#ifndef _ASM_X86_PGTABLE_H #define _ASM_X86_PGTABLE_H #define FIRST_USER_ADDRESS 0 #define _PAGE_BIT_PRESENT 0 /* is present */ #define _PAGE_BIT_RW 1 /* writeable */ #define _PAGE_BIT_USER 2 /* userspace addressable */ #define _PAGE_BIT_PWT 3 /* page write through */ #define _PAGE_BIT_PCD 4 /* page cache disabled */ #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */ #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */ #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */ #define _PAGE_BIT_PAT 7 /* on 4KB pages */ #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */ #define _PAGE_BIT_UNUSED1 9 /* available for programmer */ #define _PAGE_BIT_IOMAP 10 /* flag used to indicate IO mapping */ #define _PAGE_BIT_UNUSED3 11 #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */ #define _PAGE_BIT_SPECIAL _PAGE_BIT_UNUSED1 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_UNUSED1 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */ /* If _PAGE_BIT_PRESENT is clear, we use these: */ /* - if the user mapped it with PROT_NONE; pte_present gives true */ #define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL /* - set: nonlinear file mapping, saved PTE; unset:swap */ #define _PAGE_BIT_FILE _PAGE_BIT_DIRTY #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT) #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW) #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER) #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT) #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD) #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED) #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY) #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE) #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL) #define _PAGE_UNUSED1 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED1) #define _PAGE_IOMAP (_AT(pteval_t, 1) << _PAGE_BIT_IOMAP) #define _PAGE_UNUSED3 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED3) #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT) #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE) #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL) #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST) #define __HAVE_ARCH_PTE_SPECIAL #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX) #else #define _PAGE_NX (_AT(pteval_t, 0)) #endif #define _PAGE_FILE (_AT(pteval_t, 1) << _PAGE_BIT_FILE) #define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE) #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \ _PAGE_ACCESSED | _PAGE_DIRTY) #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \ _PAGE_DIRTY) /* Set of bits not changed in pte_modify */ #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \ _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY) #define _PAGE_CACHE_MASK (_PAGE_PCD | _PAGE_PWT) #define _PAGE_CACHE_WB (0) #define _PAGE_CACHE_WC (_PAGE_PWT) #define _PAGE_CACHE_UC_MINUS (_PAGE_PCD) #define _PAGE_CACHE_UC (_PAGE_PCD | _PAGE_PWT) #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \ _PAGE_ACCESSED | _PAGE_NX) #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | \ _PAGE_USER | _PAGE_ACCESSED) #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ _PAGE_ACCESSED | _PAGE_NX) #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ _PAGE_ACCESSED) #define PAGE_COPY PAGE_COPY_NOEXEC #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ _PAGE_ACCESSED | _PAGE_NX) #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ _PAGE_ACCESSED) #define __PAGE_KERNEL_EXEC \ (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL) #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX) #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW) #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW) #define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT) #define __PAGE_KERNEL_WC (__PAGE_KERNEL | _PAGE_CACHE_WC) #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT) #define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD) #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER) #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT) #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE) #define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL | _PAGE_CACHE_UC | _PAGE_PSE) #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE) #define __PAGE_KERNEL_IO (__PAGE_KERNEL | _PAGE_IOMAP) #define __PAGE_KERNEL_IO_NOCACHE (__PAGE_KERNEL_NOCACHE | _PAGE_IOMAP) #define __PAGE_KERNEL_IO_UC_MINUS (__PAGE_KERNEL_UC_MINUS | _PAGE_IOMAP) #define __PAGE_KERNEL_IO_WC (__PAGE_KERNEL_WC | _PAGE_IOMAP) #define PAGE_KERNEL __pgprot(__PAGE_KERNEL) #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO) #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC) #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX) #define PAGE_KERNEL_WC __pgprot(__PAGE_KERNEL_WC) #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE) #define PAGE_KERNEL_UC_MINUS __pgprot(__PAGE_KERNEL_UC_MINUS) #define PAGE_KERNEL_EXEC_NOCACHE __pgprot(__PAGE_KERNEL_EXEC_NOCACHE) #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE) #define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE) #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC) #define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL) #define PAGE_KERNEL_VSYSCALL_NOCACHE __pgprot(__PAGE_KERNEL_VSYSCALL_NOCACHE) #define PAGE_KERNEL_IO __pgprot(__PAGE_KERNEL_IO) #define PAGE_KERNEL_IO_NOCACHE __pgprot(__PAGE_KERNEL_IO_NOCACHE) #define PAGE_KERNEL_IO_UC_MINUS __pgprot(__PAGE_KERNEL_IO_UC_MINUS) #define PAGE_KERNEL_IO_WC __pgprot(__PAGE_KERNEL_IO_WC) /* xwr */ #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_EXEC #define __P101 PAGE_READONLY_EXEC #define __P110 PAGE_COPY_EXEC #define __P111 PAGE_COPY_EXEC #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_EXEC #define __S101 PAGE_READONLY_EXEC #define __S110 PAGE_SHARED_EXEC #define __S111 PAGE_SHARED_EXEC /* * early identity mapping pte attrib macros. */ #ifdef CONFIG_X86_64 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC #else /* * For PDE_IDENT_ATTR include USER bit. As the PDE and PTE protection * bits are combined, this will alow user to access the high address mapped * VDSO in the presence of CONFIG_COMPAT_VDSO */ #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */ #define PDE_IDENT_ATTR 0x067 /* PRESENT+RW+USER+DIRTY+ACCESSED */ #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */ #endif /* * Macro to mark a page protection value as UC- */ #define pgprot_noncached(prot) \ ((boot_cpu_data.x86 > 3) \ ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \ : (prot)) #ifndef __ASSEMBLY__ #define pgprot_writecombine pgprot_writecombine extern pgprot_t pgprot_writecombine(pgprot_t prot); /* * ZERO_PAGE is a global shared page that is always zero: used * for zero-mapped memory areas etc.. */ extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) extern spinlock_t pgd_lock; extern struct list_head pgd_list; /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static inline int pte_dirty(pte_t pte) { return pte_flags(pte) & _PAGE_DIRTY; } static inline int pte_young(pte_t pte) { return pte_flags(pte) & _PAGE_ACCESSED; } static inline int pte_write(pte_t pte) { return pte_flags(pte) & _PAGE_RW; } static inline int pte_file(pte_t pte) { return pte_flags(pte) & _PAGE_FILE; } static inline int pte_huge(pte_t pte) { return pte_flags(pte) & _PAGE_PSE; } static inline int pte_global(pte_t pte) { return pte_flags(pte) & _PAGE_GLOBAL; } static inline int pte_exec(pte_t pte) { return !(pte_flags(pte) & _PAGE_NX); } static inline int pte_special(pte_t pte) { return pte_flags(pte) & _PAGE_SPECIAL; } static inline unsigned long pte_pfn(pte_t pte) { return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT; } #define pte_page(pte) pfn_to_page(pte_pfn(pte)) static inline int pmd_large(pmd_t pte) { return (pmd_val(pte) & (_PAGE_PSE | _PAGE_PRESENT)) == (_PAGE_PSE | _PAGE_PRESENT); } static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); } static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); } static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_NX); } static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); } static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); } static inline pte_t pte_clrhuge(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_PSE); } static inline pte_t pte_mkglobal(pte_t pte) { return __pte(pte_val(pte) | _PAGE_GLOBAL); } static inline pte_t pte_clrglobal(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_GLOBAL); } static inline pte_t pte_mkspecial(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPECIAL); } extern pteval_t __supported_pte_mask; static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot) { return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) | pgprot_val(pgprot)) & __supported_pte_mask); } static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot) { return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) | pgprot_val(pgprot)) & __supported_pte_mask); } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { pteval_t val = pte_val(pte); /* * Chop off the NX bit (if present), and add the NX portion of * the newprot (if present): */ val &= _PAGE_CHG_MASK; val |= pgprot_val(newprot) & (~_PAGE_CHG_MASK) & __supported_pte_mask; return __pte(val); } /* mprotect needs to preserve PAT bits when updating vm_page_prot */ #define pgprot_modify pgprot_modify static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) { pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK; pgprotval_t addbits = pgprot_val(newprot); return __pgprot(preservebits | addbits); } #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK) #define canon_pgprot(p) __pgprot(pgprot_val(p) & __supported_pte_mask) static inline int is_new_memtype_allowed(unsigned long flags, unsigned long new_flags) { /* * Certain new memtypes are not allowed with certain * requested memtype: * - request is uncached, return cannot be write-back * - request is write-combine, return cannot be write-back */ if ((flags == _PAGE_CACHE_UC_MINUS && new_flags == _PAGE_CACHE_WB) || (flags == _PAGE_CACHE_WC && new_flags == _PAGE_CACHE_WB)) { return 0; } return 1; } #ifndef __ASSEMBLY__ /* Indicate that x86 has its own track and untrack pfn vma functions */ #define __HAVE_PFNMAP_TRACKING #define __HAVE_PHYS_MEM_ACCESS_PROT struct file; pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, unsigned long size, pgprot_t *vma_prot); #endif /* Install a pte for a particular vaddr in kernel space. */ void set_pte_vaddr(unsigned long vaddr, pte_t pte); #ifdef CONFIG_X86_32 extern void native_pagetable_setup_start(pgd_t *base); extern void native_pagetable_setup_done(pgd_t *base); #else static inline void native_pagetable_setup_start(pgd_t *base) {} static inline void native_pagetable_setup_done(pgd_t *base) {} #endif struct seq_file; extern void arch_report_meminfo(struct seq_file *m); #ifdef CONFIG_PARAVIRT #include #else /* !CONFIG_PARAVIRT */ #define set_pte(ptep, pte) native_set_pte(ptep, pte) #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte) #define set_pte_present(mm, addr, ptep, pte) \ native_set_pte_present(mm, addr, ptep, pte) #define set_pte_atomic(ptep, pte) \ native_set_pte_atomic(ptep, pte) #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd) #ifndef __PAGETABLE_PUD_FOLDED #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd) #define pgd_clear(pgd) native_pgd_clear(pgd) #endif #ifndef set_pud # define set_pud(pudp, pud) native_set_pud(pudp, pud) #endif #ifndef __PAGETABLE_PMD_FOLDED #define pud_clear(pud) native_pud_clear(pud) #endif #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep) #define pmd_clear(pmd) native_pmd_clear(pmd) #define pte_update(mm, addr, ptep) do { } while (0) #define pte_update_defer(mm, addr, ptep) do { } while (0) static inline void __init paravirt_pagetable_setup_start(pgd_t *base) { native_pagetable_setup_start(base); } static inline void __init paravirt_pagetable_setup_done(pgd_t *base) { native_pagetable_setup_done(base); } #endif /* CONFIG_PARAVIRT */ #endif /* __ASSEMBLY__ */ #ifdef CONFIG_X86_32 # include "pgtable_32.h" #else # include "pgtable_64.h" #endif #ifndef __ASSEMBLY__ #include static inline int pte_none(pte_t pte) { return !pte.pte; } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t a, pte_t b) { return a.pte == b.pte; } static inline int pte_present(pte_t a) { return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE); } static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_PRESENT; } static inline int pmd_none(pmd_t pmd) { /* Only check low word on 32-bit platforms, since it might be out of sync with upper half. */ return !(unsigned long)native_pmd_val(pmd); } static inline unsigned long pmd_page_vaddr(pmd_t pmd) { return (unsigned long)__va(pmd_val(pmd) & PTE_PFN_MASK); } static inline struct page *pmd_page(pmd_t pmd) { return pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT); } /* * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD] * * this macro returns the index of the entry in the pmd page which would * control the given virtual address */ static inline unsigned pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * (Currently stuck as a macro because of indirect forward reference * to linux/mm.h:page_to_nid()) */ #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) #if PAGETABLE_LEVELS > 2 static inline int pud_present(pud_t pud) { return pud_val(pud) & _PAGE_PRESENT; } static inline unsigned long pud_page_vaddr(pud_t pud) { return (unsigned long)__va((unsigned long)pud_val(pud) & PTE_PFN_MASK); } static inline struct page *pud_page(pud_t pud) { return pfn_to_page(pud_val(pud) >> PAGE_SHIFT); } /* Find an entry in the second-level page table.. */ static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) { return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); } static inline unsigned long pmd_pfn(pmd_t pmd) { return (pmd_val(pmd) & PTE_PFN_MASK) >> PAGE_SHIFT; } #endif /* PAGETABLE_LEVELS > 2 */ #if PAGETABLE_LEVELS > 3 static inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_PRESENT; } static inline unsigned long pgd_page_vaddr(pgd_t pgd) { return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK); } static inline struct page *pgd_page(pgd_t pgd) { return pfn_to_page(pgd_val(pgd) >> PAGE_SHIFT); } /* to find an entry in a page-table-directory. */ static inline unsigned pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) { return (pud_t *)pgd_page_vaddr(*pgd) + pud_index(address); } #endif /* PAGETABLE_LEVELS > 3 */ #endif /* __ASSEMBLY__ */ /* * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] * * this macro returns the index of the entry in the pgd page which would * control the given virtual address */ #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) /* * pgd_offset() returns a (pgd_t *) * pgd_index() is used get the offset into the pgd page's array of pgd_t's; */ #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address))) /* * a shortcut which implies the use of the kernel's pgd, instead * of a process's */ #define pgd_offset_k(address) pgd_offset(&init_mm, (address)) #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET) #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY) #ifndef __ASSEMBLY__ enum { PG_LEVEL_NONE, PG_LEVEL_4K, PG_LEVEL_2M, PG_LEVEL_1G, PG_LEVEL_NUM }; #ifdef CONFIG_PROC_FS extern void update_page_count(int level, unsigned long pages); #else static inline void update_page_count(int level, unsigned long pages) { } #endif /* * Helper function that returns the kernel pagetable entry controlling * the virtual address 'address'. NULL means no pagetable entry present. * NOTE: the return type is pte_t but if the pmd is PSE then we return it * as a pte too. */ extern pte_t *lookup_address(unsigned long address, unsigned int *level); /* local pte updates need not use xchg for locking */ static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep) { pte_t res = *ptep; /* Pure native function needs no input for mm, addr */ native_pte_clear(NULL, 0, ptep); return res; } static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep , pte_t pte) { native_set_pte(ptep, pte); } #ifndef CONFIG_PARAVIRT /* * Rules for using pte_update - it must be called after any PTE update which * has not been done using the set_pte / clear_pte interfaces. It is used by * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE * updates should either be sets, clears, or set_pte_atomic for P->P * transitions, which means this hook should only be called for user PTEs. * This hook implies a P->P protection or access change has taken place, which * requires a subsequent TLB flush. The notification can optionally be delayed * until the TLB flush event by using the pte_update_defer form of the * interface, but care must be taken to assure that the flush happens while * still holding the same page table lock so that the shadow and primary pages * do not become out of sync on SMP. */ #define pte_update(mm, addr, ptep) do { } while (0) #define pte_update_defer(mm, addr, ptep) do { } while (0) #endif /* * We only update the dirty/accessed state if we set * the dirty bit by hand in the kernel, since the hardware * will do the accessed bit for us, and we don't want to * race with other CPU's that might be updating the dirty * bit at the same time. */ struct vm_area_struct; #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG extern int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep); #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH extern int ptep_clear_flush_young(struct vm_area_struct *vma, unsigned long address, pte_t *ptep); #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_t pte = native_ptep_get_and_clear(ptep); pte_update(mm, addr, ptep); return pte; } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { pte_t pte; if (full) { /* * Full address destruction in progress; paravirt does not * care about updates and native needs no locking */ pte = native_local_ptep_get_and_clear(ptep); } else { pte = ptep_get_and_clear(mm, addr, ptep); } return pte; } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte); pte_update(mm, addr, ptep); } /* * clone_pgd_range(pgd_t *dst, pgd_t *src, int count); * * dst - pointer to pgd range anwhere on a pgd page * src - "" * count - the number of pgds to copy. * * dst and src can be on the same page, but the range must not overlap, * and must not cross a page boundary. */ static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count) { memcpy(dst, src, count * sizeof(pgd_t)); } #include #endif /* __ASSEMBLY__ */ #endif /* _ASM_X86_PGTABLE_H */