#ifndef _LINUX_KERNEL_H #define _LINUX_KERNEL_H /* * 'kernel.h' contains some often-used function prototypes etc */ #define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (typeof(x))(a) - 1) #define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask)) #ifdef __KERNEL__ #include #include #include #include #include #include #include #include #include #include #include #include #define USHRT_MAX ((u16)(~0U)) #define SHRT_MAX ((s16)(USHRT_MAX>>1)) #define SHRT_MIN ((s16)(-SHRT_MAX - 1)) #define INT_MAX ((int)(~0U>>1)) #define INT_MIN (-INT_MAX - 1) #define UINT_MAX (~0U) #define LONG_MAX ((long)(~0UL>>1)) #define LONG_MIN (-LONG_MAX - 1) #define ULONG_MAX (~0UL) #define LLONG_MAX ((long long)(~0ULL>>1)) #define LLONG_MIN (-LLONG_MAX - 1) #define ULLONG_MAX (~0ULL) #define STACK_MAGIC 0xdeadbeef #define ALIGN(x, a) __ALIGN_KERNEL((x), (a)) #define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask)) #define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a))) #define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0) #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr)) /* * This looks more complex than it should be. But we need to * get the type for the ~ right in round_down (it needs to be * as wide as the result!), and we want to evaluate the macro * arguments just once each. */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1) #define round_down(x, y) ((x) & ~__round_mask(x, y)) #define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f)) #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) #define DIV_ROUND_UP_ULL(ll,d) \ ({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; }) #if BITS_PER_LONG == 32 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d) #else # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d) #endif /* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */ #define roundup(x, y) ( \ { \ const typeof(y) __y = y; \ (((x) + (__y - 1)) / __y) * __y; \ } \ ) #define rounddown(x, y) ( \ { \ typeof(x) __x = (x); \ __x - (__x % (y)); \ } \ ) #define DIV_ROUND_CLOSEST(x, divisor)( \ { \ typeof(divisor) __divisor = divisor; \ (((x) + ((__divisor) / 2)) / (__divisor)); \ } \ ) #define _RET_IP_ (unsigned long)__builtin_return_address(0) #define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; }) #ifdef CONFIG_LBDAF # include # define sector_div(a, b) do_div(a, b) #else # define sector_div(n, b)( \ { \ int _res; \ _res = (n) % (b); \ (n) /= (b); \ _res; \ } \ ) #endif /** * upper_32_bits - return bits 32-63 of a number * @n: the number we're accessing * * A basic shift-right of a 64- or 32-bit quantity. Use this to suppress * the "right shift count >= width of type" warning when that quantity is * 32-bits. */ #define upper_32_bits(n) ((u32)(((n) >> 16) >> 16)) /** * lower_32_bits - return bits 0-31 of a number * @n: the number we're accessing */ #define lower_32_bits(n) ((u32)(n)) struct completion; struct pt_regs; struct user; #ifdef CONFIG_PREEMPT_VOLUNTARY extern int _cond_resched(void); # define might_resched() _cond_resched() #else # define might_resched() do { } while (0) #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP void __might_sleep(const char *file, int line, int preempt_offset); /** * might_sleep - annotation for functions that can sleep * * this macro will print a stack trace if it is executed in an atomic * context (spinlock, irq-handler, ...). * * This is a useful debugging help to be able to catch problems early and not * be bitten later when the calling function happens to sleep when it is not * supposed to. */ # define might_sleep() \ do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0) #else static inline void __might_sleep(const char *file, int line, int preempt_offset) { } # define might_sleep() do { might_resched(); } while (0) #endif #define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0) /* * abs() handles unsigned and signed longs, ints, shorts and chars. For all * input types abs() returns a signed long. * abs() should not be used for 64-bit types (s64, u64, long long) - use abs64() * for those. */ #define abs(x) ({ \ long ret; \ if (sizeof(x) == sizeof(long)) { \ long __x = (x); \ ret = (__x < 0) ? -__x : __x; \ } else { \ int __x = (x); \ ret = (__x < 0) ? -__x : __x; \ } \ ret; \ }) #define abs64(x) ({ \ s64 __x = (x); \ (__x < 0) ? -__x : __x; \ }) #ifdef CONFIG_PROVE_LOCKING void might_fault(void); #else static inline void might_fault(void) { might_sleep(); } #endif extern struct atomic_notifier_head panic_notifier_list; extern long (*panic_blink)(int state); __printf(1, 2) void panic(const char *fmt, ...) ATTRIB_NORET __cold; extern void oops_enter(void); extern void oops_exit(void); void print_oops_end_marker(void); extern int oops_may_print(void); void do_exit(long error_code) ATTRIB_NORET; void complete_and_exit(struct completion *, long) ATTRIB_NORET; /* Internal, do not use. */ int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res); int __must_check _kstrtol(const char *s, unsigned int base, long *res); int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res); int __must_check kstrtoll(const char *s, unsigned int base, long long *res); static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res) { /* * We want to shortcut function call, but * __builtin_types_compatible_p(unsigned long, unsigned long long) = 0. */ if (sizeof(unsigned long) == sizeof(unsigned long long) && __alignof__(unsigned long) == __alignof__(unsigned long long)) return kstrtoull(s, base, (unsigned long long *)res); else return _kstrtoul(s, base, res); } static inline int __must_check kstrtol(const char *s, unsigned int base, long *res) { /* * We want to shortcut function call, but * __builtin_types_compatible_p(long, long long) = 0. */ if (sizeof(long) == sizeof(long long) && __alignof__(long) == __alignof__(long long)) return kstrtoll(s, base, (long long *)res); else return _kstrtol(s, base, res); } int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res); int __must_check kstrtoint(const char *s, unsigned int base, int *res); static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res) { return kstrtoull(s, base, res); } static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res) { return kstrtoll(s, base, res); } static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res) { return kstrtouint(s, base, res); } static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res) { return kstrtoint(s, base, res); } int __must_check kstrtou16(const char *s, unsigned int base, u16 *res); int __must_check kstrtos16(const char *s, unsigned int base, s16 *res); int __must_check kstrtou8(const char *s, unsigned int base, u8 *res); int __must_check kstrtos8(const char *s, unsigned int base, s8 *res); int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res); int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res); int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res); int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res); int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res); int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res); int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res); int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res); int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res); int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res); static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res) { return kstrtoull_from_user(s, count, base, res); } static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res) { return kstrtoll_from_user(s, count, base, res); } static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res) { return kstrtouint_from_user(s, count, base, res); } static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res) { return kstrtoint_from_user(s, count, base, res); } /* Obsolete, do not use. Use kstrto instead */ extern unsigned long simple_strtoul(const char *,char **,unsigned int); extern long simple_strtol(const char *,char **,unsigned int); extern unsigned long long simple_strtoull(const char *,char **,unsigned int); extern long long simple_strtoll(const char *,char **,unsigned int); #define strict_strtoul kstrtoul #define strict_strtol kstrtol #define strict_strtoull kstrtoull #define strict_strtoll kstrtoll /* lib/printf utilities */ extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...); extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list); extern __printf(3, 4) int snprintf(char *buf, size_t size, const char *fmt, ...); extern __printf(3, 0) int vsnprintf(char *buf, size_t size, const char *fmt, va_list args); extern __printf(3, 4) int scnprintf(char *buf, size_t size, const char *fmt, ...); extern __printf(3, 0) int vscnprintf(char *buf, size_t size, const char *fmt, va_list args); extern __printf(2, 3) char *kasprintf(gfp_t gfp, const char *fmt, ...); extern char *kvasprintf(gfp_t gfp, const char *fmt, va_list args); extern int sscanf(const char *, const char *, ...) __attribute__ ((format (scanf, 2, 3))); extern int vsscanf(const char *, const char *, va_list) __attribute__ ((format (scanf, 2, 0))); extern int get_option(char **str, int *pint); extern char *get_options(const char *str, int nints, int *ints); extern unsigned long long memparse(const char *ptr, char **retptr); extern int core_kernel_text(unsigned long addr); extern int core_kernel_data(unsigned long addr); extern int __kernel_text_address(unsigned long addr); extern int kernel_text_address(unsigned long addr); extern int func_ptr_is_kernel_text(void *ptr); struct pid; extern struct pid *session_of_pgrp(struct pid *pgrp); unsigned long int_sqrt(unsigned long); extern void bust_spinlocks(int yes); extern void wake_up_klogd(void); extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */ extern int panic_timeout; extern int panic_on_oops; extern int panic_on_unrecovered_nmi; extern int panic_on_io_nmi; extern int sysctl_panic_on_stackoverflow; extern const char *print_tainted(void); extern void add_taint(unsigned flag); extern int test_taint(unsigned flag); extern unsigned long get_taint(void); extern int root_mountflags; extern bool early_boot_irqs_disabled; /* Values used for system_state */ extern enum system_states { SYSTEM_BOOTING, SYSTEM_RUNNING, SYSTEM_HALT, SYSTEM_POWER_OFF, SYSTEM_RESTART, SYSTEM_SUSPEND_DISK, } system_state; #define TAINT_PROPRIETARY_MODULE 0 #define TAINT_FORCED_MODULE 1 #define TAINT_UNSAFE_SMP 2 #define TAINT_FORCED_RMMOD 3 #define TAINT_MACHINE_CHECK 4 #define TAINT_BAD_PAGE 5 #define TAINT_USER 6 #define TAINT_DIE 7 #define TAINT_OVERRIDDEN_ACPI_TABLE 8 #define TAINT_WARN 9 #define TAINT_CRAP 10 #define TAINT_FIRMWARE_WORKAROUND 11 #define TAINT_OOT_MODULE 12 extern const char hex_asc[]; #define hex_asc_lo(x) hex_asc[((x) & 0x0f)] #define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4] static inline char *hex_byte_pack(char *buf, u8 byte) { *buf++ = hex_asc_hi(byte); *buf++ = hex_asc_lo(byte); return buf; } static inline char * __deprecated pack_hex_byte(char *buf, u8 byte) { return hex_byte_pack(buf, byte); } extern int hex_to_bin(char ch); extern int __must_check hex2bin(u8 *dst, const char *src, size_t count); /* * General tracing related utility functions - trace_printk(), * tracing_on/tracing_off and tracing_start()/tracing_stop * * Use tracing_on/tracing_off when you want to quickly turn on or off * tracing. It simply enables or disables the recording of the trace events. * This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on * file, which gives a means for the kernel and userspace to interact. * Place a tracing_off() in the kernel where you want tracing to end. * From user space, examine the trace, and then echo 1 > tracing_on * to continue tracing. * * tracing_stop/tracing_start has slightly more overhead. It is used * by things like suspend to ram where disabling the recording of the * trace is not enough, but tracing must actually stop because things * like calling smp_processor_id() may crash the system. * * Most likely, you want to use tracing_on/tracing_off. */ #ifdef CONFIG_RING_BUFFER void tracing_on(void); void tracing_off(void); /* trace_off_permanent stops recording with no way to bring it back */ void tracing_off_permanent(void); int tracing_is_on(void); #else static inline void tracing_on(void) { } static inline void tracing_off(void) { } static inline void tracing_off_permanent(void) { } static inline int tracing_is_on(void) { return 0; } #endif enum ftrace_dump_mode { DUMP_NONE, DUMP_ALL, DUMP_ORIG, }; #ifdef CONFIG_TRACING extern void tracing_start(void); extern void tracing_stop(void); extern void ftrace_off_permanent(void); static inline __printf(1, 2) void ____trace_printk_check_format(const char *fmt, ...) { } #define __trace_printk_check_format(fmt, args...) \ do { \ if (0) \ ____trace_printk_check_format(fmt, ##args); \ } while (0) /** * trace_printk - printf formatting in the ftrace buffer * @fmt: the printf format for printing * * Note: __trace_printk is an internal function for trace_printk and * the @ip is passed in via the trace_printk macro. * * This function allows a kernel developer to debug fast path sections * that printk is not appropriate for. By scattering in various * printk like tracing in the code, a developer can quickly see * where problems are occurring. * * This is intended as a debugging tool for the developer only. * Please refrain from leaving trace_printks scattered around in * your code. */ #define trace_printk(fmt, args...) \ do { \ __trace_printk_check_format(fmt, ##args); \ if (__builtin_constant_p(fmt)) { \ static const char *trace_printk_fmt \ __attribute__((section("__trace_printk_fmt"))) = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \ } else \ __trace_printk(_THIS_IP_, fmt, ##args); \ } while (0) extern __printf(2, 3) int __trace_bprintk(unsigned long ip, const char *fmt, ...); extern __printf(2, 3) int __trace_printk(unsigned long ip, const char *fmt, ...); extern void trace_dump_stack(void); /* * The double __builtin_constant_p is because gcc will give us an error * if we try to allocate the static variable to fmt if it is not a * constant. Even with the outer if statement. */ #define ftrace_vprintk(fmt, vargs) \ do { \ if (__builtin_constant_p(fmt)) { \ static const char *trace_printk_fmt \ __attribute__((section("__trace_printk_fmt"))) = \ __builtin_constant_p(fmt) ? fmt : NULL; \ \ __ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \ } else \ __ftrace_vprintk(_THIS_IP_, fmt, vargs); \ } while (0) extern int __ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap); extern int __ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap); extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode); #else static inline __printf(1, 2) int trace_printk(const char *fmt, ...); static inline void tracing_start(void) { } static inline void tracing_stop(void) { } static inline void ftrace_off_permanent(void) { } static inline void trace_dump_stack(void) { } static inline int trace_printk(const char *fmt, ...) { return 0; } static inline int ftrace_vprintk(const char *fmt, va_list ap) { return 0; } static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { } #endif /* CONFIG_TRACING */ /* * min()/max()/clamp() macros that also do * strict type-checking.. See the * "unnecessary" pointer comparison. */ #define min(x, y) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ (void) (&_min1 == &_min2); \ _min1 < _min2 ? _min1 : _min2; }) #define max(x, y) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ (void) (&_max1 == &_max2); \ _max1 > _max2 ? _max1 : _max2; }) #define min3(x, y, z) ({ \ typeof(x) _min1 = (x); \ typeof(y) _min2 = (y); \ typeof(z) _min3 = (z); \ (void) (&_min1 == &_min2); \ (void) (&_min1 == &_min3); \ _min1 < _min2 ? (_min1 < _min3 ? _min1 : _min3) : \ (_min2 < _min3 ? _min2 : _min3); }) #define max3(x, y, z) ({ \ typeof(x) _max1 = (x); \ typeof(y) _max2 = (y); \ typeof(z) _max3 = (z); \ (void) (&_max1 == &_max2); \ (void) (&_max1 == &_max3); \ _max1 > _max2 ? (_max1 > _max3 ? _max1 : _max3) : \ (_max2 > _max3 ? _max2 : _max3); }) /** * min_not_zero - return the minimum that is _not_ zero, unless both are zero * @x: value1 * @y: value2 */ #define min_not_zero(x, y) ({ \ typeof(x) __x = (x); \ typeof(y) __y = (y); \ __x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); }) /** * clamp - return a value clamped to a given range with strict typechecking * @val: current value * @min: minimum allowable value * @max: maximum allowable value * * This macro does strict typechecking of min/max to make sure they are of the * same type as val. See the unnecessary pointer comparisons. */ #define clamp(val, min, max) ({ \ typeof(val) __val = (val); \ typeof(min) __min = (min); \ typeof(max) __max = (max); \ (void) (&__val == &__min); \ (void) (&__val == &__max); \ __val = __val < __min ? __min: __val; \ __val > __max ? __max: __val; }) /* * ..and if you can't take the strict * types, you can specify one yourself. * * Or not use min/max/clamp at all, of course. */ #define min_t(type, x, y) ({ \ type __min1 = (x); \ type __min2 = (y); \ __min1 < __min2 ? __min1: __min2; }) #define max_t(type, x, y) ({ \ type __max1 = (x); \ type __max2 = (y); \ __max1 > __max2 ? __max1: __max2; }) /** * clamp_t - return a value clamped to a given range using a given type * @type: the type of variable to use * @val: current value * @min: minimum allowable value * @max: maximum allowable value * * This macro does no typechecking and uses temporary variables of type * 'type' to make all the comparisons. */ #define clamp_t(type, val, min, max) ({ \ type __val = (val); \ type __min = (min); \ type __max = (max); \ __val = __val < __min ? __min: __val; \ __val > __max ? __max: __val; }) /** * clamp_val - return a value clamped to a given range using val's type * @val: current value * @min: minimum allowable value * @max: maximum allowable value * * This macro does no typechecking and uses temporary variables of whatever * type the input argument 'val' is. This is useful when val is an unsigned * type and min and max are literals that will otherwise be assigned a signed * integer type. */ #define clamp_val(val, min, max) ({ \ typeof(val) __val = (val); \ typeof(val) __min = (min); \ typeof(val) __max = (max); \ __val = __val < __min ? __min: __val; \ __val > __max ? __max: __val; }) /* * swap - swap value of @a and @b */ #define swap(a, b) \ do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) /** * container_of - cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * */ #define container_of(ptr, type, member) ({ \ const typeof( ((type *)0)->member ) *__mptr = (ptr); \ (type *)( (char *)__mptr - offsetof(type,member) );}) #ifdef __CHECKER__ #define BUILD_BUG_ON_NOT_POWER_OF_2(n) #define BUILD_BUG_ON_ZERO(e) (0) #define BUILD_BUG_ON_NULL(e) ((void*)0) #define BUILD_BUG_ON(condition) #define BUILD_BUG() (0) #else /* __CHECKER__ */ /* Force a compilation error if a constant expression is not a power of 2 */ #define BUILD_BUG_ON_NOT_POWER_OF_2(n) \ BUILD_BUG_ON((n) == 0 || (((n) & ((n) - 1)) != 0)) /* Force a compilation error if condition is true, but also produce a result (of value 0 and type size_t), so the expression can be used e.g. in a structure initializer (or where-ever else comma expressions aren't permitted). */ #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); })) #define BUILD_BUG_ON_NULL(e) ((void *)sizeof(struct { int:-!!(e); })) /** * BUILD_BUG_ON - break compile if a condition is true. * @condition: the condition which the compiler should know is false. * * If you have some code which relies on certain constants being equal, or * other compile-time-evaluated condition, you should use BUILD_BUG_ON to * detect if someone changes it. * * The implementation uses gcc's reluctance to create a negative array, but * gcc (as of 4.4) only emits that error for obvious cases (eg. not arguments * to inline functions). So as a fallback we use the optimizer; if it can't * prove the condition is false, it will cause a link error on the undefined * "__build_bug_on_failed". This error message can be harder to track down * though, hence the two different methods. */ #ifndef __OPTIMIZE__ #define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)])) #else extern int __build_bug_on_failed; #define BUILD_BUG_ON(condition) \ do { \ ((void)sizeof(char[1 - 2*!!(condition)])); \ if (condition) __build_bug_on_failed = 1; \ } while(0) #endif /** * BUILD_BUG - break compile if used. * * If you have some code that you expect the compiler to eliminate at * build time, you should use BUILD_BUG to detect if it is * unexpectedly used. */ #define BUILD_BUG() \ do { \ extern void __build_bug_failed(void) \ __linktime_error("BUILD_BUG failed"); \ __build_bug_failed(); \ } while (0) #endif /* __CHECKER__ */ /* Trap pasters of __FUNCTION__ at compile-time */ #define __FUNCTION__ (__func__) /* This helps us to avoid #ifdef CONFIG_NUMA */ #ifdef CONFIG_NUMA #define NUMA_BUILD 1 #else #define NUMA_BUILD 0 #endif /* This helps us avoid #ifdef CONFIG_COMPACTION */ #ifdef CONFIG_COMPACTION #define COMPACTION_BUILD 1 #else #define COMPACTION_BUILD 0 #endif /* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */ #ifdef CONFIG_FTRACE_MCOUNT_RECORD # define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD #endif struct sysinfo; extern int do_sysinfo(struct sysinfo *info); #endif /* __KERNEL__ */ #define SI_LOAD_SHIFT 16 struct sysinfo { long uptime; /* Seconds since boot */ unsigned long loads[3]; /* 1, 5, and 15 minute load averages */ unsigned long totalram; /* Total usable main memory size */ unsigned long freeram; /* Available memory size */ unsigned long sharedram; /* Amount of shared memory */ unsigned long bufferram; /* Memory used by buffers */ unsigned long totalswap; /* Total swap space size */ unsigned long freeswap; /* swap space still available */ unsigned short procs; /* Number of current processes */ unsigned short pad; /* explicit padding for m68k */ unsigned long totalhigh; /* Total high memory size */ unsigned long freehigh; /* Available high memory size */ unsigned int mem_unit; /* Memory unit size in bytes */ char _f[20-2*sizeof(long)-sizeof(int)]; /* Padding: libc5 uses this.. */ }; #endif