove(struct platform_device *pdev) { struct snd_soc_device *socdev = platform_get_drvdata(pdev); struct snd_soc_codec *codec = socdev->codec; if (codec->control_data) wm8903_set_bias_level(codec, SND_SOC_BIAS_OFF); snd_soc_free_pcms(socdev); snd_soc_dapm_free(socdev); i2c_unregister_device(wm8903_i2c_device); i2c_del_driver(&wm8903_i2c_driver); kfree(codec->private_data); kfree(codec); return 0; } struct snd_soc_codec_device soc_codec_dev_wm8903 = { .probe = wm8903_probe, .remove = wm8903_remove, .suspend = wm8903_suspend, .resume = wm8903_resume, }; EXPORT_SYMBOL_GPL(soc_codec_dev_wm8903); MODULE_DESCRIPTION("ASoC WM8903 driver"); MODULE_AUTHOR("Mark Brown "); MODULE_LICENSE("GPL");