/* * Copyright (C) 2012 Texas Instruments * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #define DBG(fmt, ...) DRM_DEBUG(fmt"\n", ##__VA_ARGS__) struct tda998x_audio_port { u8 format; /* AFMT_xxx */ u8 config; /* AP value */ }; struct tda998x_priv { struct i2c_client *cec; struct i2c_client *hdmi; struct mutex mutex; u16 rev; u8 current_page; int dpms; bool is_hdmi_sink; u8 vip_cntrl_0; u8 vip_cntrl_1; u8 vip_cntrl_2; struct tda998x_audio_params audio_params; struct platform_device *audio_pdev; struct mutex audio_mutex; wait_queue_head_t wq_edid; volatile int wq_edid_wait; struct work_struct detect_work; struct timer_list edid_delay_timer; wait_queue_head_t edid_delay_waitq; bool edid_delay_active; struct drm_encoder encoder; struct drm_connector connector; struct tda998x_audio_port audio_port[2]; }; #define conn_to_tda998x_priv(x) \ container_of(x, struct tda998x_priv, connector) #define enc_to_tda998x_priv(x) \ container_of(x, struct tda998x_priv, encoder) /* The TDA9988 series of devices use a paged register scheme.. to simplify * things we encode the page # in upper bits of the register #. To read/ * write a given register, we need to make sure CURPAGE register is set * appropriately. Which implies reads/writes are not atomic. Fun! */ #define REG(page, addr) (((page) << 8) | (addr)) #define REG2ADDR(reg) ((reg) & 0xff) #define REG2PAGE(reg) (((reg) >> 8) & 0xff) #define REG_CURPAGE 0xff /* write */ /* Page 00h: General Control */ #define REG_VERSION_LSB REG(0x00, 0x00) /* read */ #define REG_MAIN_CNTRL0 REG(0x00, 0x01) /* read/write */ # define MAIN_CNTRL0_SR (1 << 0) # define MAIN_CNTRL0_DECS (1 << 1) # define MAIN_CNTRL0_DEHS (1 << 2) # define MAIN_CNTRL0_CECS (1 << 3) # define MAIN_CNTRL0_CEHS (1 << 4) # define MAIN_CNTRL0_SCALER (1 << 7) #define REG_VERSION_MSB REG(0x00, 0x02) /* read */ #define REG_SOFTRESET REG(0x00, 0x0a) /* write */ # define SOFTRESET_AUDIO (1 << 0) # define SOFTRESET_I2C_MASTER (1 << 1) #define REG_DDC_DISABLE REG(0x00, 0x0b) /* read/write */ #define REG_CCLK_ON REG(0x00, 0x0c) /* read/write */ #define REG_I2C_MASTER REG(0x00, 0x0d) /* read/write */ # define I2C_MASTER_DIS_MM (1 << 0) # define I2C_MASTER_DIS_FILT (1 << 1) # define I2C_MASTER_APP_STRT_LAT (1 << 2) #define REG_FEAT_POWERDOWN REG(0x00, 0x0e) /* read/write */ # define FEAT_POWERDOWN_SPDIF (1 << 3) #define REG_INT_FLAGS_0 REG(0x00, 0x0f) /* read/write */ #define REG_INT_FLAGS_1 REG(0x00, 0x10) /* read/write */ #define REG_INT_FLAGS_2 REG(0x00, 0x11) /* read/write */ # define INT_FLAGS_2_EDID_BLK_RD (1 << 1) #define REG_ENA_ACLK REG(0x00, 0x16) /* read/write */ #define REG_ENA_VP_0 REG(0x00, 0x18) /* read/write */ #define REG_ENA_VP_1 REG(0x00, 0x19) /* read/write */ #define REG_ENA_VP_2 REG(0x00, 0x1a) /* read/write */ #define REG_ENA_AP REG(0x00, 0x1e) /* read/write */ #define REG_VIP_CNTRL_0 REG(0x00, 0x20) /* write */ # define VIP_CNTRL_0_MIRR_A (1 << 7) # define VIP_CNTRL_0_SWAP_A(x) (((x) & 7) << 4) # define VIP_CNTRL_0_MIRR_B (1 << 3) # define VIP_CNTRL_0_SWAP_B(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_1 REG(0x00, 0x21) /* write */ # define VIP_CNTRL_1_MIRR_C (1 << 7) # define VIP_CNTRL_1_SWAP_C(x) (((x) & 7) << 4) # define VIP_CNTRL_1_MIRR_D (1 << 3) # define VIP_CNTRL_1_SWAP_D(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_2 REG(0x00, 0x22) /* write */ # define VIP_CNTRL_2_MIRR_E (1 << 7) # define VIP_CNTRL_2_SWAP_E(x) (((x) & 7) << 4) # define VIP_CNTRL_2_MIRR_F (1 << 3) # define VIP_CNTRL_2_SWAP_F(x) (((x) & 7) << 0) #define REG_VIP_CNTRL_3 REG(0x00, 0x23) /* write */ # define VIP_CNTRL_3_X_TGL (1 << 0) # define VIP_CNTRL_3_H_TGL (1 << 1) # define VIP_CNTRL_3_V_TGL (1 << 2) # define VIP_CNTRL_3_EMB (1 << 3) # define VIP_CNTRL_3_SYNC_DE (1 << 4) # define VIP_CNTRL_3_SYNC_HS (1 << 5) # define VIP_CNTRL_3_DE_INT (1 << 6) # define VIP_CNTRL_3_EDGE (1 << 7) #define REG_VIP_CNTRL_4 REG(0x00, 0x24) /* write */ # define VIP_CNTRL_4_BLC(x) (((x) & 3) << 0) # define VIP_CNTRL_4_BLANKIT(x) (((x) & 3) << 2) # define VIP_CNTRL_4_CCIR656 (1 << 4) # define VIP_CNTRL_4_656_ALT (1 << 5) # define VIP_CNTRL_4_TST_656 (1 << 6) # define VIP_CNTRL_4_TST_PAT (1 << 7) #define REG_VIP_CNTRL_5 REG(0x00, 0x25) /* write */ # define VIP_CNTRL_5_CKCASE (1 << 0) # define VIP_CNTRL_5_SP_CNT(x) (((x) & 3) << 1) #define REG_MUX_AP REG(0x00, 0x26) /* read/write */ # define MUX_AP_SELECT_I2S 0x64 # define MUX_AP_SELECT_SPDIF 0x40 #define REG_MUX_VP_VIP_OUT REG(0x00, 0x27) /* read/write */ #define REG_MAT_CONTRL REG(0x00, 0x80) /* write */ # define MAT_CONTRL_MAT_SC(x) (((x) & 3) << 0) # define MAT_CONTRL_MAT_BP (1 << 2) #define REG_VIDFORMAT REG(0x00, 0xa0) /* write */ #define REG_REFPIX_MSB REG(0x00, 0xa1) /* write */ #define REG_REFPIX_LSB REG(0x00, 0xa2) /* write */ #define REG_REFLINE_MSB REG(0x00, 0xa3) /* write */ #define REG_REFLINE_LSB REG(0x00, 0xa4) /* write */ #define REG_NPIX_MSB REG(0x00, 0xa5) /* write */ #define REG_NPIX_LSB REG(0x00, 0xa6) /* write */ #define REG_NLINE_MSB REG(0x00, 0xa7) /* write */ #define REG_NLINE_LSB REG(0x00, 0xa8) /* write */ #define REG_VS_LINE_STRT_1_MSB REG(0x00, 0xa9) /* write */ #define REG_VS_LINE_STRT_1_LSB REG(0x00, 0xaa) /* write */ #define REG_VS_PIX_STRT_1_MSB REG(0x00, 0xab) /* write */ #define REG_VS_PIX_STRT_1_LSB REG(0x00, 0xac) /* write */ #define REG_VS_LINE_END_1_MSB REG(0x00, 0xad) /* write */ #define REG_VS_LINE_END_1_LSB REG(0x00, 0xae) /* write */ #define REG_VS_PIX_END_1_MSB REG(0x00, 0xaf) /* write */ #define REG_VS_PIX_END_1_LSB REG(0x00, 0xb0) /* write */ #define REG_VS_LINE_STRT_2_MSB REG(0x00, 0xb1) /* write */ #define REG_VS_LINE_STRT_2_LSB REG(0x00, 0xb2) /* write */ #define REG_VS_PIX_STRT_2_MSB REG(0x00, 0xb3) /* write */ #define REG_VS_PIX_STRT_2_LSB REG(0x00, 0xb4) /* write */ #define REG_VS_LINE_END_2_MSB REG(0x00, 0xb5) /* write */ #define REG_VS_LINE_END_2_LSB REG(0x00, 0xb6) /* write */ #define REG_VS_PIX_END_2_MSB REG(0x00, 0xb7) /* write */ #define REG_VS_PIX_END_2_LSB REG(0x00, 0xb8) /* write */ #define REG_HS_PIX_START_MSB REG(0x00, 0xb9) /* write */ #define REG_HS_PIX_START_LSB REG(0x00, 0xba) /* write */ #define REG_HS_PIX_STOP_MSB REG(0x00, 0xbb) /* write */ #define REG_HS_PIX_STOP_LSB REG(0x00, 0xbc) /* write */ #define REG_VWIN_START_1_MSB REG(0x00, 0xbd) /* write */ #define REG_VWIN_START_1_LSB REG(0x00, 0xbe) /* write */ #define REG_VWIN_END_1_MSB REG(0x00, 0xbf) /* write */ #define REG_VWIN_END_1_LSB REG(0x00, 0xc0) /* write */ #define REG_VWIN_START_2_MSB REG(0x00, 0xc1) /* write */ #define REG_VWIN_START_2_LSB REG(0x00, 0xc2) /* write */ #define REG_VWIN_END_2_MSB REG(0x00, 0xc3) /* write */ #define REG_VWIN_END_2_LSB REG(0x00, 0xc4) /* write */ #define REG_DE_START_MSB REG(0x00, 0xc5) /* write */ #define REG_DE_START_LSB REG(0x00, 0xc6) /* write */ #define REG_DE_STOP_MSB REG(0x00, 0xc7) /* write */ #define REG_DE_STOP_LSB REG(0x00, 0xc8) /* write */ #define REG_TBG_CNTRL_0 REG(0x00, 0xca) /* write */ # define TBG_CNTRL_0_TOP_TGL (1 << 0) # define TBG_CNTRL_0_TOP_SEL (1 << 1) # define TBG_CNTRL_0_DE_EXT (1 << 2) # define TBG_CNTRL_0_TOP_EXT (1 << 3) # define TBG_CNTRL_0_FRAME_DIS (1 << 5) # define TBG_CNTRL_0_SYNC_MTHD (1 << 6) # define TBG_CNTRL_0_SYNC_ONCE (1 << 7) #define REG_TBG_CNTRL_1 REG(0x00, 0xcb) /* write */ # define TBG_CNTRL_1_H_TGL (1 << 0) # define TBG_CNTRL_1_V_TGL (1 << 1) # define TBG_CNTRL_1_TGL_EN (1 << 2) # define TBG_CNTRL_1_X_EXT (1 << 3) # define TBG_CNTRL_1_H_EXT (1 << 4) # define TBG_CNTRL_1_V_EXT (1 << 5) # define TBG_CNTRL_1_DWIN_DIS (1 << 6) #define REG_ENABLE_SPACE REG(0x00, 0xd6) /* write */ #define REG_HVF_CNTRL_0 REG(0x00, 0xe4) /* write */ # define HVF_CNTRL_0_SM (1 << 7) # define HVF_CNTRL_0_RWB (1 << 6) # define HVF_CNTRL_0_PREFIL(x) (((x) & 3) << 2) # define HVF_CNTRL_0_INTPOL(x) (((x) & 3) << 0) #define REG_HVF_CNTRL_1 REG(0x00, 0xe5) /* write */ # define HVF_CNTRL_1_FOR (1 << 0) # define HVF_CNTRL_1_YUVBLK (1 << 1) # define HVF_CNTRL_1_VQR(x) (((x) & 3) << 2) # define HVF_CNTRL_1_PAD(x) (((x) & 3) << 4) # define HVF_CNTRL_1_SEMI_PLANAR (1 << 6) #define REG_RPT_CNTRL REG(0x00, 0xf0) /* write */ #define REG_I2S_FORMAT REG(0x00, 0xfc) /* read/write */ # define I2S_FORMAT(x) (((x) & 3) << 0) #define REG_AIP_CLKSEL REG(0x00, 0xfd) /* write */ # define AIP_CLKSEL_AIP_SPDIF (0 << 3) # define AIP_CLKSEL_AIP_I2S (1 << 3) # define AIP_CLKSEL_FS_ACLK (0 << 0) # define AIP_CLKSEL_FS_MCLK (1 << 0) # define AIP_CLKSEL_FS_FS64SPDIF (2 << 0) /* Page 02h: PLL settings */ #define REG_PLL_SERIAL_1 REG(0x02, 0x00) /* read/write */ # define PLL_SERIAL_1_SRL_FDN (1 << 0) # define PLL_SERIAL_1_SRL_IZ(x) (((x) & 3) << 1) # define PLL_SERIAL_1_SRL_MAN_IZ (1 << 6) #define REG_PLL_SERIAL_2 REG(0x02, 0x01) /* read/write */ # define PLL_SERIAL_2_SRL_NOSC(x) ((x) << 0) # define PLL_SERIAL_2_SRL_PR(x) (((x) & 0xf) << 4) #define REG_PLL_SERIAL_3 REG(0x02, 0x02) /* read/write */ # define PLL_SERIAL_3_SRL_CCIR (1 << 0) # define PLL_SERIAL_3_SRL_DE (1 << 2) # define PLL_SERIAL_3_SRL_PXIN_SEL (1 << 4) #define REG_SERIALIZER REG(0x02, 0x03) /* read/write */ #define REG_BUFFER_OUT REG(0x02, 0x04) /* read/write */ #define REG_PLL_SCG1 REG(0x02, 0x05) /* read/write */ #define REG_PLL_SCG2 REG(0x02, 0x06) /* read/write */ #define REG_PLL_SCGN1 REG(0x02, 0x07) /* read/write */ #define REG_PLL_SCGN2 REG(0x02, 0x08) /* read/write */ #define REG_PLL_SCGR1 REG(0x02, 0x09) /* read/write */ #define REG_PLL_SCGR2 REG(0x02, 0x0a) /* read/write */ #define REG_AUDIO_DIV REG(0x02, 0x0e) /* read/write */ # define AUDIO_DIV_SERCLK_1 0 # define AUDIO_DIV_SERCLK_2 1 # define AUDIO_DIV_SERCLK_4 2 # define AUDIO_DIV_SERCLK_8 3 # define AUDIO_DIV_SERCLK_16 4 # define AUDIO_DIV_SERCLK_32 5 #define REG_SEL_CLK REG(0x02, 0x11) /* read/write */ # define SEL_CLK_SEL_CLK1 (1 << 0) # define SEL_CLK_SEL_VRF_CLK(x) (((x) & 3) << 1) # define SEL_CLK_ENA_SC_CLK (1 << 3) #define REG_ANA_GENERAL REG(0x02, 0x12) /* read/write */ /* Page 09h: EDID Control */ #define REG_EDID_DATA_0 REG(0x09, 0x00) /* read */ /* next 127 successive registers are the EDID block */ #define REG_EDID_CTRL REG(0x09, 0xfa) /* read/write */ #define REG_DDC_ADDR REG(0x09, 0xfb) /* read/write */ #define REG_DDC_OFFS REG(0x09, 0xfc) /* read/write */ #define REG_DDC_SEGM_ADDR REG(0x09, 0xfd) /* read/write */ #define REG_DDC_SEGM REG(0x09, 0xfe) /* read/write */ /* Page 10h: information frames and packets */ #define REG_IF1_HB0 REG(0x10, 0x20) /* read/write */ #define REG_IF2_HB0 REG(0x10, 0x40) /* read/write */ #define REG_IF3_HB0 REG(0x10, 0x60) /* read/write */ #define REG_IF4_HB0 REG(0x10, 0x80) /* read/write */ #define REG_IF5_HB0 REG(0x10, 0xa0) /* read/write */ /* Page 11h: audio settings and content info packets */ #define REG_AIP_CNTRL_0 REG(0x11, 0x00) /* read/write */ # define AIP_CNTRL_0_RST_FIFO (1 << 0) # define AIP_CNTRL_0_SWAP (1 << 1) # define AIP_CNTRL_0_LAYOUT (1 << 2) # define AIP_CNTRL_0_ACR_MAN (1 << 5) # define AIP_CNTRL_0_RST_CTS (1 << 6) #define REG_CA_I2S REG(0x11, 0x01) /* read/write */ # define CA_I2S_CA_I2S(x) (((x) & 31) << 0) # define CA_I2S_HBR_CHSTAT (1 << 6) #define REG_LATENCY_RD REG(0x11, 0x04) /* read/write */ #define REG_ACR_CTS_0 REG(0x11, 0x05) /* read/write */ #define REG_ACR_CTS_1 REG(0x11, 0x06) /* read/write */ #define REG_ACR_CTS_2 REG(0x11, 0x07) /* read/write */ #define REG_ACR_N_0 REG(0x11, 0x08) /* read/write */ #define REG_ACR_N_1 REG(0x11, 0x09) /* read/write */ #define REG_ACR_N_2 REG(0x11, 0x0a) /* read/write */ #define REG_CTS_N REG(0x11, 0x0c) /* read/write */ # define CTS_N_K(x) (((x) & 7) << 0) # define CTS_N_M(x) (((x) & 3) << 4) #define REG_ENC_CNTRL REG(0x11, 0x0d) /* read/write */ # define ENC_CNTRL_RST_ENC (1 << 0) # define ENC_CNTRL_RST_SEL (1 << 1) # define ENC_CNTRL_CTL_CODE(x) (((x) & 3) << 2) #define REG_DIP_FLAGS REG(0x11, 0x0e) /* read/write */ # define DIP_FLAGS_ACR (1 << 0) # define DIP_FLAGS_GC (1 << 1) #define REG_DIP_IF_FLAGS REG(0x11, 0x0f) /* read/write */ # define DIP_IF_FLAGS_IF1 (1 << 1) # define DIP_IF_FLAGS_IF2 (1 << 2) # define DIP_IF_FLAGS_IF3 (1 << 3) # define DIP_IF_FLAGS_IF4 (1 << 4) # define DIP_IF_FLAGS_IF5 (1 << 5) #define REG_CH_STAT_B(x) REG(0x11, 0x14 + (x)) /* read/write */ /* Page 12h: HDCP and OTP */ #define REG_TX3 REG(0x12, 0x9a) /* read/write */ #define REG_TX4 REG(0x12, 0x9b) /* read/write */ # define TX4_PD_RAM (1 << 1) #define REG_TX33 REG(0x12, 0xb8) /* read/write */ # define TX33_HDMI (1 << 1) /* Page 13h: Gamut related metadata packets */ /* CEC registers: (not paged) */ #define REG_CEC_INTSTATUS 0xee /* read */ # define CEC_INTSTATUS_CEC (1 << 0) # define CEC_INTSTATUS_HDMI (1 << 1) #define REG_CEC_FRO_IM_CLK_CTRL 0xfb /* read/write */ # define CEC_FRO_IM_CLK_CTRL_GHOST_DIS (1 << 7) # define CEC_FRO_IM_CLK_CTRL_ENA_OTP (1 << 6) # define CEC_FRO_IM_CLK_CTRL_IMCLK_SEL (1 << 1) # define CEC_FRO_IM_CLK_CTRL_FRO_DIV (1 << 0) #define REG_CEC_RXSHPDINTENA 0xfc /* read/write */ #define REG_CEC_RXSHPDINT 0xfd /* read */ # define CEC_RXSHPDINT_RXSENS BIT(0) # define CEC_RXSHPDINT_HPD BIT(1) #define REG_CEC_RXSHPDLEV 0xfe /* read */ # define CEC_RXSHPDLEV_RXSENS (1 << 0) # define CEC_RXSHPDLEV_HPD (1 << 1) #define REG_CEC_ENAMODS 0xff /* read/write */ # define CEC_ENAMODS_DIS_FRO (1 << 6) # define CEC_ENAMODS_DIS_CCLK (1 << 5) # define CEC_ENAMODS_EN_RXSENS (1 << 2) # define CEC_ENAMODS_EN_HDMI (1 << 1) # define CEC_ENAMODS_EN_CEC (1 << 0) /* Device versions: */ #define TDA9989N2 0x0101 #define TDA19989 0x0201 #define TDA19989N2 0x0202 #define TDA19988 0x0301 static void cec_write(struct tda998x_priv *priv, u16 addr, u8 val) { struct i2c_client *client = priv->cec; u8 buf[] = {addr, val}; int ret; ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to cec:0x%x\n", ret, addr); } static u8 cec_read(struct tda998x_priv *priv, u8 addr) { struct i2c_client *client = priv->cec; u8 val; int ret; ret = i2c_master_send(client, &addr, sizeof(addr)); if (ret < 0) goto fail; ret = i2c_master_recv(client, &val, sizeof(val)); if (ret < 0) goto fail; return val; fail: dev_err(&client->dev, "Error %d reading from cec:0x%x\n", ret, addr); return 0; } static int set_page(struct tda998x_priv *priv, u16 reg) { if (REG2PAGE(reg) != priv->current_page) { struct i2c_client *client = priv->hdmi; u8 buf[] = { REG_CURPAGE, REG2PAGE(reg) }; int ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) { dev_err(&client->dev, "%s %04x err %d\n", __func__, reg, ret); return ret; } priv->current_page = REG2PAGE(reg); } return 0; } static int reg_read_range(struct tda998x_priv *priv, u16 reg, char *buf, int cnt) { struct i2c_client *client = priv->hdmi; u8 addr = REG2ADDR(reg); int ret; mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, &addr, sizeof(addr)); if (ret < 0) goto fail; ret = i2c_master_recv(client, buf, cnt); if (ret < 0) goto fail; goto out; fail: dev_err(&client->dev, "Error %d reading from 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); return ret; } static void reg_write_range(struct tda998x_priv *priv, u16 reg, u8 *p, int cnt) { struct i2c_client *client = priv->hdmi; u8 buf[cnt+1]; int ret; buf[0] = REG2ADDR(reg); memcpy(&buf[1], p, cnt); mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, buf, cnt + 1); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); } static int reg_read(struct tda998x_priv *priv, u16 reg) { u8 val = 0; int ret; ret = reg_read_range(priv, reg, &val, sizeof(val)); if (ret < 0) return ret; return val; } static void reg_write(struct tda998x_priv *priv, u16 reg, u8 val) { struct i2c_client *client = priv->hdmi; u8 buf[] = {REG2ADDR(reg), val}; int ret; mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); } static void reg_write16(struct tda998x_priv *priv, u16 reg, u16 val) { struct i2c_client *client = priv->hdmi; u8 buf[] = {REG2ADDR(reg), val >> 8, val}; int ret; mutex_lock(&priv->mutex); ret = set_page(priv, reg); if (ret < 0) goto out; ret = i2c_master_send(client, buf, sizeof(buf)); if (ret < 0) dev_err(&client->dev, "Error %d writing to 0x%x\n", ret, reg); out: mutex_unlock(&priv->mutex); } static void reg_set(struct tda998x_priv *priv, u16 reg, u8 val) { int old_val; old_val = reg_read(priv, reg); if (old_val >= 0) reg_write(priv, reg, old_val | val); } static void reg_clear(struct tda998x_priv *priv, u16 reg, u8 val) { int old_val; old_val = reg_read(priv, reg); if (old_val >= 0) reg_write(priv, reg, old_val & ~val); } static void tda998x_reset(struct tda998x_priv *priv) { /* reset audio and i2c master: */ reg_write(priv, REG_SOFTRESET, SOFTRESET_AUDIO | SOFTRESET_I2C_MASTER); msleep(50); reg_write(priv, REG_SOFTRESET, 0); msleep(50); /* reset transmitter: */ reg_set(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); reg_clear(priv, REG_MAIN_CNTRL0, MAIN_CNTRL0_SR); /* PLL registers common configuration */ reg_write(priv, REG_PLL_SERIAL_1, 0x00); reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(1)); reg_write(priv, REG_PLL_SERIAL_3, 0x00); reg_write(priv, REG_SERIALIZER, 0x00); reg_write(priv, REG_BUFFER_OUT, 0x00); reg_write(priv, REG_PLL_SCG1, 0x00); reg_write(priv, REG_AUDIO_DIV, AUDIO_DIV_SERCLK_8); reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); reg_write(priv, REG_PLL_SCGN1, 0xfa); reg_write(priv, REG_PLL_SCGN2, 0x00); reg_write(priv, REG_PLL_SCGR1, 0x5b); reg_write(priv, REG_PLL_SCGR2, 0x00); reg_write(priv, REG_PLL_SCG2, 0x10); /* Write the default value MUX register */ reg_write(priv, REG_MUX_VP_VIP_OUT, 0x24); } /* * The TDA998x has a problem when trying to read the EDID close to a * HPD assertion: it needs a delay of 100ms to avoid timing out while * trying to read EDID data. * * However, tda998x_encoder_get_modes() may be called at any moment * after tda998x_connector_detect() indicates that we are connected, so * we need to delay probing modes in tda998x_encoder_get_modes() after * we have seen a HPD inactive->active transition. This code implements * that delay. */ static void tda998x_edid_delay_done(unsigned long data) { struct tda998x_priv *priv = (struct tda998x_priv *)data; priv->edid_delay_active = false; wake_up(&priv->edid_delay_waitq); schedule_work(&priv->detect_work); } static void tda998x_edid_delay_start(struct tda998x_priv *priv) { priv->edid_delay_active = true; mod_timer(&priv->edid_delay_timer, jiffies + HZ/10); } static int tda998x_edid_delay_wait(struct tda998x_priv *priv) { return wait_event_killable(priv->edid_delay_waitq, !priv->edid_delay_active); } /* * We need to run the KMS hotplug event helper outside of our threaded * interrupt routine as this can call back into our get_modes method, * which will want to make use of interrupts. */ static void tda998x_detect_work(struct work_struct *work) { struct tda998x_priv *priv = container_of(work, struct tda998x_priv, detect_work); struct drm_device *dev = priv->encoder.dev; if (dev) drm_kms_helper_hotplug_event(dev); } /* * only 2 interrupts may occur: screen plug/unplug and EDID read */ static irqreturn_t tda998x_irq_thread(int irq, void *data) { struct tda998x_priv *priv = data; u8 sta, cec, lvl, flag0, flag1, flag2; bool handled = false; sta = cec_read(priv, REG_CEC_INTSTATUS); cec = cec_read(priv, REG_CEC_RXSHPDINT); lvl = cec_read(priv, REG_CEC_RXSHPDLEV); flag0 = reg_read(priv, REG_INT_FLAGS_0); flag1 = reg_read(priv, REG_INT_FLAGS_1); flag2 = reg_read(priv, REG_INT_FLAGS_2); DRM_DEBUG_DRIVER( "tda irq sta %02x cec %02x lvl %02x f0 %02x f1 %02x f2 %02x\n", sta, cec, lvl, flag0, flag1, flag2); if (cec & CEC_RXSHPDINT_HPD) { if (lvl & CEC_RXSHPDLEV_HPD) tda998x_edid_delay_start(priv); else schedule_work(&priv->detect_work); handled = true; } if ((flag2 & INT_FLAGS_2_EDID_BLK_RD) && priv->wq_edid_wait) { priv->wq_edid_wait = 0; wake_up(&priv->wq_edid); handled = true; } return IRQ_RETVAL(handled); } static void tda998x_write_if(struct tda998x_priv *priv, u8 bit, u16 addr, union hdmi_infoframe *frame) { u8 buf[32]; ssize_t len; len = hdmi_infoframe_pack(frame, buf, sizeof(buf)); if (len < 0) { dev_err(&priv->hdmi->dev, "hdmi_infoframe_pack() type=0x%02x failed: %zd\n", frame->any.type, len); return; } reg_clear(priv, REG_DIP_IF_FLAGS, bit); reg_write_range(priv, addr, buf, len); reg_set(priv, REG_DIP_IF_FLAGS, bit); } static int tda998x_write_aif(struct tda998x_priv *priv, struct hdmi_audio_infoframe *cea) { union hdmi_infoframe frame; frame.audio = *cea; tda998x_write_if(priv, DIP_IF_FLAGS_IF4, REG_IF4_HB0, &frame); return 0; } static void tda998x_write_avi(struct tda998x_priv *priv, struct drm_display_mode *mode) { union hdmi_infoframe frame; drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode); frame.avi.quantization_range = HDMI_QUANTIZATION_RANGE_FULL; tda998x_write_if(priv, DIP_IF_FLAGS_IF2, REG_IF2_HB0, &frame); } static void tda998x_audio_mute(struct tda998x_priv *priv, bool on) { if (on) { reg_set(priv, REG_SOFTRESET, SOFTRESET_AUDIO); reg_clear(priv, REG_SOFTRESET, SOFTRESET_AUDIO); reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); } else { reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); } } static int tda998x_configure_audio(struct tda998x_priv *priv, struct tda998x_audio_params *params, unsigned mode_clock) { u8 buf[6], clksel_aip, clksel_fs, cts_n, adiv; u32 n; /* Enable audio ports */ reg_write(priv, REG_ENA_AP, params->config); /* Set audio input source */ switch (params->format) { case AFMT_SPDIF: reg_write(priv, REG_ENA_ACLK, 0); reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_SPDIF); clksel_aip = AIP_CLKSEL_AIP_SPDIF; clksel_fs = AIP_CLKSEL_FS_FS64SPDIF; cts_n = CTS_N_M(3) | CTS_N_K(3); break; case AFMT_I2S: reg_write(priv, REG_ENA_ACLK, 1); reg_write(priv, REG_MUX_AP, MUX_AP_SELECT_I2S); clksel_aip = AIP_CLKSEL_AIP_I2S; clksel_fs = AIP_CLKSEL_FS_ACLK; switch (params->sample_width) { case 16: cts_n = CTS_N_M(3) | CTS_N_K(1); break; case 18: case 20: case 24: cts_n = CTS_N_M(3) | CTS_N_K(2); break; default: case 32: cts_n = CTS_N_M(3) | CTS_N_K(3); break; } break; default: dev_err(&priv->hdmi->dev, "Unsupported I2S format\n"); return -EINVAL; } reg_write(priv, REG_AIP_CLKSEL, clksel_aip); reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_LAYOUT | AIP_CNTRL_0_ACR_MAN); /* auto CTS */ reg_write(priv, REG_CTS_N, cts_n); /* * Audio input somehow depends on HDMI line rate which is * related to pixclk. Testing showed that modes with pixclk * >100MHz need a larger divider while <40MHz need the default. * There is no detailed info in the datasheet, so we just * assume 100MHz requires larger divider. */ adiv = AUDIO_DIV_SERCLK_8; if (mode_clock > 100000) adiv++; /* AUDIO_DIV_SERCLK_16 */ /* S/PDIF asks for a larger divider */ if (params->format == AFMT_SPDIF) adiv++; /* AUDIO_DIV_SERCLK_16 or _32 */ reg_write(priv, REG_AUDIO_DIV, adiv); /* * This is the approximate value of N, which happens to be * the recommended values for non-coherent clocks. */ n = 128 * params->sample_rate / 1000; /* Write the CTS and N values */ buf[0] = 0x44; buf[1] = 0x42; buf[2] = 0x01; buf[3] = n; buf[4] = n >> 8; buf[5] = n >> 16; reg_write_range(priv, REG_ACR_CTS_0, buf, 6); /* Set CTS clock reference */ reg_write(priv, REG_AIP_CLKSEL, clksel_aip | clksel_fs); /* Reset CTS generator */ reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); reg_clear(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_CTS); /* Write the channel status * The REG_CH_STAT_B-registers skip IEC958 AES2 byte, because * there is a separate register for each I2S wire. */ buf[0] = params->status[0]; buf[1] = params->status[1]; buf[2] = params->status[3]; buf[3] = params->status[4]; reg_write_range(priv, REG_CH_STAT_B(0), buf, 4); tda998x_audio_mute(priv, true); msleep(20); tda998x_audio_mute(priv, false); return tda998x_write_aif(priv, ¶ms->cea); } /* DRM encoder functions */ static void tda998x_encoder_set_config(struct tda998x_priv *priv, const struct tda998x_encoder_params *p) { priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(p->swap_a) | (p->mirr_a ? VIP_CNTRL_0_MIRR_A : 0) | VIP_CNTRL_0_SWAP_B(p->swap_b) | (p->mirr_b ? VIP_CNTRL_0_MIRR_B : 0); priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(p->swap_c) | (p->mirr_c ? VIP_CNTRL_1_MIRR_C : 0) | VIP_CNTRL_1_SWAP_D(p->swap_d) | (p->mirr_d ? VIP_CNTRL_1_MIRR_D : 0); priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(p->swap_e) | (p->mirr_e ? VIP_CNTRL_2_MIRR_E : 0) | VIP_CNTRL_2_SWAP_F(p->swap_f) | (p->mirr_f ? VIP_CNTRL_2_MIRR_F : 0); priv->audio_params = p->audio_params; } static void tda998x_encoder_dpms(struct drm_encoder *encoder, int mode) { struct tda998x_priv *priv = enc_to_tda998x_priv(encoder); /* we only care about on or off: */ if (mode != DRM_MODE_DPMS_ON) mode = DRM_MODE_DPMS_OFF; if (mode == priv->dpms) return; switch (mode) { case DRM_MODE_DPMS_ON: /* enable video ports, audio will be enabled later */ reg_write(priv, REG_ENA_VP_0, 0xff); reg_write(priv, REG_ENA_VP_1, 0xff); reg_write(priv, REG_ENA_VP_2, 0xff); /* set muxing after enabling ports: */ reg_write(priv, REG_VIP_CNTRL_0, priv->vip_cntrl_0); reg_write(priv, REG_VIP_CNTRL_1, priv->vip_cntrl_1); reg_write(priv, REG_VIP_CNTRL_2, priv->vip_cntrl_2); break; case DRM_MODE_DPMS_OFF: /* disable video ports */ reg_write(priv, REG_ENA_VP_0, 0x00); reg_write(priv, REG_ENA_VP_1, 0x00); reg_write(priv, REG_ENA_VP_2, 0x00); break; } priv->dpms = mode; } static int tda998x_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { /* TDA19988 dotclock can go up to 165MHz */ struct tda998x_priv *priv = conn_to_tda998x_priv(connector); if (mode->clock > ((priv->rev == TDA19988) ? 165000 : 150000)) return MODE_CLOCK_HIGH; if (mode->htotal >= BIT(13)) return MODE_BAD_HVALUE; if (mode->vtotal >= BIT(11)) return MODE_BAD_VVALUE; return MODE_OK; } static void tda998x_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct tda998x_priv *priv = enc_to_tda998x_priv(encoder); u16 ref_pix, ref_line, n_pix, n_line; u16 hs_pix_s, hs_pix_e; u16 vs1_pix_s, vs1_pix_e, vs1_line_s, vs1_line_e; u16 vs2_pix_s, vs2_pix_e, vs2_line_s, vs2_line_e; u16 vwin1_line_s, vwin1_line_e; u16 vwin2_line_s, vwin2_line_e; u16 de_pix_s, de_pix_e; u8 reg, div, rep; /* * Internally TDA998x is using ITU-R BT.656 style sync but * we get VESA style sync. TDA998x is using a reference pixel * relative to ITU to sync to the input frame and for output * sync generation. Currently, we are using reference detection * from HS/VS, i.e. REFPIX/REFLINE denote frame start sync point * which is position of rising VS with coincident rising HS. * * Now there is some issues to take care of: * - HDMI data islands require sync-before-active * - TDA998x register values must be > 0 to be enabled * - REFLINE needs an additional offset of +1 * - REFPIX needs an addtional offset of +1 for UYUV and +3 for RGB * * So we add +1 to all horizontal and vertical register values, * plus an additional +3 for REFPIX as we are using RGB input only. */ n_pix = mode->htotal; n_line = mode->vtotal; hs_pix_e = mode->hsync_end - mode->hdisplay; hs_pix_s = mode->hsync_start - mode->hdisplay; de_pix_e = mode->htotal; de_pix_s = mode->htotal - mode->hdisplay; ref_pix = 3 + hs_pix_s; /* * Attached LCD controllers may generate broken sync. Allow * those to adjust the position of the rising VS edge by adding * HSKEW to ref_pix. */ if (adjusted_mode->flags & DRM_MODE_FLAG_HSKEW) ref_pix += adjusted_mode->hskew; if ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0) { ref_line = 1 + mode->vsync_start - mode->vdisplay; vwin1_line_s = mode->vtotal - mode->vdisplay - 1; vwin1_line_e = vwin1_line_s + mode->vdisplay; vs1_pix_s = vs1_pix_e = hs_pix_s; vs1_line_s = mode->vsync_start - mode->vdisplay; vs1_line_e = vs1_line_s + mode->vsync_end - mode->vsync_start; vwin2_line_s = vwin2_line_e = 0; vs2_pix_s = vs2_pix_e = 0; vs2_line_s = vs2_line_e = 0; } else { ref_line = 1 + (mode->vsync_start - mode->vdisplay)/2; vwin1_line_s = (mode->vtotal - mode->vdisplay)/2; vwin1_line_e = vwin1_line_s + mode->vdisplay/2; vs1_pix_s = vs1_pix_e = hs_pix_s; vs1_line_s = (mode->vsync_start - mode->vdisplay)/2; vs1_line_e = vs1_line_s + (mode->vsync_end - mode->vsync_start)/2; vwin2_line_s = vwin1_line_s + mode->vtotal/2; vwin2_line_e = vwin2_line_s + mode->vdisplay/2; vs2_pix_s = vs2_pix_e = hs_pix_s + mode->htotal/2; vs2_line_s = vs1_line_s + mode->vtotal/2 ; vs2_line_e = vs2_line_s + (mode->vsync_end - mode->vsync_start)/2; } div = 148500 / mode->clock; if (div != 0) { div--; if (div > 3) div = 3; } /* mute the audio FIFO: */ reg_set(priv, REG_AIP_CNTRL_0, AIP_CNTRL_0_RST_FIFO); /* set HDMI HDCP mode off: */ reg_write(priv, REG_TBG_CNTRL_1, TBG_CNTRL_1_DWIN_DIS); reg_clear(priv, REG_TX33, TX33_HDMI); reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(0)); /* no pre-filter or interpolator: */ reg_write(priv, REG_HVF_CNTRL_0, HVF_CNTRL_0_PREFIL(0) | HVF_CNTRL_0_INTPOL(0)); reg_write(priv, REG_VIP_CNTRL_5, VIP_CNTRL_5_SP_CNT(0)); reg_write(priv, REG_VIP_CNTRL_4, VIP_CNTRL_4_BLANKIT(0) | VIP_CNTRL_4_BLC(0)); reg_clear(priv, REG_PLL_SERIAL_1, PLL_SERIAL_1_SRL_MAN_IZ); reg_clear(priv, REG_PLL_SERIAL_3, PLL_SERIAL_3_SRL_CCIR | PLL_SERIAL_3_SRL_DE); reg_write(priv, REG_SERIALIZER, 0); reg_write(priv, REG_HVF_CNTRL_1, HVF_CNTRL_1_VQR(0)); /* TODO enable pixel repeat for pixel rates less than 25Msamp/s */ rep = 0; reg_write(priv, REG_RPT_CNTRL, 0); reg_write(priv, REG_SEL_CLK, SEL_CLK_SEL_VRF_CLK(0) | SEL_CLK_SEL_CLK1 | SEL_CLK_ENA_SC_CLK); reg_write(priv, REG_PLL_SERIAL_2, PLL_SERIAL_2_SRL_NOSC(div) | PLL_SERIAL_2_SRL_PR(rep)); /* set color matrix bypass flag: */ reg_write(priv, REG_MAT_CONTRL, MAT_CONTRL_MAT_BP | MAT_CONTRL_MAT_SC(1)); /* set BIAS tmds value: */ reg_write(priv, REG_ANA_GENERAL, 0x09); /* * Sync on rising HSYNC/VSYNC */ reg = VIP_CNTRL_3_SYNC_HS; /* * TDA19988 requires high-active sync at input stage, * so invert low-active sync provided by master encoder here */ if (mode->flags & DRM_MODE_FLAG_NHSYNC) reg |= VIP_CNTRL_3_H_TGL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) reg |= VIP_CNTRL_3_V_TGL; reg_write(priv, REG_VIP_CNTRL_3, reg); reg_write(priv, REG_VIDFORMAT, 0x00); reg_write16(priv, REG_REFPIX_MSB, ref_pix); reg_write16(priv, REG_REFLINE_MSB, ref_line); reg_write16(priv, REG_NPIX_MSB, n_pix); reg_write16(priv, REG_NLINE_MSB, n_line); reg_write16(priv, REG_VS_LINE_STRT_1_MSB, vs1_line_s); reg_write16(priv, REG_VS_PIX_STRT_1_MSB, vs1_pix_s); reg_write16(priv, REG_VS_LINE_END_1_MSB, vs1_line_e); reg_write16(priv, REG_VS_PIX_END_1_MSB, vs1_pix_e); reg_write16(priv, REG_VS_LINE_STRT_2_MSB, vs2_line_s); reg_write16(priv, REG_VS_PIX_STRT_2_MSB, vs2_pix_s); reg_write16(priv, REG_VS_LINE_END_2_MSB, vs2_line_e); reg_write16(priv, REG_VS_PIX_END_2_MSB, vs2_pix_e); reg_write16(priv, REG_HS_PIX_START_MSB, hs_pix_s); reg_write16(priv, REG_HS_PIX_STOP_MSB, hs_pix_e); reg_write16(priv, REG_VWIN_START_1_MSB, vwin1_line_s); reg_write16(priv, REG_VWIN_END_1_MSB, vwin1_line_e); reg_write16(priv, REG_VWIN_START_2_MSB, vwin2_line_s); reg_write16(priv, REG_VWIN_END_2_MSB, vwin2_line_e); reg_write16(priv, REG_DE_START_MSB, de_pix_s); reg_write16(priv, REG_DE_STOP_MSB, de_pix_e); if (priv->rev == TDA19988) { /* let incoming pixels fill the active space (if any) */ reg_write(priv, REG_ENABLE_SPACE, 0x00); } /* * Always generate sync polarity relative to input sync and * revert input stage toggled sync at output stage */ reg = TBG_CNTRL_1_DWIN_DIS | TBG_CNTRL_1_TGL_EN; if (mode->flags & DRM_MODE_FLAG_NHSYNC) reg |= TBG_CNTRL_1_H_TGL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) reg |= TBG_CNTRL_1_V_TGL; reg_write(priv, REG_TBG_CNTRL_1, reg); /* must be last register set: */ reg_write(priv, REG_TBG_CNTRL_0, 0); /* Only setup the info frames if the sink is HDMI */ if (priv->is_hdmi_sink) { /* We need to turn HDMI HDCP stuff on to get audio through */ reg &= ~TBG_CNTRL_1_DWIN_DIS; reg_write(priv, REG_TBG_CNTRL_1, reg); reg_write(priv, REG_ENC_CNTRL, ENC_CNTRL_CTL_CODE(1)); reg_set(priv, REG_TX33, TX33_HDMI); tda998x_write_avi(priv, adjusted_mode); if (priv->audio_params.format != AFMT_UNUSED) { mutex_lock(&priv->audio_mutex); tda998x_configure_audio(priv, &priv->audio_params, adjusted_mode->clock); mutex_unlock(&priv->audio_mutex); } } } static enum drm_connector_status tda998x_connector_detect(struct drm_connector *connector, bool force) { struct tda998x_priv *priv = conn_to_tda998x_priv(connector); u8 val = cec_read(priv, REG_CEC_RXSHPDLEV); return (val & CEC_RXSHPDLEV_HPD) ? connector_status_connected : connector_status_disconnected; } static int read_edid_block(void *data, u8 *buf, unsigned int blk, size_t length) { struct tda998x_priv *priv = data; u8 offset, segptr; int ret, i; offset = (blk & 1) ? 128 : 0; segptr = blk / 2; reg_write(priv, REG_DDC_ADDR, 0xa0); reg_write(priv, REG_DDC_OFFS, offset); reg_write(priv, REG_DDC_SEGM_ADDR, 0x60); reg_write(priv, REG_DDC_SEGM, segptr); /* enable reading EDID: */ priv->wq_edid_wait = 1; reg_write(priv, REG_EDID_CTRL, 0x1); /* flag must be cleared by sw: */ reg_write(priv, REG_EDID_CTRL, 0x0); /* wait for block read to complete: */ if (priv->hdmi->irq) { i = wait_event_timeout(priv->wq_edid, !priv->wq_edid_wait, msecs_to_jiffies(100)); if (i < 0) { dev_err(&priv->hdmi->dev, "read edid wait err %d\n", i); return i; } } else { for (i = 100; i > 0; i--) { msleep(1); ret = reg_read(priv, REG_INT_FLAGS_2); if (ret < 0) return ret; if (ret & INT_FLAGS_2_EDID_BLK_RD) break; } } if (i == 0) { dev_err(&priv->hdmi->dev, "read edid timeout\n"); return -ETIMEDOUT; } ret = reg_read_range(priv, REG_EDID_DATA_0, buf, length); if (ret != length) { dev_err(&priv->hdmi->dev, "failed to read edid block %d: %d\n", blk, ret); return ret; } return 0; } static int tda998x_connector_get_modes(struct drm_connector *connector) { struct tda998x_priv *priv = conn_to_tda998x_priv(connector); struct edid *edid; int n; /* * If we get killed while waiting for the HPD timeout, return * no modes found: we are not in a restartable path, so we * can't handle signals gracefully. */ if (tda998x_edid_delay_wait(priv)) return 0; if (priv->rev == TDA19988) reg_clear(priv, REG_TX4, TX4_PD_RAM); edid = drm_do_get_edid(connector, read_edid_block, priv); if (priv->rev == TDA19988) reg_set(priv, REG_TX4, TX4_PD_RAM); if (!edid) { dev_warn(&priv->hdmi->dev, "failed to read EDID\n"); return 0; } drm_mode_connector_update_edid_property(connector, edid); n = drm_add_edid_modes(connector, edid); priv->is_hdmi_sink = drm_detect_hdmi_monitor(edid); drm_edid_to_eld(connector, edid); kfree(edid); return n; } static void tda998x_encoder_set_polling(struct tda998x_priv *priv, struct drm_connector *connector) { if (priv->hdmi->irq) connector->polled = DRM_CONNECTOR_POLL_HPD; else connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; } static void tda998x_destroy(struct tda998x_priv *priv) { /* disable all IRQs and free the IRQ handler */ cec_write(priv, REG_CEC_RXSHPDINTENA, 0); reg_clear(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); if (priv->audio_pdev) platform_device_unregister(priv->audio_pdev); if (priv->hdmi->irq) free_irq(priv->hdmi->irq, priv); del_timer_sync(&priv->edid_delay_timer); cancel_work_sync(&priv->detect_work); i2c_unregister_device(priv->cec); } static int tda998x_audio_hw_params(struct device *dev, void *data, struct hdmi_codec_daifmt *daifmt, struct hdmi_codec_params *params) { struct tda998x_priv *priv = dev_get_drvdata(dev); int i, ret; struct tda998x_audio_params audio = { .sample_width = params->sample_width, .sample_rate = params->sample_rate, .cea = params->cea, }; if (!priv->encoder.crtc) return -ENODEV; memcpy(audio.status, params->iec.status, min(sizeof(audio.status), sizeof(params->iec.status))); switch (daifmt->fmt) { case HDMI_I2S: if (daifmt->bit_clk_inv || daifmt->frame_clk_inv || daifmt->bit_clk_master || daifmt->frame_clk_master) { dev_err(dev, "%s: Bad flags %d %d %d %d\n", __func__, daifmt->bit_clk_inv, daifmt->frame_clk_inv, daifmt->bit_clk_master, daifmt->frame_clk_master); return -EINVAL; } for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) if (priv->audio_port[i].format == AFMT_I2S) audio.config = priv->audio_port[i].config; audio.format = AFMT_I2S; break; case HDMI_SPDIF: for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) if (priv->audio_port[i].format == AFMT_SPDIF) audio.config = priv->audio_port[i].config; audio.format = AFMT_SPDIF; break; default: dev_err(dev, "%s: Invalid format %d\n", __func__, daifmt->fmt); return -EINVAL; } if (audio.config == 0) { dev_err(dev, "%s: No audio configutation found\n", __func__); return -EINVAL; } mutex_lock(&priv->audio_mutex); ret = tda998x_configure_audio(priv, &audio, priv->encoder.crtc->hwmode.clock); if (ret == 0) priv->audio_params = audio; mutex_unlock(&priv->audio_mutex); return ret; } static void tda998x_audio_shutdown(struct device *dev, void *data) { struct tda998x_priv *priv = dev_get_drvdata(dev); mutex_lock(&priv->audio_mutex); reg_write(priv, REG_ENA_AP, 0); priv->audio_params.format = AFMT_UNUSED; mutex_unlock(&priv->audio_mutex); } static int tda998x_audio_digital_mute(struct device *dev, void *data, bool enable) { struct tda998x_priv *priv = dev_get_drvdata(dev); mutex_lock(&priv->audio_mutex); tda998x_audio_mute(priv, enable); mutex_unlock(&priv->audio_mutex); return 0; } static int tda998x_audio_get_eld(struct device *dev, void *data, uint8_t *buf, size_t len) { struct tda998x_priv *priv = dev_get_drvdata(dev); struct drm_mode_config *config = &priv->encoder.dev->mode_config; struct drm_connector *connector; int ret = -ENODEV; mutex_lock(&config->mutex); list_for_each_entry(connector, &config->connector_list, head) { if (&priv->encoder == connector->encoder) { memcpy(buf, connector->eld, min(sizeof(connector->eld), len)); ret = 0; } } mutex_unlock(&config->mutex); return ret; } static const struct hdmi_codec_ops audio_codec_ops = { .hw_params = tda998x_audio_hw_params, .audio_shutdown = tda998x_audio_shutdown, .digital_mute = tda998x_audio_digital_mute, .get_eld = tda998x_audio_get_eld, }; static int tda998x_audio_codec_init(struct tda998x_priv *priv, struct device *dev) { struct hdmi_codec_pdata codec_data = { .ops = &audio_codec_ops, .max_i2s_channels = 2, }; int i; for (i = 0; i < ARRAY_SIZE(priv->audio_port); i++) { if (priv->audio_port[i].format == AFMT_I2S && priv->audio_port[i].config != 0) codec_data.i2s = 1; if (priv->audio_port[i].format == AFMT_SPDIF && priv->audio_port[i].config != 0) codec_data.spdif = 1; } priv->audio_pdev = platform_device_register_data( dev, HDMI_CODEC_DRV_NAME, PLATFORM_DEVID_AUTO, &codec_data, sizeof(codec_data)); return PTR_ERR_OR_ZERO(priv->audio_pdev); } /* I2C driver functions */ static int tda998x_get_audio_ports(struct tda998x_priv *priv, struct device_node *np) { const u32 *port_data; u32 size; int i; port_data = of_get_property(np, "audio-ports", &size); if (!port_data) return 0; size /= sizeof(u32); if (size > 2 * ARRAY_SIZE(priv->audio_port) || size % 2 != 0) { dev_err(&priv->hdmi->dev, "Bad number of elements in audio-ports dt-property\n"); return -EINVAL; } size /= 2; for (i = 0; i < size; i++) { u8 afmt = be32_to_cpup(&port_data[2*i]); u8 ena_ap = be32_to_cpup(&port_data[2*i+1]); if (afmt != AFMT_SPDIF && afmt != AFMT_I2S) { dev_err(&priv->hdmi->dev, "Bad audio format %u\n", afmt); return -EINVAL; } priv->audio_port[i].format = afmt; priv->audio_port[i].config = ena_ap; } if (priv->audio_port[0].format == priv->audio_port[1].format) { dev_err(&priv->hdmi->dev, "There can only be on I2S port and one SPDIF port\n"); return -EINVAL; } return 0; } static int tda998x_create(struct i2c_client *client, struct tda998x_priv *priv) { struct device_node *np = client->dev.of_node; u32 video; int rev_lo, rev_hi, ret; unsigned short cec_addr; priv->vip_cntrl_0 = VIP_CNTRL_0_SWAP_A(2) | VIP_CNTRL_0_SWAP_B(3); priv->vip_cntrl_1 = VIP_CNTRL_1_SWAP_C(0) | VIP_CNTRL_1_SWAP_D(1); priv->vip_cntrl_2 = VIP_CNTRL_2_SWAP_E(4) | VIP_CNTRL_2_SWAP_F(5); priv->current_page = 0xff; priv->hdmi = client; /* CEC I2C address bound to TDA998x I2C addr by configuration pins */ cec_addr = 0x34 + (client->addr & 0x03); priv->cec = i2c_new_dummy(client->adapter, cec_addr); if (!priv->cec) return -ENODEV; priv->dpms = DRM_MODE_DPMS_OFF; mutex_init(&priv->mutex); /* protect the page access */ init_waitqueue_head(&priv->edid_delay_waitq); setup_timer(&priv->edid_delay_timer, tda998x_edid_delay_done, (unsigned long)priv); INIT_WORK(&priv->detect_work, tda998x_detect_work); /* wake up the device: */ cec_write(priv, REG_CEC_ENAMODS, CEC_ENAMODS_EN_RXSENS | CEC_ENAMODS_EN_HDMI); tda998x_reset(priv); /* read version: */ rev_lo = reg_read(priv, REG_VERSION_LSB); rev_hi = reg_read(priv, REG_VERSION_MSB); if (rev_lo < 0 || rev_hi < 0) { ret = rev_lo < 0 ? rev_lo : rev_hi; goto fail; } priv->rev = rev_lo | rev_hi << 8; /* mask off feature bits: */ priv->rev &= ~0x30; /* not-hdcp and not-scalar bit */ switch (priv->rev) { case TDA9989N2: dev_info(&client->dev, "found TDA9989 n2"); break; case TDA19989: dev_info(&client->dev, "found TDA19989"); break; case TDA19989N2: dev_info(&client->dev, "found TDA19989 n2"); break; case TDA19988: dev_info(&client->dev, "found TDA19988"); break; default: dev_err(&client->dev, "found unsupported device: %04x\n", priv->rev); goto fail; } /* after reset, enable DDC: */ reg_write(priv, REG_DDC_DISABLE, 0x00); /* set clock on DDC channel: */ reg_write(priv, REG_TX3, 39); /* if necessary, disable multi-master: */ if (priv->rev == TDA19989) reg_set(priv, REG_I2C_MASTER, I2C_MASTER_DIS_MM); cec_write(priv, REG_CEC_FRO_IM_CLK_CTRL, CEC_FRO_IM_CLK_CTRL_GHOST_DIS | CEC_FRO_IM_CLK_CTRL_IMCLK_SEL); /* initialize the optional IRQ */ if (client->irq) { int irqf_trigger; /* init read EDID waitqueue and HDP work */ init_waitqueue_head(&priv->wq_edid); /* clear pending interrupts */ reg_read(priv, REG_INT_FLAGS_0); reg_read(priv, REG_INT_FLAGS_1); reg_read(priv, REG_INT_FLAGS_2); irqf_trigger = irqd_get_trigger_type(irq_get_irq_data(client->irq)); ret = request_threaded_irq(client->irq, NULL, tda998x_irq_thread, irqf_trigger | IRQF_ONESHOT, "tda998x", priv); if (ret) { dev_err(&client->dev, "failed to request IRQ#%u: %d\n", client->irq, ret); goto fail; } /* enable HPD irq */ cec_write(priv, REG_CEC_RXSHPDINTENA, CEC_RXSHPDLEV_HPD); } /* enable EDID read irq: */ reg_set(priv, REG_INT_FLAGS_2, INT_FLAGS_2_EDID_BLK_RD); if (!np) return 0; /* non-DT */ /* get the device tree parameters */ ret = of_property_read_u32(np, "video-ports", &video); if (ret == 0) { priv->vip_cntrl_0 = video >> 16; priv->vip_cntrl_1 = video >> 8; priv->vip_cntrl_2 = video; } mutex_init(&priv->audio_mutex); /* Protect access from audio thread */ ret = tda998x_get_audio_ports(priv, np); if (ret) goto fail; if (priv->audio_port[0].format != AFMT_UNUSED) tda998x_audio_codec_init(priv, &client->dev); return 0; fail: /* if encoder_init fails, the encoder slave is never registered, * so cleanup here: */ if (priv->cec) i2c_unregister_device(priv->cec); return -ENXIO; } static void tda998x_encoder_prepare(struct drm_encoder *encoder) { tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_OFF); } static void tda998x_encoder_commit(struct drm_encoder *encoder) { tda998x_encoder_dpms(encoder, DRM_MODE_DPMS_ON); } static const struct drm_encoder_helper_funcs tda998x_encoder_helper_funcs = { .dpms = tda998x_encoder_dpms, .prepare = tda998x_encoder_prepare, .commit = tda998x_encoder_commit, .mode_set = tda998x_encoder_mode_set, }; static void tda998x_encoder_destroy(struct drm_encoder *encoder) { struct tda998x_priv *priv = enc_to_tda998x_priv(encoder); tda998x_destroy(priv); drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs tda998x_encoder_funcs = { .destroy = tda998x_encoder_destroy, }; static struct drm_encoder * tda998x_connector_best_encoder(struct drm_connector *connector) { struct tda998x_priv *priv = conn_to_tda998x_priv(connector); return &priv->encoder; } static const struct drm_connector_helper_funcs tda998x_connector_helper_funcs = { .get_modes = tda998x_connector_get_modes, .mode_valid = tda998x_connector_mode_valid, .best_encoder = tda998x_connector_best_encoder, }; static void tda998x_connector_destroy(struct drm_connector *connector) { drm_connector_unregister(connector); drm_connector_cleanup(connector); } static int tda998x_connector_dpms(struct drm_connector *connector, int mode) { if (drm_core_check_feature(connector->dev, DRIVER_ATOMIC)) return drm_atomic_helper_connector_dpms(connector, mode); else return drm_helper_connector_dpms(connector, mode); } static const struct drm_connector_funcs tda998x_connector_funcs = { .dpms = tda998x_connector_dpms, .reset = drm_atomic_helper_connector_reset, .fill_modes = drm_helper_probe_single_connector_modes, .detect = tda998x_connector_detect, .destroy = tda998x_connector_destroy, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static int tda998x_bind(struct device *dev, struct device *master, void *data) { struct tda998x_encoder_params *params = dev->platform_data; struct i2c_client *client = to_i2c_client(dev); struct drm_device *drm = data; struct tda998x_priv *priv; u32 crtcs = 0; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; dev_set_drvdata(dev, priv); if (dev->of_node) crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); /* If no CRTCs were found, fall back to our old behaviour */ if (crtcs == 0) { dev_warn(dev, "Falling back to first CRTC\n"); crtcs = 1 << 0; } priv->connector.interlace_allowed = 1; priv->encoder.possible_crtcs = crtcs; ret = tda998x_create(client, priv); if (ret) return ret; if (!dev->of_node && params) tda998x_encoder_set_config(priv, params); tda998x_encoder_set_polling(priv, &priv->connector); drm_encoder_helper_add(&priv->encoder, &tda998x_encoder_helper_funcs); ret = drm_encoder_init(drm, &priv->encoder, &tda998x_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); if (ret) goto err_encoder; drm_connector_helper_add(&priv->connector, &tda998x_connector_helper_funcs); ret = drm_connector_init(drm, &priv->connector, &tda998x_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); if (ret) goto err_connector; ret = drm_connector_register(&priv->connector); if (ret) goto err_sysfs; drm_mode_connector_attach_encoder(&priv->connector, &priv->encoder); return 0; err_sysfs: drm_connector_cleanup(&priv->connector); err_connector: drm_encoder_cleanup(&priv->encoder); err_encoder: tda998x_destroy(priv); return ret; } static void tda998x_unbind(struct device *dev, struct device *master, void *data) { struct tda998x_priv *priv = dev_get_drvdata(dev); drm_connector_unregister(&priv->connector); drm_connector_cleanup(&priv->connector); drm_encoder_cleanup(&priv->encoder); tda998x_destroy(priv); } static const struct component_ops tda998x_ops = { .bind = tda998x_bind, .unbind = tda998x_unbind, }; static int tda998x_probe(struct i2c_client *client, const struct i2c_device_id *id) { return component_add(&client->dev, &tda998x_ops); } static int tda998x_remove(struct i2c_client *client) { component_del(&client->dev, &tda998x_ops); return 0; } #ifdef CONFIG_OF static const struct of_device_id tda998x_dt_ids[] = { { .compatible = "nxp,tda998x", }, { } }; MODULE_DEVICE_TABLE(of, tda998x_dt_ids); #endif static struct i2c_device_id tda998x_ids[] = { { "tda998x", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, tda998x_ids); static struct i2c_driver tda998x_driver = { .probe = tda998x_probe, .remove = tda998x_remove, .driver = { .name = "tda998x", .of_match_table = of_match_ptr(tda998x_dt_ids), }, .id_table = tda998x_ids, }; module_i2c_driver(tda998x_driver); MODULE_AUTHOR("Rob Clark