#include "amd64_edac.h" static struct edac_pci_ctl_info *amd64_ctl_pci; static int report_gart_errors; module_param(report_gart_errors, int, 0644); /* * Set by command line parameter. If BIOS has enabled the ECC, this override is * cleared to prevent re-enabling the hardware by this driver. */ static int ecc_enable_override; module_param(ecc_enable_override, int, 0644); /* Lookup table for all possible MC control instances */ struct amd64_pvt; static struct mem_ctl_info *mci_lookup[MAX_NUMNODES]; static struct amd64_pvt *pvt_lookup[MAX_NUMNODES]; /* * Memory scrubber control interface. For K8, memory scrubbing is handled by * hardware and can involve L2 cache, dcache as well as the main memory. With * F10, this is extended to L3 cache scrubbing on CPU models sporting that * functionality. * * This causes the "units" for the scrubbing speed to vary from 64 byte blocks * (dram) over to cache lines. This is nasty, so we will use bandwidth in * bytes/sec for the setting. * * Currently, we only do dram scrubbing. If the scrubbing is done in software on * other archs, we might not have access to the caches directly. */ /* * scan the scrub rate mapping table for a close or matching bandwidth value to * issue. If requested is too big, then use last maximum value found. */ static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_scrubrate) { u32 scrubval; int i; /* * map the configured rate (new_bw) to a value specific to the AMD64 * memory controller and apply to register. Search for the first * bandwidth entry that is greater or equal than the setting requested * and program that. If at last entry, turn off DRAM scrubbing. */ for (i = 0; i < ARRAY_SIZE(scrubrates); i++) { /* * skip scrub rates which aren't recommended * (see F10 BKDG, F3x58) */ if (scrubrates[i].scrubval < min_scrubrate) continue; if (scrubrates[i].bandwidth <= new_bw) break; /* * if no suitable bandwidth found, turn off DRAM scrubbing * entirely by falling back to the last element in the * scrubrates array. */ } scrubval = scrubrates[i].scrubval; if (scrubval) edac_printk(KERN_DEBUG, EDAC_MC, "Setting scrub rate bandwidth: %u\n", scrubrates[i].bandwidth); else edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n"); pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F); return 0; } static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth) { struct amd64_pvt *pvt = mci->pvt_info; u32 min_scrubrate = 0x0; switch (boot_cpu_data.x86) { case 0xf: min_scrubrate = K8_MIN_SCRUB_RATE_BITS; break; case 0x10: min_scrubrate = F10_MIN_SCRUB_RATE_BITS; break; case 0x11: min_scrubrate = F11_MIN_SCRUB_RATE_BITS; break; default: amd64_printk(KERN_ERR, "Unsupported family!\n"); break; } return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth, min_scrubrate); } static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw) { struct amd64_pvt *pvt = mci->pvt_info; u32 scrubval = 0; int status = -1, i, ret = 0; ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval); if (ret) debugf0("Reading K8_SCRCTRL failed\n"); scrubval = scrubval & 0x001F; edac_printk(KERN_DEBUG, EDAC_MC, "pci-read, sdram scrub control value: %d \n", scrubval); for (i = 0; ARRAY_SIZE(scrubrates); i++) { if (scrubrates[i].scrubval == scrubval) { *bw = scrubrates[i].bandwidth; status = 0; break; } } return status; } /* Map from a CSROW entry to the mask entry that operates on it */ static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow) { return csrow >> (pvt->num_dcsm >> 3); } /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */ static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow) { if (dct == 0) return pvt->dcsb0[csrow]; else return pvt->dcsb1[csrow]; } /* * Return the 'mask' address the i'th CS entry. This function is needed because * there number of DCSM registers on Rev E and prior vs Rev F and later is * different. */ static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow) { if (dct == 0) return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)]; else return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)]; } /* * In *base and *limit, pass back the full 40-bit base and limit physical * addresses for the node given by node_id. This information is obtained from * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The * base and limit addresses are of type SysAddr, as defined at the start of * section 3.4.4 (p. 70). They are the lowest and highest physical addresses * in the address range they represent. */ static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id, u64 *base, u64 *limit) { *base = pvt->dram_base[node_id]; *limit = pvt->dram_limit[node_id]; } /* * Return 1 if the SysAddr given by sys_addr matches the base/limit associated * with node_id */ static int amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int node_id) { u64 base, limit, addr; amd64_get_base_and_limit(pvt, node_id, &base, &limit); /* The K8 treats this as a 40-bit value. However, bits 63-40 will be * all ones if the most significant implemented address bit is 1. * Here we discard bits 63-40. See section 3.4.2 of AMD publication * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1 * Application Programming. */ addr = sys_addr & 0x000000ffffffffffull; return (addr >= base) && (addr <= limit); } /* * Attempt to map a SysAddr to a node. On success, return a pointer to the * mem_ctl_info structure for the node that the SysAddr maps to. * * On failure, return NULL. */ static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci, u64 sys_addr) { struct amd64_pvt *pvt; int node_id; u32 intlv_en, bits; /* * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section * 3.4.4.2) registers to map the SysAddr to a node ID. */ pvt = mci->pvt_info; /* * The value of this field should be the same for all DRAM Base * registers. Therefore we arbitrarily choose to read it from the * register for node 0. */ intlv_en = pvt->dram_IntlvEn[0]; if (intlv_en == 0) { for (node_id = 0; ; ) { if (amd64_base_limit_match(pvt, sys_addr, node_id)) break; if (++node_id >= DRAM_REG_COUNT) goto err_no_match; } goto found; } if (unlikely((intlv_en != (0x01 << 8)) && (intlv_en != (0x03 << 8)) && (intlv_en != (0x07 << 8)))) { amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from " "IntlvEn field of DRAM Base Register for node 0: " "This probably indicates a BIOS bug.\n", intlv_en); return NULL; } bits = (((u32) sys_addr) >> 12) & intlv_en; for (node_id = 0; ; ) { if ((pvt->dram_limit[node_id] & intlv_en) == bits) break; /* intlv_sel field matches */ if (++node_id >= DRAM_REG_COUNT) goto err_no_match; } /* sanity test for sys_addr */ if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) { amd64_printk(KERN_WARNING, "%s(): sys_addr 0x%lx falls outside base/limit " "address range for node %d with node interleaving " "enabled.\n", __func__, (unsigned long)sys_addr, node_id); return NULL; } found: return edac_mc_find(node_id); err_no_match: debugf2("sys_addr 0x%lx doesn't match any node\n", (unsigned long)sys_addr); return NULL; } /* * Extract the DRAM CS base address from selected csrow register. */ static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow) { return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) << pvt->dcs_shift; } /* * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way. */ static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow) { u64 dcsm_bits, other_bits; u64 mask; /* Extract bits from DRAM CS Mask. */ dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask; other_bits = pvt->dcsm_mask; other_bits = ~(other_bits << pvt->dcs_shift); /* * The extracted bits from DCSM belong in the spaces represented by * the cleared bits in other_bits. */ mask = (dcsm_bits << pvt->dcs_shift) | other_bits; return mask; } /* * @input_addr is an InputAddr associated with the node given by mci. Return the * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr). */ static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr) { struct amd64_pvt *pvt; int csrow; u64 base, mask; pvt = mci->pvt_info; /* * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS * base/mask register pair, test the condition shown near the start of * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E). */ for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) { /* This DRAM chip select is disabled on this node */ if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0) continue; base = base_from_dct_base(pvt, csrow); mask = ~mask_from_dct_mask(pvt, csrow); if ((input_addr & mask) == (base & mask)) { debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n", (unsigned long)input_addr, csrow, pvt->mc_node_id); return csrow; } } debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n", (unsigned long)input_addr, pvt->mc_node_id); return -1; } /* * Return the base value defined by the DRAM Base register for the node * represented by mci. This function returns the full 40-bit value despite the * fact that the register only stores bits 39-24 of the value. See section * 3.4.4.1 (BKDG #26094, K8, revA-E) */ static inline u64 get_dram_base(struct mem_ctl_info *mci) { struct amd64_pvt *pvt = mci->pvt_info; return pvt->dram_base[pvt->mc_node_id]; } /* * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094) * for the node represented by mci. Info is passed back in *hole_base, * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if * info is invalid. Info may be invalid for either of the following reasons: * * - The revision of the node is not E or greater. In this case, the DRAM Hole * Address Register does not exist. * * - The DramHoleValid bit is cleared in the DRAM Hole Address Register, * indicating that its contents are not valid. * * The values passed back in *hole_base, *hole_offset, and *hole_size are * complete 32-bit values despite the fact that the bitfields in the DHAR * only represent bits 31-24 of the base and offset values. */ int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base, u64 *hole_offset, u64 *hole_size) { struct amd64_pvt *pvt = mci->pvt_info; u64 base; /* only revE and later have the DRAM Hole Address Register */ if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) { debugf1(" revision %d for node %d does not support DHAR\n", pvt->ext_model, pvt->mc_node_id); return 1; } /* only valid for Fam10h */ if (boot_cpu_data.x86 == 0x10 && (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) { debugf1(" Dram Memory Hoisting is DISABLED on this system\n"); return 1; } if ((pvt->dhar & DHAR_VALID) == 0) { debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n", pvt->mc_node_id); return 1; } /* This node has Memory Hoisting */ /* +------------------+--------------------+--------------------+----- * | memory | DRAM hole | relocated | * | [0, (x - 1)] | [x, 0xffffffff] | addresses from | * | | | DRAM hole | * | | | [0x100000000, | * | | | (0x100000000+ | * | | | (0xffffffff-x))] | * +------------------+--------------------+--------------------+----- * * Above is a diagram of physical memory showing the DRAM hole and the * relocated addresses from the DRAM hole. As shown, the DRAM hole * starts at address x (the base address) and extends through address * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the * addresses in the hole so that they start at 0x100000000. */ base = dhar_base(pvt->dhar); *hole_base = base; *hole_size = (0x1ull << 32) - base; if (boot_cpu_data.x86 > 0xf) *hole_offset = f10_dhar_offset(pvt->dhar); else *hole_offset = k8_dhar_offset(pvt->dhar); debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n", pvt->mc_node_id, (unsigned long)*hole_base, (unsigned long)*hole_offset, (unsigned long)*hole_size); return 0; } EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info); /* * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is * assumed that sys_addr maps to the node given by mci. * * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled, * then it is also involved in translating a SysAddr to a DramAddr. Sections * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting. * These parts of the documentation are unclear. I interpret them as follows: * * When node n receives a SysAddr, it processes the SysAddr as follows: * * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM * Limit registers for node n. If the SysAddr is not within the range * specified by the base and limit values, then node n ignores the Sysaddr * (since it does not map to node n). Otherwise continue to step 2 below. * * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is * disabled so skip to step 3 below. Otherwise see if the SysAddr is within * the range of relocated addresses (starting at 0x100000000) from the DRAM * hole. If not, skip to step 3 below. Else get the value of the * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the * offset defined by this value from the SysAddr. * * 3. Obtain the base address for node n from the DRAMBase field of the DRAM * Base register for node n. To obtain the DramAddr, subtract the base * address from the SysAddr, as shown near the start of section 3.4.4 (p.70). */ static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr) { u64 dram_base, hole_base, hole_offset, hole_size, dram_addr; int ret = 0; dram_base = get_dram_base(mci); ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); if (!ret) { if ((sys_addr >= (1ull << 32)) && (sys_addr < ((1ull << 32) + hole_size))) { /* use DHAR to translate SysAddr to DramAddr */ dram_addr = sys_addr - hole_offset; debugf2("using DHAR to translate SysAddr 0x%lx to " "DramAddr 0x%lx\n", (unsigned long)sys_addr, (unsigned long)dram_addr); return dram_addr; } } /* * Translate the SysAddr to a DramAddr as shown near the start of * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8 * only deals with 40-bit values. Therefore we discard bits 63-40 of * sys_addr below. If bit 39 of sys_addr is 1 then the bits we * discard are all 1s. Otherwise the bits we discard are all 0s. See * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture * Programmer's Manual Volume 1 Application Programming. */ dram_addr = (sys_addr & 0xffffffffffull) - dram_base; debugf2("using DRAM Base register to translate SysAddr 0x%lx to " "DramAddr 0x%lx\n", (unsigned long)sys_addr, (unsigned long)dram_addr); return dram_addr; } /* * @intlv_en is the value of the IntlvEn field from a DRAM Base register * (section 3.4.4.1). Return the number of bits from a SysAddr that are used * for node interleaving. */ static int num_node_interleave_bits(unsigned intlv_en) { static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 }; int n; BUG_ON(intlv_en > 7); n = intlv_shift_table[intlv_en]; return n; } /* Translate the DramAddr given by @dram_addr to an InputAddr. */ static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr) { struct amd64_pvt *pvt; int intlv_shift; u64 input_addr; pvt = mci->pvt_info; /* * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) * concerning translating a DramAddr to an InputAddr. */ intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) + (dram_addr & 0xfff); debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n", intlv_shift, (unsigned long)dram_addr, (unsigned long)input_addr); return input_addr; } /* * Translate the SysAddr represented by @sys_addr to an InputAddr. It is * assumed that @sys_addr maps to the node given by mci. */ static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr) { u64 input_addr; input_addr = dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr)); debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n", (unsigned long)sys_addr, (unsigned long)input_addr); return input_addr; } /* * @input_addr is an InputAddr associated with the node represented by mci. * Translate @input_addr to a DramAddr and return the result. */ static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr) { struct amd64_pvt *pvt; int node_id, intlv_shift; u64 bits, dram_addr; u32 intlv_sel; /* * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E) * shows how to translate a DramAddr to an InputAddr. Here we reverse * this procedure. When translating from a DramAddr to an InputAddr, the * bits used for node interleaving are discarded. Here we recover these * bits from the IntlvSel field of the DRAM Limit register (section * 3.4.4.2) for the node that input_addr is associated with. */ pvt = mci->pvt_info; node_id = pvt->mc_node_id; BUG_ON((node_id < 0) || (node_id > 7)); intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]); if (intlv_shift == 0) { debugf1(" InputAddr 0x%lx translates to DramAddr of " "same value\n", (unsigned long)input_addr); return input_addr; } bits = ((input_addr & 0xffffff000ull) << intlv_shift) + (input_addr & 0xfff); intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1); dram_addr = bits + (intlv_sel << 12); debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx " "(%d node interleave bits)\n", (unsigned long)input_addr, (unsigned long)dram_addr, intlv_shift); return dram_addr; } /* * @dram_addr is a DramAddr that maps to the node represented by mci. Convert * @dram_addr to a SysAddr. */ static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr) { struct amd64_pvt *pvt = mci->pvt_info; u64 hole_base, hole_offset, hole_size, base, limit, sys_addr; int ret = 0; ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size); if (!ret) { if ((dram_addr >= hole_base) && (dram_addr < (hole_base + hole_size))) { sys_addr = dram_addr + hole_offset; debugf1("using DHAR to translate DramAddr 0x%lx to " "SysAddr 0x%lx\n", (unsigned long)dram_addr, (unsigned long)sys_addr); return sys_addr; } } amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit); sys_addr = dram_addr + base; /* * The sys_addr we have computed up to this point is a 40-bit value * because the k8 deals with 40-bit values. However, the value we are * supposed to return is a full 64-bit physical address. The AMD * x86-64 architecture specifies that the most significant implemented * address bit through bit 63 of a physical address must be either all * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a * 64-bit value below. See section 3.4.2 of AMD publication 24592: * AMD x86-64 Architecture Programmer's Manual Volume 1 Application * Programming. */ sys_addr |= ~((sys_addr & (1ull << 39)) - 1); debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n", pvt->mc_node_id, (unsigned long)dram_addr, (unsigned long)sys_addr); return sys_addr; } /* * @input_addr is an InputAddr associated with the node given by mci. Translate * @input_addr to a SysAddr. */ static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci, u64 input_addr) { return dram_addr_to_sys_addr(mci, input_addr_to_dram_addr(mci, input_addr)); } /* * Find the minimum and maximum InputAddr values that map to the given @csrow. * Pass back these values in *input_addr_min and *input_addr_max. */ static void find_csrow_limits(struct mem_ctl_info *mci, int csrow, u64 *input_addr_min, u64 *input_addr_max) { struct amd64_pvt *pvt; u64 base, mask; pvt = mci->pvt_info; BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT)); base = base_from_dct_base(pvt, csrow); mask = mask_from_dct_mask(pvt, csrow); *input_addr_min = base & ~mask; *input_addr_max = base | mask | pvt->dcs_mask_notused; } /* * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB * Address High (section 3.6.4.6) register values and return the result. Address * is located in the info structure (nbeah and nbeal), the encoding is device * specific. */ static u64 extract_error_address(struct mem_ctl_info *mci, struct amd64_error_info_regs *info) { struct amd64_pvt *pvt = mci->pvt_info; return pvt->ops->get_error_address(mci, info); } /* Map the Error address to a PAGE and PAGE OFFSET. */ static inline void error_address_to_page_and_offset(u64 error_address, u32 *page, u32 *offset) { *page = (u32) (error_address >> PAGE_SHIFT); *offset = ((u32) error_address) & ~PAGE_MASK; } /* * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers * of a node that detected an ECC memory error. mci represents the node that * the error address maps to (possibly different from the node that detected * the error). Return the number of the csrow that sys_addr maps to, or -1 on * error. */ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr) { int csrow; csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr)); if (csrow == -1) amd64_mc_printk(mci, KERN_ERR, "Failed to translate InputAddr to csrow for " "address 0x%lx\n", (unsigned long)sys_addr); return csrow; } static int get_channel_from_ecc_syndrome(unsigned short syndrome); static void amd64_cpu_display_info(struct amd64_pvt *pvt) { if (boot_cpu_data.x86 == 0x11) edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n"); else if (boot_cpu_data.x86 == 0x10) edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n"); else if (boot_cpu_data.x86 == 0xf) edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n", (pvt->ext_model >= OPTERON_CPU_REV_F) ? "Rev F or later" : "Rev E or earlier"); else /* we'll hardly ever ever get here */ edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n"); } /* * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs * are ECC capable. */ static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt) { int bit; enum dev_type edac_cap = EDAC_NONE; bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F) ? 19 : 17; if (pvt->dclr0 >> BIT(bit)) edac_cap = EDAC_FLAG_SECDED; return edac_cap; } static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt, int ganged); /* Display and decode various NB registers for debug purposes. */ static void amd64_dump_misc_regs(struct amd64_pvt *pvt) { int ganged; debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n", pvt->nbcap, (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False", (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False", (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False"); debugf1(" ECC Capable=%s ChipKill Capable=%s\n", (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False", (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False"); debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n", pvt->dclr0, (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled", (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled", (pvt->dclr0 & BIT(11)) ? "128b" : "64b"); debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n", (pvt->dclr0 & BIT(12)) ? "Y" : "N", (pvt->dclr0 & BIT(13)) ? "Y" : "N", (pvt->dclr0 & BIT(14)) ? "Y" : "N", (pvt->dclr0 & BIT(15)) ? "Y" : "N", (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered"); debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare); if (boot_cpu_data.x86 == 0xf) { debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n", pvt->dhar, dhar_base(pvt->dhar), k8_dhar_offset(pvt->dhar)); debugf1(" DramHoleValid=%s\n", (pvt->dhar & DHAR_VALID) ? "True" : "False"); debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0); /* everything below this point is Fam10h and above */ return; } else { debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n", pvt->dhar, dhar_base(pvt->dhar), f10_dhar_offset(pvt->dhar)); debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n", (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ? "True" : "False", (pvt->dhar & DHAR_VALID) ? "True" : "False"); } /* Only if NOT ganged does dcl1 have valid info */ if (!dct_ganging_enabled(pvt)) { debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s " "Width=%s\n", pvt->dclr1, (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled", (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled", (pvt->dclr1 & BIT(11)) ? "128b" : "64b"); debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s " "DIMM Type=%s\n", (pvt->dclr1 & BIT(12)) ? "Y" : "N", (pvt->dclr1 & BIT(13)) ? "Y" : "N", (pvt->dclr1 & BIT(14)) ? "Y" : "N", (pvt->dclr1 & BIT(15)) ? "Y" : "N", (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered"); } /* * Determine if ganged and then dump memory sizes for first controller, * and if NOT ganged dump info for 2nd controller. */ ganged = dct_ganging_enabled(pvt); f10_debug_display_dimm_sizes(0, pvt, ganged); if (!ganged) f10_debug_display_dimm_sizes(1, pvt, ganged); } /* Read in both of DBAM registers */ static void amd64_read_dbam_reg(struct amd64_pvt *pvt) { int err = 0; unsigned int reg; reg = DBAM0; err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0); if (err) goto err_reg; if (boot_cpu_data.x86 >= 0x10) { reg = DBAM1; err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1); if (err) goto err_reg; } err_reg: debugf0("Error reading F2x%03x.\n", reg); } /* * NOTE: CPU Revision Dependent code: Rev E and Rev F * * Set the DCSB and DCSM mask values depending on the CPU revision value. Also * set the shift factor for the DCSB and DCSM values. * * ->dcs_mask_notused, RevE: * * To find the max InputAddr for the csrow, start with the base address and set * all bits that are "don't care" bits in the test at the start of section * 3.5.4 (p. 84). * * The "don't care" bits are all set bits in the mask and all bits in the gaps * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS * represents bits [24:20] and [12:0], which are all bits in the above-mentioned * gaps. * * ->dcs_mask_notused, RevF and later: * * To find the max InputAddr for the csrow, start with the base address and set * all bits that are "don't care" bits in the test at the start of NPT section * 4.5.4 (p. 87). * * The "don't care" bits are all set bits in the mask and all bits in the gaps * between bit ranges [36:27] and [21:13]. * * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0], * which are all bits in the above-mentioned gaps. */ static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt) { if (pvt->ext_model >= OPTERON_CPU_REV_F) { pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS; pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS; pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS; pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT; switch (boot_cpu_data.x86) { case 0xf: pvt->num_dcsm = REV_F_DCSM_COUNT; break; case 0x10: pvt->num_dcsm = F10_DCSM_COUNT; break; case 0x11: pvt->num_dcsm = F11_DCSM_COUNT; break; default: amd64_printk(KERN_ERR, "Unsupported family!\n"); break; } } else { pvt->dcsb_base = REV_E_DCSB_BASE_BITS; pvt->dcsm_mask = REV_E_DCSM_MASK_BITS; pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS; pvt->dcs_shift = REV_E_DCS_SHIFT; pvt->num_dcsm = REV_E_DCSM_COUNT; } } /* * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers */ static void amd64_read_dct_base_mask(struct amd64_pvt *pvt) { int cs, reg, err = 0; amd64_set_dct_base_and_mask(pvt); for (cs = 0; cs < CHIPSELECT_COUNT; cs++) { reg = K8_DCSB0 + (cs * 4); err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]); if (unlikely(err)) debugf0("Reading K8_DCSB0[%d] failed\n", cs); else debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n", cs, pvt->dcsb0[cs], reg); /* If DCT are NOT ganged, then read in DCT1's base */ if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { reg = F10_DCSB1 + (cs * 4); err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dcsb1[cs]); if (unlikely(err)) debugf0("Reading F10_DCSB1[%d] failed\n", cs); else debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n", cs, pvt->dcsb1[cs], reg); } else { pvt->dcsb1[cs] = 0; } } for (cs = 0; cs < pvt->num_dcsm; cs++) { reg = K8_DCSB0 + (cs * 4); err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]); if (unlikely(err)) debugf0("Reading K8_DCSM0 failed\n"); else debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n", cs, pvt->dcsm0[cs], reg); /* If DCT are NOT ganged, then read in DCT1's mask */ if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) { reg = F10_DCSM1 + (cs * 4); err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dcsm1[cs]); if (unlikely(err)) debugf0("Reading F10_DCSM1[%d] failed\n", cs); else debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n", cs, pvt->dcsm1[cs], reg); } else pvt->dcsm1[cs] = 0; } } static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt) { enum mem_type type; if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) { /* Rev F and later */ type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2; } else { /* Rev E and earlier */ type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR; } debugf1(" Memory type is: %s\n", (type == MEM_DDR2) ? "MEM_DDR2" : (type == MEM_RDDR2) ? "MEM_RDDR2" : (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR"); return type; }