/* * TI EDMA DMA engine driver * * Copyright 2012 Texas Instruments * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation version 2. * * This program is distributed "as is" WITHOUT ANY WARRANTY of any * kind, whether express or implied; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #include "virt-dma.h" /* * This will go away when the private EDMA API is folded * into this driver and the platform device(s) are * instantiated in the arch code. We can only get away * with this simplification because DA8XX may not be built * in the same kernel image with other DaVinci parts. This * avoids having to sprinkle dmaengine driver platform devices * and data throughout all the existing board files. */ #ifdef CONFIG_ARCH_DAVINCI_DA8XX #define EDMA_CTLRS 2 #define EDMA_CHANS 32 #else #define EDMA_CTLRS 1 #define EDMA_CHANS 64 #endif /* CONFIG_ARCH_DAVINCI_DA8XX */ /* * Max of 20 segments per channel to conserve PaRAM slots * Also note that MAX_NR_SG should be atleast the no.of periods * that are required for ASoC, otherwise DMA prep calls will * fail. Today davinci-pcm is the only user of this driver and * requires atleast 17 slots, so we setup the default to 20. */ #define MAX_NR_SG 20 #define EDMA_MAX_SLOTS MAX_NR_SG #define EDMA_DESCRIPTORS 16 struct edma_desc { struct virt_dma_desc vdesc; struct list_head node; int cyclic; int absync; int pset_nr; int processed; struct edmacc_param pset[0]; }; struct edma_cc; struct edma_chan { struct virt_dma_chan vchan; struct list_head node; struct edma_desc *edesc; struct edma_cc *ecc; int ch_num; bool alloced; int slot[EDMA_MAX_SLOTS]; int missed; struct dma_slave_config cfg; }; struct edma_cc { int ctlr; struct dma_device dma_slave; struct edma_chan slave_chans[EDMA_CHANS]; int num_slave_chans; int dummy_slot; }; static inline struct edma_cc *to_edma_cc(struct dma_device *d) { return container_of(d, struct edma_cc, dma_slave); } static inline struct edma_chan *to_edma_chan(struct dma_chan *c) { return container_of(c, struct edma_chan, vchan.chan); } static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx) { return container_of(tx, struct edma_desc, vdesc.tx); } static void edma_desc_free(struct virt_dma_desc *vdesc) { kfree(container_of(vdesc, struct edma_desc, vdesc)); } /* Dispatch a queued descriptor to the controller (caller holds lock) */ static void edma_execute(struct edma_chan *echan) { struct virt_dma_desc *vdesc; struct edma_desc *edesc; struct device *dev = echan->vchan.chan.device->dev; int i, j, left, nslots; /* If either we processed all psets or we're still not started */ if (!echan->edesc || echan->edesc->pset_nr == echan->edesc->processed) { /* Get next vdesc */ vdesc = vchan_next_desc(&echan->vchan); if (!vdesc) { echan->edesc = NULL; return; } list_del(&vdesc->node); echan->edesc = to_edma_desc(&vdesc->tx); } edesc = echan->edesc; /* Find out how many left */ left = edesc->pset_nr - edesc->processed; nslots = min(MAX_NR_SG, left); /* Write descriptor PaRAM set(s) */ for (i = 0; i < nslots; i++) { j = i + edesc->processed; edma_write_slot(echan->slot[i], &edesc->pset[j]); dev_vdbg(echan->vchan.chan.device->dev, "\n pset[%d]:\n" " chnum\t%d\n" " slot\t%d\n" " opt\t%08x\n" " src\t%08x\n" " dst\t%08x\n" " abcnt\t%08x\n" " ccnt\t%08x\n" " bidx\t%08x\n" " cidx\t%08x\n" " lkrld\t%08x\n", j, echan->ch_num, echan->slot[i], edesc->pset[j].opt, edesc->pset[j].src, edesc->pset[j].dst, edesc->pset[j].a_b_cnt, edesc->pset[j].ccnt, edesc->pset[j].src_dst_bidx, edesc->pset[j].src_dst_cidx, edesc->pset[j].link_bcntrld); /* Link to the previous slot if not the last set */ if (i != (nslots - 1)) edma_link(echan->slot[i], echan->slot[i+1]); } edesc->processed += nslots; /* * If this is either the last set in a set of SG-list transactions * then setup a link to the dummy slot, this results in all future * events being absorbed and that's OK because we're done */ if (edesc->processed == edesc->pset_nr) { if (edesc->cyclic) edma_link(echan->slot[nslots-1], echan->slot[1]); else edma_link(echan->slot[nslots-1], echan->ecc->dummy_slot); } if (edesc->processed <= MAX_NR_SG) { dev_dbg(dev, "first transfer starting on channel %d\n", echan->ch_num); edma_start(echan->ch_num); } else { dev_dbg(dev, "chan: %d: completed %d elements, resuming\n", echan->ch_num, edesc->processed); edma_resume(echan->ch_num); } /* * This happens due to setup times between intermediate transfers * in long SG lists which have to be broken up into transfers of * MAX_NR_SG */ if (echan->missed) { dev_dbg(dev, "missed event on channel %d\n", echan->ch_num); edma_clean_channel(echan->ch_num); edma_stop(echan->ch_num); edma_start(echan->ch_num); edma_trigger_channel(echan->ch_num); echan->missed = 0; } } static int edma_terminate_all(struct edma_chan *echan) { unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&echan->vchan.lock, flags); /* * Stop DMA activity: we assume the callback will not be called * after edma_dma() returns (even if it does, it will see * echan->edesc is NULL and exit.) */ if (echan->edesc) { echan->edesc = NULL; edma_stop(echan->ch_num); } vchan_get_all_descriptors(&echan->vchan, &head); spin_unlock_irqrestore(&echan->vchan.lock, flags); vchan_dma_desc_free_list(&echan->vchan, &head); return 0; } static int edma_slave_config(struct edma_chan *echan, struct dma_slave_config *cfg) { if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES || cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) return -EINVAL; memcpy(&echan->cfg, cfg, sizeof(echan->cfg)); return 0; } static int edma_dma_pause(struct edma_chan *echan) { /* Pause/Resume only allowed with cyclic mode */ if (!echan->edesc->cyclic) return -EINVAL; edma_pause(echan->ch_num); return 0; } static int edma_dma_resume(struct edma_chan *echan) { /* Pause/Resume only allowed with cyclic mode */ if (!echan->edesc->cyclic) return -EINVAL; edma_resume(echan->ch_num); return 0; } static int edma_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { int ret = 0; struct dma_slave_config *config; struct edma_chan *echan = to_edma_chan(chan); switch (cmd) { case DMA_TERMINATE_ALL: edma_terminate_all(echan); break; case DMA_SLAVE_CONFIG: config = (struct dma_slave_config *)arg; ret = edma_slave_config(echan, config); break; case DMA_PAUSE: ret = edma_dma_pause(echan); break; case DMA_RESUME: ret = edma_dma_resume(echan); break; default: ret = -ENOSYS; } return ret; } /* * A PaRAM set configuration abstraction used by other modes * @chan: Channel who's PaRAM set we're configuring * @pset: PaRAM set to initialize and setup. * @src_addr: Source address of the DMA * @dst_addr: Destination address of the DMA * @burst: In units of dev_width, how much to send * @dev_width: How much is the dev_width * @dma_length: Total length of the DMA transfer * @direction: Direction of the transfer */ static int edma_config_pset(struct dma_chan *chan, struct edmacc_param *pset, dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst, enum dma_slave_buswidth dev_width, unsigned int dma_length, enum dma_transfer_direction direction) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; int acnt, bcnt, ccnt, cidx; int src_bidx, dst_bidx, src_cidx, dst_cidx; int absync; acnt = dev_width; /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */ if (!burst) burst = 1; /* * If the maxburst is equal to the fifo width, use * A-synced transfers. This allows for large contiguous * buffer transfers using only one PaRAM set. */ if (burst == 1) { /* * For the A-sync case, bcnt and ccnt are the remainder * and quotient respectively of the division of: * (dma_length / acnt) by (SZ_64K -1). This is so * that in case bcnt over flows, we have ccnt to use. * Note: In A-sync tranfer only, bcntrld is used, but it * only applies for sg_dma_len(sg) >= SZ_64K. * In this case, the best way adopted is- bccnt for the * first frame will be the remainder below. Then for * every successive frame, bcnt will be SZ_64K-1. This * is assured as bcntrld = 0xffff in end of function. */ absync = false; ccnt = dma_length / acnt / (SZ_64K - 1); bcnt = dma_length / acnt - ccnt * (SZ_64K - 1); /* * If bcnt is non-zero, we have a remainder and hence an * extra frame to transfer, so increment ccnt. */ if (bcnt) ccnt++; else bcnt = SZ_64K - 1; cidx = acnt; } else { /* * If maxburst is greater than the fifo address_width, * use AB-synced transfers where A count is the fifo * address_width and B count is the maxburst. In this * case, we are limited to transfers of C count frames * of (address_width * maxburst) where C count is limited * to SZ_64K-1. This places an upper bound on the length * of an SG segment that can be handled. */ absync = true; bcnt = burst; ccnt = dma_length / (acnt * bcnt); if (ccnt > (SZ_64K - 1)) { dev_err(dev, "Exceeded max SG segment size\n"); return -EINVAL; } cidx = acnt * bcnt; } if (direction == DMA_MEM_TO_DEV) { src_bidx = acnt; src_cidx = cidx; dst_bidx = 0; dst_cidx = 0; } else if (direction == DMA_DEV_TO_MEM) { src_bidx = 0; src_cidx = 0; dst_bidx = acnt; dst_cidx = cidx; } else if (direction == DMA_MEM_TO_MEM) { src_bidx = acnt; src_cidx = cidx; dst_bidx = acnt; dst_cidx = cidx; } else { dev_err(dev, "%s: direction not implemented yet\n", __func__); return -EINVAL; } pset->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num)); /* Configure A or AB synchronized transfers */ if (absync) pset->opt |= SYNCDIM; pset->src = src_addr; pset->dst = dst_addr; pset->src_dst_bidx = (dst_bidx << 16) | src_bidx; pset->src_dst_cidx = (dst_cidx << 16) | src_cidx; pset->a_b_cnt = bcnt << 16 | acnt; pset->ccnt = ccnt; /* * Only time when (bcntrld) auto reload is required is for * A-sync case, and in this case, a requirement of reload value * of SZ_64K-1 only is assured. 'link' is initially set to NULL * and then later will be populated by edma_execute. */ pset->link_bcntrld = 0xffffffff; return absync; } static struct dma_async_tx_descriptor *edma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long tx_flags, void *context) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; struct edma_desc *edesc; dma_addr_t src_addr = 0, dst_addr = 0; enum dma_slave_buswidth dev_width; u32 burst; struct scatterlist *sg; int i, nslots, ret; if (unlikely(!echan || !sgl || !sg_len)) return NULL; if (direction == DMA_DEV_TO_MEM) { src_addr = echan->cfg.src_addr; dev_width = echan->cfg.src_addr_width; burst = echan->cfg.src_maxburst; } else if (direction == DMA_MEM_TO_DEV) { dst_addr = echan->cfg.dst_addr; dev_width = echan->cfg.dst_addr_width; burst = echan->cfg.dst_maxburst; } else { dev_err(dev, "%s: bad direction: %d\n", __func__, direction); return NULL; } if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { dev_err(dev, "%s: Undefined slave buswidth\n", __func__); return NULL; } edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]), GFP_ATOMIC); if (!edesc) { dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); return NULL; } edesc->pset_nr = sg_len; /* Allocate a PaRAM slot, if needed */ nslots = min_t(unsigned, MAX_NR_SG, sg_len); for (i = 0; i < nslots; i++) { if (echan->slot[i] < 0) { echan->slot[i] = edma_alloc_slot(EDMA_CTLR(echan->ch_num), EDMA_SLOT_ANY); if (echan->slot[i] < 0) { kfree(edesc); dev_err(dev, "%s: Failed to allocate slot\n", __func__); return NULL; } } } /* Configure PaRAM sets for each SG */ for_each_sg(sgl, sg, sg_len, i) { /* Get address for each SG */ if (direction == DMA_DEV_TO_MEM) dst_addr = sg_dma_address(sg); else src_addr = sg_dma_address(sg); ret = edma_config_pset(chan, &edesc->pset[i], src_addr, dst_addr, burst, dev_width, sg_dma_len(sg), direction); if (ret < 0) { kfree(edesc); return NULL; } edesc->absync = ret; /* If this is the last in a current SG set of transactions, enable interrupts so that next set is processed */ if (!((i+1) % MAX_NR_SG)) edesc->pset[i].opt |= TCINTEN; /* If this is the last set, enable completion interrupt flag */ if (i == sg_len - 1) edesc->pset[i].opt |= TCINTEN; } return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } struct dma_async_tx_descriptor *edma_prep_dma_memcpy( struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, size_t len, unsigned long tx_flags) { int ret; struct edma_desc *edesc; struct device *dev = chan->device->dev; struct edma_chan *echan = to_edma_chan(chan); if (unlikely(!echan || !len)) return NULL; edesc = kzalloc(sizeof(*edesc) + sizeof(edesc->pset[0]), GFP_ATOMIC); if (!edesc) { dev_dbg(dev, "Failed to allocate a descriptor\n"); return NULL; } edesc->pset_nr = 1; ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1, DMA_SLAVE_BUSWIDTH_4_BYTES, len, DMA_MEM_TO_MEM); if (ret < 0) return NULL; edesc->absync = ret; /* * Enable intermediate transfer chaining to re-trigger channel * on completion of every TR, and enable transfer-completion * interrupt on completion of the whole transfer. */ edesc->pset[0].opt |= ITCCHEN; edesc->pset[0].opt |= TCINTEN; return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } static struct dma_async_tx_descriptor *edma_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long tx_flags, void *context) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; struct edma_desc *edesc; dma_addr_t src_addr, dst_addr; enum dma_slave_buswidth dev_width; u32 burst; int i, ret, nslots; if (unlikely(!echan || !buf_len || !period_len)) return NULL; if (direction == DMA_DEV_TO_MEM) { src_addr = echan->cfg.src_addr; dst_addr = buf_addr; dev_width = echan->cfg.src_addr_width; burst = echan->cfg.src_maxburst; } else if (direction == DMA_MEM_TO_DEV) { src_addr = buf_addr; dst_addr = echan->cfg.dst_addr; dev_width = echan->cfg.dst_addr_width; burst = echan->cfg.dst_maxburst; } else { dev_err(dev, "%s: bad direction: %d\n", __func__, direction); return NULL; } if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) { dev_err(dev, "%s: Undefined slave buswidth\n", __func__); return NULL; } if (unlikely(buf_len % period_len)) { dev_err(dev, "Period should be multiple of Buffer length\n"); return NULL; } nslots = (buf_len / period_len) + 1; /* * Cyclic DMA users such as audio cannot tolerate delays introduced * by cases where the number of periods is more than the maximum * number of SGs the EDMA driver can handle at a time. For DMA types * such as Slave SGs, such delays are tolerable and synchronized, * but the synchronization is difficult to achieve with Cyclic and * cannot be guaranteed, so we error out early. */ if (nslots > MAX_NR_SG) return NULL; edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]), GFP_ATOMIC); if (!edesc) { dev_err(dev, "%s: Failed to allocate a descriptor\n", __func__); return NULL; } edesc->cyclic = 1; edesc->pset_nr = nslots; dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n", __func__, echan->ch_num, nslots, period_len, buf_len); for (i = 0; i < nslots; i++) { /* Allocate a PaRAM slot, if needed */ if (echan->slot[i] < 0) { echan->slot[i] = edma_alloc_slot(EDMA_CTLR(echan->ch_num), EDMA_SLOT_ANY); if (echan->slot[i] < 0) { kfree(edesc); dev_err(dev, "%s: Failed to allocate slot\n", __func__); return NULL; } } if (i == nslots - 1) { memcpy(&edesc->pset[i], &edesc->pset[0], sizeof(edesc->pset[0])); break; } ret = edma_config_pset(chan, &edesc->pset[i], src_addr, dst_addr, burst, dev_width, period_len, direction); if (ret < 0) { kfree(edesc); return NULL; } if (direction == DMA_DEV_TO_MEM) dst_addr += period_len; else src_addr += period_len; dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i); dev_vdbg(dev, "\n pset[%d]:\n" " chnum\t%d\n" " slot\t%d\n" " opt\t%08x\n" " src\t%08x\n" " dst\t%08x\n" " abcnt\t%08x\n" " ccnt\t%08x\n" " bidx\t%08x\n" " cidx\t%08x\n" " lkrld\t%08x\n", i, echan->ch_num, echan->slot[i], edesc->pset[i].opt, edesc->pset[i].src, edesc->pset[i].dst, edesc->pset[i].a_b_cnt, edesc->pset[i].ccnt, edesc->pset[i].src_dst_bidx, edesc->pset[i].src_dst_cidx, edesc->pset[i].link_bcntrld); edesc->absync = ret; /* * Enable interrupts for every period because callback * has to be called for every period. */ edesc->pset[i].opt |= TCINTEN; } return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags); } static void edma_callback(unsigned ch_num, u16 ch_status, void *data) { struct edma_chan *echan = data; struct device *dev = echan->vchan.chan.device->dev; struct edma_desc *edesc; struct edmacc_param p; edesc = echan->edesc; /* Pause the channel for non-cyclic */ if (!edesc || (edesc && !edesc->cyclic)) edma_pause(echan->ch_num); switch (ch_status) { case EDMA_DMA_COMPLETE: spin_lock(&echan->vchan.lock); if (edesc) { if (edesc->cyclic) { vchan_cyclic_callback(&edesc->vdesc); } else if (edesc->processed == edesc->pset_nr) { dev_dbg(dev, "Transfer complete, stopping channel %d\n", ch_num); edma_stop(echan->ch_num); vchan_cookie_complete(&edesc->vdesc); edma_execute(echan); } else { dev_dbg(dev, "Intermediate transfer complete on channel %d\n", ch_num); edma_execute(echan); } } spin_unlock(&echan->vchan.lock); break; case EDMA_DMA_CC_ERROR: spin_lock(&echan->vchan.lock); edma_read_slot(EDMA_CHAN_SLOT(echan->slot[0]), &p); /* * Issue later based on missed flag which will be sure * to happen as: * (1) we finished transmitting an intermediate slot and * edma_execute is coming up. * (2) or we finished current transfer and issue will * call edma_execute. * * Important note: issuing can be dangerous here and * lead to some nasty recursion when we are in a NULL * slot. So we avoid doing so and set the missed flag. */ if (p.a_b_cnt == 0 && p.ccnt == 0) { dev_dbg(dev, "Error occurred, looks like slot is null, just setting miss\n"); echan->missed = 1; } else { /* * The slot is already programmed but the event got * missed, so its safe to issue it here. */ dev_dbg(dev, "Error occurred but slot is non-null, TRIGGERING\n"); edma_clean_channel(echan->ch_num); edma_stop(echan->ch_num); edma_start(echan->ch_num); edma_trigger_channel(echan->ch_num); } spin_unlock(&echan->vchan.lock); break; default: break; } } /* Alloc channel resources */ static int edma_alloc_chan_resources(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; int ret; int a_ch_num; LIST_HEAD(descs); a_ch_num = edma_alloc_channel(echan->ch_num, edma_callback, chan, EVENTQ_DEFAULT); if (a_ch_num < 0) { ret = -ENODEV; goto err_no_chan; } if (a_ch_num != echan->ch_num) { dev_err(dev, "failed to allocate requested channel %u:%u\n", EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); ret = -ENODEV; goto err_wrong_chan; } echan->alloced = true; echan->slot[0] = echan->ch_num; dev_dbg(dev, "allocated channel %d for %u:%u\n", echan->ch_num, EDMA_CTLR(echan->ch_num), EDMA_CHAN_SLOT(echan->ch_num)); return 0; err_wrong_chan: edma_free_channel(a_ch_num); err_no_chan: return ret; } /* Free channel resources */ static void edma_free_chan_resources(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); struct device *dev = chan->device->dev; int i; /* Terminate transfers */ edma_stop(echan->ch_num); vchan_free_chan_resources(&echan->vchan); /* Free EDMA PaRAM slots */ for (i = 1; i < EDMA_MAX_SLOTS; i++) { if (echan->slot[i] >= 0) { edma_free_slot(echan->slot[i]); echan->slot[i] = -1; } } /* Free EDMA channel */ if (echan->alloced) { edma_free_channel(echan->ch_num); echan->alloced = false; } dev_dbg(dev, "freeing channel for %u\n", echan->ch_num); } /* Send pending descriptor to hardware */ static void edma_issue_pending(struct dma_chan *chan) { struct edma_chan *echan = to_edma_chan(chan); unsigned long flags; spin_lock_irqsave(&echan->vchan.lock, flags); if (vchan_issue_pending(&echan->vchan) && !echan->edesc) edma_execute(echan); spin_unlock_irqrestore(&echan->vchan.lock, flags); } static size_t edma_desc_size(struct edma_desc *edesc) { int i; size_t size; if (edesc->absync) for (size = i = 0; i < edesc->pset_nr; i++) size += (edesc->pset[i].a_b_cnt & 0xffff) * (edesc->pset[i].a_b_cnt >> 16) * edesc->pset[i].ccnt; else size = (edesc->pset[0].a_b_cnt & 0xffff) * (edesc->pset[0].a_b_cnt >> 16) + (edesc->pset[0].a_b_cnt & 0xffff) * (SZ_64K - 1) * edesc->pset[0].ccnt; return size; } /* Check request completion status */ static enum dma_status edma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct edma_chan *echan = to_edma_chan(chan); struct virt_dma_desc *vdesc; enum dma_status ret; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE || !txstate) return ret; spin_lock_irqsave(&echan->vchan.lock, flags); vdesc = vchan_find_desc(&echan->vchan, cookie); if (vdesc) { txstate->residue = edma_desc_size(to_edma_desc(&vdesc->tx)); } else if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) { struct edma_desc *edesc = echan->edesc; txstate->residue = edma_desc_size(edesc); } spin_unlock_irqrestore(&echan->vchan.lock, flags); return ret; } static void __init edma_chan_init(struct edma_cc *ecc, struct dma_device *dma, struct edma_chan *echans) { int i, j; for (i = 0; i < EDMA_CHANS; i++) { struct edma_chan *echan = &echans[i]; echan->ch_num = EDMA_CTLR_CHAN(ecc->ctlr, i); echan->ecc = ecc; echan->vchan.desc_free = edma_desc_free; vchan_init(&echan->vchan, dma); INIT_LIST_HEAD(&echan->node); for (j = 0; j < EDMA_MAX_SLOTS; j++) echan->slot[j] = -1; } } #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) static int edma_dma_device_slave_caps(struct dma_chan *dchan, struct dma_slave_caps *caps) { caps->src_addr_widths = EDMA_DMA_BUSWIDTHS; caps->dstn_addr_widths = EDMA_DMA_BUSWIDTHS; caps->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); caps->cmd_pause = true; caps->cmd_terminate = true; caps->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; return 0; } static void edma_dma_init(struct edma_cc *ecc, struct dma_device *dma, struct device *dev) { dma->device_prep_slave_sg = edma_prep_slave_sg; dma->device_prep_dma_cyclic = edma_prep_dma_cyclic; dma->device_prep_dma_memcpy = edma_prep_dma_memcpy; dma->device_alloc_chan_resources = edma_alloc_chan_resources; dma->device_free_chan_resources = edma_free_chan_resources; dma->device_issue_pending = edma_issue_pending; dma->device_tx_status = edma_tx_status; dma->device_control = edma_control; dma->device_slave_caps = edma_dma_device_slave_caps; dma->dev = dev; /* * code using dma memcpy must make sure alignment of * length is at dma->copy_align boundary. */ dma->copy_align = DMA_SLAVE_BUSWIDTH_4_BYTES; INIT_LIST_HEAD(&dma->channels); } static int edma_probe(struct platform_device *pdev) { struct edma_cc *ecc; int ret; ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; ecc = devm_kzalloc(&pdev->dev, sizeof(*ecc), GFP_KERNEL); if (!ecc) { dev_err(&pdev->dev, "Can't allocate controller\n"); return -ENOMEM; } ecc->ctlr = pdev->id; ecc->dummy_slot = edma_alloc_slot(ecc->ctlr, EDMA_SLOT_ANY); if (ecc->dummy_slot < 0) { dev_err(&pdev->dev, "Can't allocate PaRAM dummy slot\n"); return -EIO; } dma_cap_zero(ecc->dma_slave.cap_mask); dma_cap_set(DMA_SLAVE, ecc->dma_slave.cap_mask); dma_cap_set(DMA_CYCLIC, ecc->dma_slave.cap_mask); dma_cap_set(DMA_MEMCPY, ecc->dma_slave.cap_mask); edma_dma_init(ecc, &ecc->dma_slave, &pdev->dev); edma_chan_init(ecc, &ecc->dma_slave, ecc->slave_chans); ret = dma_async_device_register(&ecc->dma_slave); if (ret) goto err_reg1; platform_set_drvdata(pdev, ecc); dev_info(&pdev->dev, "TI EDMA DMA engine driver\n"); return 0; err_reg1: edma_free_slot(ecc->dummy_slot); return ret; } static int edma_remove(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct edma_cc *ecc = dev_get_drvdata(dev); dma_async_device_unregister(&ecc->dma_slave); edma_free_slot(ecc->dummy_slot); return 0; } static struct platform_driver edma_driver = { .probe = edma_probe, .remove = edma_remove, .driver = { .name = "edma-dma-engine", .owner = THIS_MODULE, }, }; bool edma_filter_fn(struct dma_chan *chan, void *param) { if (chan->device->dev->driver == &edma_driver.driver) { struct edma_chan *echan = to_edma_chan(chan); unsigned ch_req = *(unsigned *)param; return ch_req == echan->ch_num; } return false; } EXPORT_SYMBOL(edma_filter_fn); static struct platform_device *pdev0, *pdev1; static const struct platform_device_info edma_dev_info0 = { .name = "edma-dma-engine", .id = 0, .dma_mask = DMA_BIT_MASK(32), }; static const struct platform_device_info edma_dev_info1 = { .name = "edma-dma-engine", .id = 1, .dma_mask = DMA_BIT_MASK(32), }; static int edma_init(void) { int ret = platform_driver_register(&edma_driver); if (ret == 0) { pdev0 = platform_device_register_full(&edma_dev_info0); if (IS_ERR(pdev0)) { platform_driver_unregister(&edma_driver); ret = PTR_ERR(pdev0); goto out; } } if (EDMA_CTLRS == 2) { pdev1 = platform_device_register_full(&edma_dev_info1); if (IS_ERR(pdev1)) { platform_driver_unregister(&edma_driver); platform_device_unregister(pdev0); ret = PTR_ERR(pdev1); } } out: return ret; } subsys_initcall(edma_init); static void __exit edma_exit(void) { platform_device_unregister(pdev0); if (pdev1) platform_device_unregister(pdev1); platform_driver_unregister(&edma_driver); } module_exit(edma_exit); MODULE_AUTHOR("Matt Porter "); MODULE_DESCRIPTION("TI EDMA DMA engine driver"); MODULE_LICENSE("GPL v2");