/* * arch/sh/kernel/smp.c * * SMP support for the SuperH processors. * * Copyright (C) 2002 - 2010 Paul Mundt * Copyright (C) 2006 - 2007 Akio Idehara * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int __cpu_number_map[NR_CPUS]; /* Map physical to logical */ int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */ struct plat_smp_ops *mp_ops = NULL; /* State of each CPU */ DEFINE_PER_CPU(int, cpu_state) = { 0 }; void __cpuinit register_smp_ops(struct plat_smp_ops *ops) { if (mp_ops) printk(KERN_WARNING "Overriding previously set SMP ops\n"); mp_ops = ops; } static inline void __init smp_store_cpu_info(unsigned int cpu) { struct sh_cpuinfo *c = cpu_data + cpu; memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo)); c->loops_per_jiffy = loops_per_jiffy; } void __init smp_prepare_cpus(unsigned int max_cpus) { unsigned int cpu = smp_processor_id(); init_new_context(current, &init_mm); current_thread_info()->cpu = cpu; mp_ops->prepare_cpus(max_cpus); #ifndef CONFIG_HOTPLUG_CPU init_cpu_present(&cpu_possible_map); #endif } void __devinit smp_prepare_boot_cpu(void) { unsigned int cpu = smp_processor_id(); __cpu_number_map[0] = cpu; __cpu_logical_map[0] = cpu; set_cpu_online(cpu, true); set_cpu_possible(cpu, true); per_cpu(cpu_state, cpu) = CPU_ONLINE; } asmlinkage void __cpuinit start_secondary(void) { unsigned int cpu = smp_processor_id(); struct mm_struct *mm = &init_mm; enable_mmu(); atomic_inc(&mm->mm_count); atomic_inc(&mm->mm_users); current->active_mm = mm; BUG_ON(current->mm); enter_lazy_tlb(mm, current); per_cpu_trap_init(); preempt_disable(); notify_cpu_starting(cpu); local_irq_enable(); /* Enable local timers */ local_timer_setup(cpu); calibrate_delay(); smp_store_cpu_info(cpu); set_cpu_online(cpu, true); per_cpu(cpu_state, cpu) = CPU_ONLINE; cpu_idle(); } extern struct { unsigned long sp; unsigned long bss_start; unsigned long bss_end; void *start_kernel_fn; void *cpu_init_fn; void *thread_info; } stack_start; int __cpuinit __cpu_up(unsigned int cpu) { struct task_struct *tsk; unsigned long timeout; tsk = fork_idle(cpu); if (IS_ERR(tsk)) { printk(KERN_ERR "Failed forking idle task for cpu %d\n", cpu); return PTR_ERR(tsk); } per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; /* Fill in data in head.S for secondary cpus */ stack_start.sp = tsk->thread.sp; stack_start.thread_info = tsk->stack; stack_start.bss_start = 0; /* don't clear bss for secondary cpus */ stack_start.start_kernel_fn = start_secondary; flush_icache_range((unsigned long)&stack_start, (unsigned long)&stack_start + sizeof(stack_start)); wmb(); mp_ops->start_cpu(cpu, (unsigned long)_stext); timeout = jiffies + HZ; while (time_before(jiffies, timeout)) { if (cpu_online(cpu)) break; udelay(10); } if (cpu_online(cpu)) return 0; return -ENOENT; } void __init smp_cpus_done(unsigned int max_cpus) { unsigned long bogosum = 0; int cpu; for_each_online_cpu(cpu) bogosum += cpu_data[cpu].loops_per_jiffy; printk(KERN_INFO "SMP: Total of %d processors activated " "(%lu.%02lu BogoMIPS).\n", num_online_cpus(), bogosum / (500000/HZ), (bogosum / (5000/HZ)) % 100); } void smp_send_reschedule(int cpu) { mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE); } void smp_send_stop(void) { smp_call_function(stop_this_cpu, 0, 0); } void arch_send_call_function_ipi_mask(const struct cpumask *mask) { int cpu; for_each_cpu(cpu, mask) mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION); } void arch_send_call_function_single_ipi(int cpu) { mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE); } void smp_timer_broadcast(const struct cpumask *mask) { int cpu; for_each_cpu(cpu, mask) mp_ops->send_ipi(cpu, SMP_MSG_TIMER); } static void ipi_timer(void) { irq_enter(); local_timer_interrupt(); irq_exit(); } void smp_message_recv(unsigned int msg) { switch (msg) { case SMP_MSG_FUNCTION: generic_smp_call_function_interrupt(); break; case SMP_MSG_RESCHEDULE: break; case SMP_MSG_FUNCTION_SINGLE: generic_smp_call_function_single_interrupt(); break; case SMP_MSG_TIMER: ipi_timer(); break; default: printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n", smp_processor_id(), __func__, msg); break; } } /* Not really SMP stuff ... */ int setup_profiling_timer(unsigned int multiplier) { return 0; } static void flush_tlb_all_ipi(void *info) { local_flush_tlb_all(); } void flush_tlb_all(void) { on_each_cpu(flush_tlb_all_ipi, 0, 1); } static void flush_tlb_mm_ipi(void *mm) { local_flush_tlb_mm((struct mm_struct *)mm); } /* * The following tlb flush calls are invoked when old translations are * being torn down, or pte attributes are changing. For single threaded * address spaces, a new context is obtained on the current cpu, and tlb * context on other cpus are invalidated to force a new context allocation * at switch_mm time, should the mm ever be used on other cpus. For * multithreaded address spaces, intercpu interrupts have to be sent. * Another case where intercpu interrupts are required is when the target * mm might be active on another cpu (eg debuggers doing the flushes on * behalf of debugees, kswapd stealing pages from another process etc). * Kanoj 07/00. */ void flush_tlb_mm(struct mm_struct *mm) { preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1); } else { int i; for (i = 0; i < num_online_cpus(); i++) if (smp_processor_id() != i) cpu_context(i, mm) = 0; } local_flush_tlb_mm(mm); preempt_enable(); } struct flush_tlb_data { struct vm_area_struct *vma; unsigned long addr1; unsigned long addr2; }; static void flush_tlb_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2); } void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) { struct mm_struct *mm = vma->vm_mm; preempt_disable(); if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) { struct flush_tlb_data fd; fd.vma = vma; fd.addr1 = start; fd.addr2 = end; smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1); } else { int i; for (i = 0; i < num_online_cpus(); i++) if (smp_processor_id() != i) cpu_context(i, mm) = 0; } local_flush_tlb_range(vma, start, end); preempt_enable(); } static void flush_tlb_kernel_range_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_kernel_range(fd->addr1, fd->addr2); } void flush_tlb_kernel_range(unsigned long start, unsigned long end) { struct flush_tlb_data fd; fd.addr1 = start; fd.addr2 = end; on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1); } static void flush_tlb_page_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_page(fd->vma, fd->addr1); } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { preempt_disable(); if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) { struct flush_tlb_data fd; fd.vma = vma; fd.addr1 = page; smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1); } else { int i; for (i = 0; i < num_online_cpus(); i++) if (smp_processor_id() != i) cpu_context(i, vma->vm_mm) = 0; } local_flush_tlb_page(vma, page); preempt_enable(); } static void flush_tlb_one_ipi(void *info) { struct flush_tlb_data *fd = (struct flush_tlb_data *)info; local_flush_tlb_one(fd->addr1, fd->addr2); } void flush_tlb_one(unsigned long asid, unsigned long vaddr) { struct flush_tlb_data fd; fd.addr1 = asid; fd.addr2 = vaddr; smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1); local_flush_tlb_one(asid, vaddr); }