/* * Add configfs and memory store: Kyungchan Koh and * Shaohua Li */ #include #include #include #include #include #include #include #include #include #include #include #include #define SECTOR_SHIFT 9 #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT) #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT) #define SECTOR_SIZE (1 << SECTOR_SHIFT) #define SECTOR_MASK (PAGE_SECTORS - 1) #define FREE_BATCH 16 #define TICKS_PER_SEC 50ULL #define TIMER_INTERVAL (NSEC_PER_SEC / TICKS_PER_SEC) static DECLARE_FAULT_ATTR(null_timeout_attr); static inline u64 mb_per_tick(int mbps) { return (1 << 20) / TICKS_PER_SEC * ((u64) mbps); } struct nullb_cmd { struct list_head list; struct llist_node ll_list; call_single_data_t csd; struct request *rq; struct bio *bio; unsigned int tag; struct nullb_queue *nq; struct hrtimer timer; blk_status_t error; }; struct nullb_queue { unsigned long *tag_map; wait_queue_head_t wait; unsigned int queue_depth; struct nullb_device *dev; struct nullb_cmd *cmds; }; /* * Status flags for nullb_device. * * CONFIGURED: Device has been configured and turned on. Cannot reconfigure. * UP: Device is currently on and visible in userspace. * THROTTLED: Device is being throttled. * CACHE: Device is using a write-back cache. */ enum nullb_device_flags { NULLB_DEV_FL_CONFIGURED = 0, NULLB_DEV_FL_UP = 1, NULLB_DEV_FL_THROTTLED = 2, NULLB_DEV_FL_CACHE = 3, }; /* * nullb_page is a page in memory for nullb devices. * * @page: The page holding the data. * @bitmap: The bitmap represents which sector in the page has data. * Each bit represents one block size. For example, sector 8 * will use the 7th bit * The highest 2 bits of bitmap are for special purpose. LOCK means the cache * page is being flushing to storage. FREE means the cache page is freed and * should be skipped from flushing to storage. Please see * null_make_cache_space */ struct nullb_page { struct page *page; unsigned long bitmap; }; #define NULLB_PAGE_LOCK (sizeof(unsigned long) * 8 - 1) #define NULLB_PAGE_FREE (sizeof(unsigned long) * 8 - 2) struct nullb_device { struct nullb *nullb; struct config_item item; struct radix_tree_root data; /* data stored in the disk */ struct radix_tree_root cache; /* disk cache data */ unsigned long flags; /* device flags */ unsigned int curr_cache; struct badblocks badblocks; unsigned long size; /* device size in MB */ unsigned long completion_nsec; /* time in ns to complete a request */ unsigned long cache_size; /* disk cache size in MB */ unsigned int submit_queues; /* number of submission queues */ unsigned int home_node; /* home node for the device */ unsigned int queue_mode; /* block interface */ unsigned int blocksize; /* block size */ unsigned int irqmode; /* IRQ completion handler */ unsigned int hw_queue_depth; /* queue depth */ unsigned int index; /* index of the disk, only valid with a disk */ unsigned int mbps; /* Bandwidth throttle cap (in MB/s) */ bool blocking; /* blocking blk-mq device */ bool use_per_node_hctx; /* use per-node allocation for hardware context */ bool power; /* power on/off the device */ bool memory_backed; /* if data is stored in memory */ bool discard; /* if support discard */ }; struct nullb { struct nullb_device *dev; struct list_head list; unsigned int index; struct request_queue *q; struct gendisk *disk; struct blk_mq_tag_set *tag_set; struct blk_mq_tag_set __tag_set; unsigned int queue_depth; atomic_long_t cur_bytes; struct hrtimer bw_timer; unsigned long cache_flush_pos; spinlock_t lock; struct nullb_queue *queues; unsigned int nr_queues; char disk_name[DISK_NAME_LEN]; }; static LIST_HEAD(nullb_list); static struct mutex lock; static int null_major; static DEFINE_IDA(nullb_indexes); static struct blk_mq_tag_set tag_set; enum { NULL_IRQ_NONE = 0, NULL_IRQ_SOFTIRQ = 1, NULL_IRQ_TIMER = 2, }; enum { NULL_Q_BIO = 0, NULL_Q_RQ = 1, NULL_Q_MQ = 2, }; static int g_no_sched; module_param_named(no_sched, g_no_sched, int, S_IRUGO); MODULE_PARM_DESC(no_sched, "No io scheduler"); static int g_submit_queues = 1; module_param_named(submit_queues, g_submit_queues, int, S_IRUGO); MODULE_PARM_DESC(submit_queues, "Number of submission queues"); static int g_home_node = NUMA_NO_NODE; module_param_named(home_node, g_home_node, int, S_IRUGO); MODULE_PARM_DESC(home_node, "Home node for the device"); static char g_timeout_str[80]; module_param_string(timeout, g_timeout_str, sizeof(g_timeout_str), S_IRUGO); static int g_queue_mode = NULL_Q_MQ; static int null_param_store_val(const char *str, int *val, int min, int max) { int ret, new_val; ret = kstrtoint(str, 10, &new_val); if (ret) return -EINVAL; if (new_val < min || new_val > max) return -EINVAL; *val = new_val; return 0; } static int null_set_queue_mode(const char *str, const struct kernel_param *kp) { return null_param_store_val(str, &g_queue_mode, NULL_Q_BIO, NULL_Q_MQ); } static const struct kernel_param_ops null_queue_mode_param_ops = { .set = null_set_queue_mode, .get = param_get_int, }; device_param_cb(queue_mode, &null_queue_mode_param_ops, &g_queue_mode, S_IRUGO); MODULE_PARM_DESC(queue_mode, "Block interface to use (0=bio,1=rq,2=multiqueue)"); static int g_gb = 250; module_param_named(gb, g_gb, int, S_IRUGO); MODULE_PARM_DESC(gb, "Size in GB"); static int g_bs = 512; module_param_named(bs, g_bs, int, S_IRUGO); MODULE_PARM_DESC(bs, "Block size (in bytes)"); static int nr_devices = 1; module_param(nr_devices, int, S_IRUGO); MODULE_PARM_DESC(nr_devices, "Number of devices to register"); static bool g_blocking; module_param_named(blocking, g_blocking, bool, S_IRUGO); MODULE_PARM_DESC(blocking, "Register as a blocking blk-mq driver device"); static bool shared_tags; module_param(shared_tags, bool, S_IRUGO); MODULE_PARM_DESC(shared_tags, "Share tag set between devices for blk-mq"); static int g_irqmode = NULL_IRQ_SOFTIRQ; static int null_set_irqmode(const char *str, const struct kernel_param *kp) { return null_param_store_val(str, &g_irqmode, NULL_IRQ_NONE, NULL_IRQ_TIMER); } static const struct kernel_param_ops null_irqmode_param_ops = { .set = null_set_irqmode, .get = param_get_int, }; device_param_cb(irqmode, &null_irqmode_param_ops, &g_irqmode, S_IRUGO); MODULE_PARM_DESC(irqmode, "IRQ completion handler. 0-none, 1-softirq, 2-timer"); static unsigned long g_completion_nsec = 10000; module_param_named(completion_nsec, g_completion_nsec, ulong, S_IRUGO); MODULE_PARM_DESC(completion_nsec, "Time in ns to complete a request in hardware. Default: 10,000ns"); static int g_hw_queue_depth = 64; module_param_named(hw_queue_depth, g_hw_queue_depth, int, S_IRUGO); MODULE_PARM_DESC(hw_queue_depth, "Queue depth for each hardware queue. Default: 64"); static bool g_use_per_node_hctx; module_param_named(use_per_node_hctx, g_use_per_node_hctx, bool, S_IRUGO); MODULE_PARM_DESC(use_per_node_hctx, "Use per-node allocation for hardware context queues. Default: false"); static struct nullb_device *null_alloc_dev(void); static void null_free_dev(struct nullb_device *dev); static void null_del_dev(struct nullb *nullb); static int null_add_dev(struct nullb_device *dev); static void null_free_device_storage(struct nullb_device *dev, bool is_cache); static inline struct nullb_device *to_nullb_device(struct config_item *item) { return item ? container_of(item, struct nullb_device, item) : NULL; } static inline ssize_t nullb_device_uint_attr_show(unsigned int val, char *page) { return snprintf(page, PAGE_SIZE, "%u\n", val); } static inline ssize_t nullb_device_ulong_attr_show(unsigned long val, char *page) { return snprintf(page, PAGE_SIZE, "%lu\n", val); } static inline ssize_t nullb_device_bool_attr_show(bool val, char *page) { return snprintf(page, PAGE_SIZE, "%u\n", val); } static ssize_t nullb_device_uint_attr_store(unsigned int *val, const char *page, size_t count) { unsigned int tmp; int result; result = kstrtouint(page, 0, &tmp); if (result) return result; *val = tmp; return count; } static ssize_t nullb_device_ulong_attr_store(unsigned long *val, const char *page, size_t count) { int result; unsigned long tmp; result = kstrtoul(page, 0, &tmp); if (result) return result; *val = tmp; return count; } static ssize_t nullb_device_bool_attr_store(bool *val, const char *page, size_t count) { bool tmp; int result; result = kstrtobool(page, &tmp); if (result) return result; *val = tmp; return count; } /* The following macro should only be used with TYPE = {uint, ulong, bool}. */ #define NULLB_DEVICE_ATTR(NAME, TYPE) \ static ssize_t \ nullb_device_##NAME##_show(struct config_item *item, char *page) \ { \ return nullb_device_##TYPE##_attr_show( \ to_nullb_device(item)->NAME, page); \ } \ static ssize_t \ nullb_device_##NAME##_store(struct config_item *item, const char *page, \ size_t count) \ { \ if (test_bit(NULLB_DEV_FL_CONFIGURED, &to_nullb_device(item)->flags)) \ return -EBUSY; \ return nullb_device_##TYPE##_attr_store( \ &to_nullb_device(item)->NAME, page, count); \ } \ CONFIGFS_ATTR(nullb_device_, NAME); NULLB_DEVICE_ATTR(size, ulong); NULLB_DEVICE_ATTR(completion_nsec, ulong); NULLB_DEVICE_ATTR(submit_queues, uint); NULLB_DEVICE_ATTR(home_node, uint); NULLB_DEVICE_ATTR(queue_mode, uint); NULLB_DEVICE_ATTR(blocksize, uint); NULLB_DEVICE_ATTR(irqmode, uint); NULLB_DEVICE_ATTR(hw_queue_depth, uint); NULLB_DEVICE_ATTR(index, uint); NULLB_DEVICE_ATTR(blocking, bool); NULLB_DEVICE_ATTR(use_per_node_hctx, bool); NULLB_DEVICE_ATTR(memory_backed, bool); NULLB_DEVICE_ATTR(discard, bool); NULLB_DEVICE_ATTR(mbps, uint); NULLB_DEVICE_ATTR(cache_size, ulong); static ssize_t nullb_device_power_show(struct config_item *item, char *page) { return nullb_device_bool_attr_show(to_nullb_device(item)->power, page); } static ssize_t nullb_device_power_store(struct config_item *item, const char *page, size_t count) { struct nullb_device *dev = to_nullb_device(item); bool newp = false; ssize_t ret; ret = nullb_device_bool_attr_store(&newp, page, count); if (ret < 0) return ret; if (!dev->power && newp) { if (test_and_set_bit(NULLB_DEV_FL_UP, &dev->flags)) return count; if (null_add_dev(dev)) { clear_bit(NULLB_DEV_FL_UP, &dev->flags); return -ENOMEM; } set_bit(NULLB_DEV_FL_CONFIGURED, &dev->flags); dev->power = newp; } else if (dev->power && !newp) { mutex_lock(&lock); dev->power = newp; null_del_dev(dev->nullb); mutex_unlock(&lock); clear_bit(NULLB_DEV_FL_UP, &dev->flags); } return count; } CONFIGFS_ATTR(nullb_device_, power); static ssize_t nullb_device_badblocks_show(struct config_item *item, char *page) { struct nullb_device *t_dev = to_nullb_device(item); return badblocks_show(&t_dev->badblocks, page, 0); } static ssize_t nullb_device_badblocks_store(struct config_item *item, const char *page, size_t count) { struct nullb_device *t_dev = to_nullb_device(item); char *orig, *buf, *tmp; u64 start, end; int ret; orig = kstrndup(page, count, GFP_KERNEL); if (!orig) return -ENOMEM; buf = strstrip(orig); ret = -EINVAL; if (buf[0] != '+' && buf[0] != '-') goto out; tmp = strchr(&buf[1], '-'); if (!tmp) goto out; *tmp = '\0'; ret = kstrtoull(buf + 1, 0, &start); if (ret) goto out; ret = kstrtoull(tmp + 1, 0, &end); if (ret) goto out; ret = -EINVAL; if (start > end) goto out; /* enable badblocks */ cmpxchg(&t_dev->badblocks.shift, -1, 0); if (buf[0] == '+') ret = badblocks_set(&t_dev->badblocks, start, end - start + 1, 1); else ret = badblocks_clear(&t_dev->badblocks, start, end - start + 1); if (ret == 0) ret = count; out: kfree(orig); return ret; } CONFIGFS_ATTR(nullb_device_, badblocks); static struct configfs_attribute *nullb_device_attrs[] = { &nullb_device_attr_size, &nullb_device_attr_completion_nsec, &nullb_device_attr_submit_queues, &nullb_device_attr_home_node, &nullb_device_attr_queue_mode, &nullb_device_attr_blocksize, &nullb_device_attr_irqmode, &nullb_device_attr_hw_queue_depth, &nullb_device_attr_index, &nullb_device_attr_blocking, &nullb_device_attr_use_per_node_hctx, &nullb_device_attr_power, &nullb_device_attr_memory_backed, &nullb_device_attr_discard, &nullb_device_attr_mbps, &nullb_device_attr_cache_size, &nullb_device_attr_badblocks, NULL, }; static void nullb_device_release(struct config_item *item) { struct nullb_device *dev = to_nullb_device(item); null_free_device_storage(dev, false); null_free_dev(dev); } static struct configfs_item_operations nullb_device_ops = { .release = nullb_device_release, }; static const struct config_item_type nullb_device_type = { .ct_item_ops = &nullb_device_ops, .ct_attrs = nullb_device_attrs, .ct_owner = THIS_MODULE, }; static struct config_item *nullb_group_make_item(struct config_group *group, const char *name) { struct nullb_device *dev; dev = null_alloc_dev(); if (!dev) return ERR_PTR(-ENOMEM); config_item_init_type_name(&dev->item, name, &nullb_device_type); return &dev->item; } static void nullb_group_drop_item(struct config_group *group, struct config_item *item) { struct nullb_device *dev = to_nullb_device(item); if (test_and_clear_bit(NULLB_DEV_FL_UP, &dev->flags)) { mutex_lock(&lock); dev->power = false; null_del_dev(dev->nullb); mutex_unlock(&lock); } config_item_put(item); } static ssize_t memb_group_features_show(struct config_item *item, char *page) { return snprintf(page, PAGE_SIZE, "memory_backed,discard,bandwidth,cache,badblocks\n"); } CONFIGFS_ATTR_RO(memb_group_, features); static struct configfs_attribute *nullb_group_attrs[] = { &memb_group_attr_features, NULL, }; static struct configfs_group_operations nullb_group_ops = { .make_item = nullb_group_make_item, .drop_item = nullb_group_drop_item, }; static const struct config_item_type nullb_group_type = { .ct_group_ops = &nullb_group_ops, .ct_attrs = nullb_group_attrs, .ct_owner = THIS_MODULE, }; static struct configfs_subsystem nullb_subsys = { .su_group = { .cg_item = { .ci_namebuf = "nullb", .ci_type = &nullb_group_type, }, }, }; static inline int null_cache_active(struct nullb *nullb) { return test_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); } static struct nullb_device *null_alloc_dev(void) { struct nullb_device *dev; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; INIT_RADIX_TREE(&dev->data, GFP_ATOMIC); INIT_RADIX_TREE(&dev->cache, GFP_ATOMIC); if (badblocks_init(&dev->badblocks, 0)) { kfree(dev); return NULL; } dev->size = g_gb * 1024; dev->completion_nsec = g_completion_nsec; dev->submit_queues = g_submit_queues; dev->home_node = g_home_node; dev->queue_mode = g_queue_mode; dev->blocksize = g_bs; dev->irqmode = g_irqmode; dev->hw_queue_depth = g_hw_queue_depth; dev->blocking = g_blocking; dev->use_per_node_hctx = g_use_per_node_hctx; return dev; } static void null_free_dev(struct nullb_device *dev) { if (!dev) return; badblocks_exit(&dev->badblocks); kfree(dev); } static void put_tag(struct nullb_queue *nq, unsigned int tag) { clear_bit_unlock(tag, nq->tag_map); if (waitqueue_active(&nq->wait)) wake_up(&nq->wait); } static unsigned int get_tag(struct nullb_queue *nq) { unsigned int tag; do { tag = find_first_zero_bit(nq->tag_map, nq->queue_depth); if (tag >= nq->queue_depth) return -1U; } while (test_and_set_bit_lock(tag, nq->tag_map)); return tag; } static void free_cmd(struct nullb_cmd *cmd) { put_tag(cmd->nq, cmd->tag); } static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer); static struct nullb_cmd *__alloc_cmd(struct nullb_queue *nq) { struct nullb_cmd *cmd; unsigned int tag; tag = get_tag(nq); if (tag != -1U) { cmd = &nq->cmds[tag]; cmd->tag = tag; cmd->nq = nq; if (nq->dev->irqmode == NULL_IRQ_TIMER) { hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cmd->timer.function = null_cmd_timer_expired; } return cmd; } return NULL; } static struct nullb_cmd *alloc_cmd(struct nullb_queue *nq, int can_wait) { struct nullb_cmd *cmd; DEFINE_WAIT(wait); cmd = __alloc_cmd(nq); if (cmd || !can_wait) return cmd; do { prepare_to_wait(&nq->wait, &wait, TASK_UNINTERRUPTIBLE); cmd = __alloc_cmd(nq); if (cmd) break; io_schedule(); } while (1); finish_wait(&nq->wait, &wait); return cmd; } static void end_cmd(struct nullb_cmd *cmd) { struct request_queue *q = NULL; int queue_mode = cmd->nq->dev->queue_mode; if (cmd->rq) q = cmd->rq->q; switch (queue_mode) { case NULL_Q_MQ: blk_mq_end_request(cmd->rq, cmd->error); return; case NULL_Q_RQ: INIT_LIST_HEAD(&cmd->rq->queuelist); blk_end_request_all(cmd->rq, cmd->error); break; case NULL_Q_BIO: cmd->bio->bi_status = cmd->error; bio_endio(cmd->bio); break; } free_cmd(cmd); /* Restart queue if needed, as we are freeing a tag */ if (queue_mode == NULL_Q_RQ && blk_queue_stopped(q)) { unsigned long flags; spin_lock_irqsave(q->queue_lock, flags); blk_start_queue_async(q); spin_unlock_irqrestore(q->queue_lock, flags); } } static enum hrtimer_restart null_cmd_timer_expired(struct hrtimer *timer) { end_cmd(container_of(timer, struct nullb_cmd, timer)); return HRTIMER_NORESTART; } static void null_cmd_end_timer(struct nullb_cmd *cmd) { ktime_t kt = cmd->nq->dev->completion_nsec; hrtimer_start(&cmd->timer, kt, HRTIMER_MODE_REL); } static void null_softirq_done_fn(struct request *rq) { struct nullb *nullb = rq->q->queuedata; if (nullb->dev->queue_mode == NULL_Q_MQ) end_cmd(blk_mq_rq_to_pdu(rq)); else end_cmd(rq->special); } static struct nullb_page *null_alloc_page(gfp_t gfp_flags) { struct nullb_page *t_page; t_page = kmalloc(sizeof(struct nullb_page), gfp_flags); if (!t_page) goto out; t_page->page = alloc_pages(gfp_flags, 0); if (!t_page->page) goto out_freepage; t_page->bitmap = 0; return t_page; out_freepage: kfree(t_page); out: return NULL; } static void null_free_page(struct nullb_page *t_page) { __set_bit(NULLB_PAGE_FREE, &t_page->bitmap); if (test_bit(NULLB_PAGE_LOCK, &t_page->bitmap)) return; __free_page(t_page->page); kfree(t_page); } static void null_free_sector(struct nullb *nullb, sector_t sector, bool is_cache) { unsigned int sector_bit; u64 idx; struct nullb_page *t_page, *ret; struct radix_tree_root *root; root = is_cache ? &nullb->dev->cache : &nullb->dev->data; idx = sector >> PAGE_SECTORS_SHIFT; sector_bit = (sector & SECTOR_MASK); t_page = radix_tree_lookup(root, idx); if (t_page) { __clear_bit(sector_bit, &t_page->bitmap); if (!t_page->bitmap) { ret = radix_tree_delete_item(root, idx, t_page); WARN_ON(ret != t_page); null_free_page(ret); if (is_cache) nullb->dev->curr_cache -= PAGE_SIZE; } } } static struct nullb_page *null_radix_tree_insert(struct nullb *nullb, u64 idx, struct nullb_page *t_page, bool is_cache) { struct radix_tree_root *root; root = is_cache ? &nullb->dev->cache : &nullb->dev->data; if (radix_tree_insert(root, idx, t_page)) { null_free_page(t_page); t_page = radix_tree_lookup(root, idx); WARN_ON(!t_page || t_page->page->index != idx); } else if (is_cache) nullb->dev->curr_cache += PAGE_SIZE; return t_page; } static void null_free_device_storage(struct nullb_device *dev, bool is_cache) { unsigned long pos = 0; int nr_pages; struct nullb_page *ret, *t_pages[FREE_BATCH]; struct radix_tree_root *root; root = is_cache ? &dev->cache : &dev->data; do { int i; nr_pages = radix_tree_gang_lookup(root, (void **)t_pages, pos, FREE_BATCH); for (i = 0; i < nr_pages; i++) { pos = t_pages[i]->page->index; ret = radix_tree_delete_item(root, pos, t_pages[i]); WARN_ON(ret != t_pages[i]); null_free_page(ret); } pos++; } while (nr_pages == FREE_BATCH); if (is_cache) dev->curr_cache = 0; } static struct nullb_page *__null_lookup_page(struct nullb *nullb, sector_t sector, bool for_write, bool is_cache) { unsigned int sector_bit; u64 idx; struct nullb_page *t_page; struct radix_tree_root *root; idx = sector >> PAGE_SECTORS_SHIFT; sector_bit = (sector & SECTOR_MASK); root = is_cache ? &nullb->dev->cache : &nullb->dev->data; t_page = radix_tree_lookup(root, idx); WARN_ON(t_page && t_page->page->index != idx); if (t_page && (for_write || test_bit(sector_bit, &t_page->bitmap))) return t_page; return NULL; } static struct nullb_page *null_lookup_page(struct nullb *nullb, sector_t sector, bool for_write, bool ignore_cache) { struct nullb_page *page = NULL; if (!ignore_cache) page = __null_lookup_page(nullb, sector, for_write, true); if (page) return page; return __null_lookup_page(nullb, sector, for_write, false); } static struct nullb_page *null_insert_page(struct nullb *nullb, sector_t sector, bool ignore_cache) { u64 idx; struct nullb_page *t_page; t_page = null_lookup_page(nullb, sector, true, ignore_cache); if (t_page) return t_page; spin_unlock_irq(&nullb->lock); t_page = null_alloc_page(GFP_NOIO); if (!t_page) goto out_lock; if (radix_tree_preload(GFP_NOIO)) goto out_freepage; spin_lock_irq(&nullb->lock); idx = sector >> PAGE_SECTORS_SHIFT; t_page->page->index = idx; t_page = null_radix_tree_insert(nullb, idx, t_page, !ignore_cache); radix_tree_preload_end(); return t_page; out_freepage: null_free_page(t_page); out_lock: spin_lock_irq(&nullb->lock); return null_lookup_page(nullb, sector, true, ignore_cache); } static int null_flush_cache_page(struct nullb *nullb, struct nullb_page *c_page) { int i; unsigned int offset; u64 idx; struct nullb_page *t_page, *ret; void *dst, *src; idx = c_page->page->index; t_page = null_insert_page(nullb, idx << PAGE_SECTORS_SHIFT, true); __clear_bit(NULLB_PAGE_LOCK, &c_page->bitmap); if (test_bit(NULLB_PAGE_FREE, &c_page->bitmap)) { null_free_page(c_page); if (t_page && t_page->bitmap == 0) { ret = radix_tree_delete_item(&nullb->dev->data, idx, t_page); null_free_page(t_page); } return 0; } if (!t_page) return -ENOMEM; src = kmap_atomic(c_page->page); dst = kmap_atomic(t_page->page); for (i = 0; i < PAGE_SECTORS; i += (nullb->dev->blocksize >> SECTOR_SHIFT)) { if (test_bit(i, &c_page->bitmap)) { offset = (i << SECTOR_SHIFT); memcpy(dst + offset, src + offset, nullb->dev->blocksize); __set_bit(i, &t_page->bitmap); } } kunmap_atomic(dst); kunmap_atomic(src); ret = radix_tree_delete_item(&nullb->dev->cache, idx, c_page); null_free_page(ret); nullb->dev->curr_cache -= PAGE_SIZE; return 0; } static int null_make_cache_space(struct nullb *nullb, unsigned long n) { int i, err, nr_pages; struct nullb_page *c_pages[FREE_BATCH]; unsigned long flushed = 0, one_round; again: if ((nullb->dev->cache_size * 1024 * 1024) > nullb->dev->curr_cache + n || nullb->dev->curr_cache == 0) return 0; nr_pages = radix_tree_gang_lookup(&nullb->dev->cache, (void **)c_pages, nullb->cache_flush_pos, FREE_BATCH); /* * nullb_flush_cache_page could unlock before using the c_pages. To * avoid race, we don't allow page free */ for (i = 0; i < nr_pages; i++) { nullb->cache_flush_pos = c_pages[i]->page->index; /* * We found the page which is being flushed to disk by other * threads */ if (test_bit(NULLB_PAGE_LOCK, &c_pages[i]->bitmap)) c_pages[i] = NULL; else __set_bit(NULLB_PAGE_LOCK, &c_pages[i]->bitmap); } one_round = 0; for (i = 0; i < nr_pages; i++) { if (c_pages[i] == NULL) continue; err = null_flush_cache_page(nullb, c_pages[i]); if (err) return err; one_round++; } flushed += one_round << PAGE_SHIFT; if (n > flushed) { if (nr_pages == 0) nullb->cache_flush_pos = 0; if (one_round == 0) { /* give other threads a chance */ spin_unlock_irq(&nullb->lock); spin_lock_irq(&nullb->lock); } goto again; } return 0; } static int copy_to_nullb(struct nullb *nullb, struct page *source, unsigned int off, sector_t sector, size_t n, bool is_fua) { size_t temp, count = 0; unsigned int offset; struct nullb_page *t_page; void *dst, *src; while (count < n) { temp = min_t(size_t, nullb->dev->blocksize, n - count); if (null_cache_active(nullb) && !is_fua) null_make_cache_space(nullb, PAGE_SIZE); offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; t_page = null_insert_page(nullb, sector, !null_cache_active(nullb) || is_fua); if (!t_page) return -ENOSPC; src = kmap_atomic(source); dst = kmap_atomic(t_page->page); memcpy(dst + offset, src + off + count, temp); kunmap_atomic(dst); kunmap_atomic(src); __set_bit(sector & SECTOR_MASK, &t_page->bitmap); if (is_fua) null_free_sector(nullb, sector, true); count += temp; sector += temp >> SECTOR_SHIFT; } return 0; } static int copy_from_nullb(struct nullb *nullb, struct page *dest, unsigned int off, sector_t sector, size_t n) { size_t temp, count = 0; unsigned int offset; struct nullb_page *t_page; void *dst, *src; while (count < n) { temp = min_t(size_t, nullb->dev->blocksize, n - count); offset = (sector & SECTOR_MASK) << SECTOR_SHIFT; t_page = null_lookup_page(nullb, sector, false, !null_cache_active(nullb)); dst = kmap_atomic(dest); if (!t_page) { memset(dst + off + count, 0, temp); goto next; } src = kmap_atomic(t_page->page); memcpy(dst + off + count, src + offset, temp); kunmap_atomic(src); next: kunmap_atomic(dst); count += temp; sector += temp >> SECTOR_SHIFT; } return 0; } static void null_handle_discard(struct nullb *nullb, sector_t sector, size_t n) { size_t temp; spin_lock_irq(&nullb->lock); while (n > 0) { temp = min_t(size_t, n, nullb->dev->blocksize); null_free_sector(nullb, sector, false); if (null_cache_active(nullb)) null_free_sector(nullb, sector, true); sector += temp >> SECTOR_SHIFT; n -= temp; } spin_unlock_irq(&nullb->lock); } static int null_handle_flush(struct nullb *nullb) { int err; if (!null_cache_active(nullb)) return 0; spin_lock_irq(&nullb->lock); while (true) { err = null_make_cache_space(nullb, nullb->dev->cache_size * 1024 * 1024); if (err || nullb->dev->curr_cache == 0) break; } WARN_ON(!radix_tree_empty(&nullb->dev->cache)); spin_unlock_irq(&nullb->lock); return err; } static int null_transfer(struct nullb *nullb, struct page *page, unsigned int len, unsigned int off, bool is_write, sector_t sector, bool is_fua) { int err = 0; if (!is_write) { err = copy_from_nullb(nullb, page, off, sector, len); flush_dcache_page(page); } else { flush_dcache_page(page); err = copy_to_nullb(nullb, page, off, sector, len, is_fua); } return err; } static int null_handle_rq(struct nullb_cmd *cmd) { struct request *rq = cmd->rq; struct nullb *nullb = cmd->nq->dev->nullb; int err; unsigned int len; sector_t sector; struct req_iterator iter; struct bio_vec bvec; sector = blk_rq_pos(rq); if (req_op(rq) == REQ_OP_DISCARD) { null_handle_discard(nullb, sector, blk_rq_bytes(rq)); return 0; } spin_lock_irq(&nullb->lock); rq_for_each_segment(bvec, rq, iter) { len = bvec.bv_len; err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, op_is_write(req_op(rq)), sector, req_op(rq) & REQ_FUA); if (err) { spin_unlock_irq(&nullb->lock); return err; } sector += len >> SECTOR_SHIFT; } spin_unlock_irq(&nullb->lock); return 0; } static int null_handle_bio(struct nullb_cmd *cmd) { struct bio *bio = cmd->bio; struct nullb *nullb = cmd->nq->dev->nullb; int err; unsigned int len; sector_t sector; struct bio_vec bvec; struct bvec_iter iter; sector = bio->bi_iter.bi_sector; if (bio_op(bio) == REQ_OP_DISCARD) { null_handle_discard(nullb, sector, bio_sectors(bio) << SECTOR_SHIFT); return 0; } spin_lock_irq(&nullb->lock); bio_for_each_segment(bvec, bio, iter) { len = bvec.bv_len; err = null_transfer(nullb, bvec.bv_page, len, bvec.bv_offset, op_is_write(bio_op(bio)), sector, bio_op(bio) & REQ_FUA); if (err) { spin_unlock_irq(&nullb->lock); return err; } sector += len >> SECTOR_SHIFT; } spin_unlock_irq(&nullb->lock); return 0; } static void null_stop_queue(struct nullb *nullb) { struct request_queue *q = nullb->q; if (nullb->dev->queue_mode == NULL_Q_MQ) blk_mq_stop_hw_queues(q); else { spin_lock_irq(q->queue_lock); blk_stop_queue(q); spin_unlock_irq(q->queue_lock); } } static void null_restart_queue_async(struct nullb *nullb) { struct request_queue *q = nullb->q; unsigned long flags; if (nullb->dev->queue_mode == NULL_Q_MQ) blk_mq_start_stopped_hw_queues(q, true); else { spin_lock_irqsave(q->queue_lock, flags); blk_start_queue_async(q); spin_unlock_irqrestore(q->queue_lock, flags); } } static blk_status_t null_handle_cmd(struct nullb_cmd *cmd) { struct nullb_device *dev = cmd->nq->dev; struct nullb *nullb = dev->nullb; int err = 0; if (test_bit(NULLB_DEV_FL_THROTTLED, &dev->flags)) { struct request *rq = cmd->rq; if (!hrtimer_active(&nullb->bw_timer)) hrtimer_restart(&nullb->bw_timer); if (atomic_long_sub_return(blk_rq_bytes(rq), &nullb->cur_bytes) < 0) { null_stop_queue(nullb); /* race with timer */ if (atomic_long_read(&nullb->cur_bytes) > 0) null_restart_queue_async(nullb); if (dev->queue_mode == NULL_Q_RQ) { struct request_queue *q = nullb->q; spin_lock_irq(q->queue_lock); rq->rq_flags |= RQF_DONTPREP; blk_requeue_request(q, rq); spin_unlock_irq(q->queue_lock); return BLK_STS_OK; } else /* requeue request */ return BLK_STS_RESOURCE; } } if (nullb->dev->badblocks.shift != -1) { int bad_sectors; sector_t sector, size, first_bad; bool is_flush = true; if (dev->queue_mode == NULL_Q_BIO && bio_op(cmd->bio) != REQ_OP_FLUSH) { is_flush = false; sector = cmd->bio->bi_iter.bi_sector; size = bio_sectors(cmd->bio); } if (dev->queue_mode != NULL_Q_BIO && req_op(cmd->rq) != REQ_OP_FLUSH) { is_flush = false; sector = blk_rq_pos(cmd->rq); size = blk_rq_sectors(cmd->rq); } if (!is_flush && badblocks_check(&nullb->dev->badblocks, sector, size, &first_bad, &bad_sectors)) { cmd->error = BLK_STS_IOERR; goto out; } } if (dev->memory_backed) { if (dev->queue_mode == NULL_Q_BIO) { if (bio_op(cmd->bio) == REQ_OP_FLUSH) err = null_handle_flush(nullb); else err = null_handle_bio(cmd); } else { if (req_op(cmd->rq) == REQ_OP_FLUSH) err = null_handle_flush(nullb); else err = null_handle_rq(cmd); } } cmd->error = errno_to_blk_status(err); out: /* Complete IO by inline, softirq or timer */ switch (dev->irqmode) { case NULL_IRQ_SOFTIRQ: switch (dev->queue_mode) { case NULL_Q_MQ: blk_mq_complete_request(cmd->rq); break; case NULL_Q_RQ: blk_complete_request(cmd->rq); break; case NULL_Q_BIO: /* * XXX: no proper submitting cpu information available. */ end_cmd(cmd); break; } break; case NULL_IRQ_NONE: end_cmd(cmd); break; case NULL_IRQ_TIMER: null_cmd_end_timer(cmd); break; } return BLK_STS_OK; } static enum hrtimer_restart nullb_bwtimer_fn(struct hrtimer *timer) { struct nullb *nullb = container_of(timer, struct nullb, bw_timer); ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); unsigned int mbps = nullb->dev->mbps; if (atomic_long_read(&nullb->cur_bytes) == mb_per_tick(mbps)) return HRTIMER_NORESTART; atomic_long_set(&nullb->cur_bytes, mb_per_tick(mbps)); null_restart_queue_async(nullb); hrtimer_forward_now(&nullb->bw_timer, timer_interval); return HRTIMER_RESTART; } static void nullb_setup_bwtimer(struct nullb *nullb) { ktime_t timer_interval = ktime_set(0, TIMER_INTERVAL); hrtimer_init(&nullb->bw_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); nullb->bw_timer.function = nullb_bwtimer_fn; atomic_long_set(&nullb->cur_bytes, mb_per_tick(nullb->dev->mbps)); hrtimer_start(&nullb->bw_timer, timer_interval, HRTIMER_MODE_REL); } static struct nullb_queue *nullb_to_queue(struct nullb *nullb) { int index = 0; if (nullb->nr_queues != 1) index = raw_smp_processor_id() / ((nr_cpu_ids + nullb->nr_queues - 1) / nullb->nr_queues); return &nullb->queues[index]; } static blk_qc_t null_queue_bio(struct request_queue *q, struct bio *bio) { struct nullb *nullb = q->queuedata; struct nullb_queue *nq = nullb_to_queue(nullb); struct nullb_cmd *cmd; cmd = alloc_cmd(nq, 1); cmd->bio = bio; null_handle_cmd(cmd); return BLK_QC_T_NONE; } static enum blk_eh_timer_return null_rq_timed_out_fn(struct request *rq) { pr_info("null: rq %p timed out\n", rq); return BLK_EH_HANDLED; } static int null_rq_prep_fn(struct request_queue *q, struct request *req) { struct nullb *nullb = q->queuedata; struct nullb_queue *nq = nullb_to_queue(nullb); struct nullb_cmd *cmd; cmd = alloc_cmd(nq, 0); if (cmd) { cmd->rq = req; req->special = cmd; return BLKPREP_OK; } blk_stop_queue(q); return BLKPREP_DEFER; } static bool should_timeout_request(struct request *rq) { if (g_timeout_str[0]) return should_fail(&null_timeout_attr, 1); return false; } static void null_request_fn(struct request_queue *q) { struct request *rq; while ((rq = blk_fetch_request(q)) != NULL) { struct nullb_cmd *cmd = rq->special; if (!should_timeout_request(rq)) { spin_unlock_irq(q->queue_lock); null_handle_cmd(cmd); spin_lock_irq(q->queue_lock); } } } static enum blk_eh_timer_return null_timeout_rq(struct request *rq, bool res) { pr_info("null: rq %p timed out\n", rq); return BLK_EH_HANDLED; } static blk_status_t null_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd) { struct nullb_cmd *cmd = blk_mq_rq_to_pdu(bd->rq); struct nullb_queue *nq = hctx->driver_data; might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); if (nq->dev->irqmode == NULL_IRQ_TIMER) { hrtimer_init(&cmd->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); cmd->timer.function = null_cmd_timer_expired; } cmd->rq = bd->rq; cmd->nq = nq; blk_mq_start_request(bd->rq); if (!should_timeout_request(bd->rq)) return null_handle_cmd(cmd); return BLK_STS_OK; } static const struct blk_mq_ops null_mq_ops = { .queue_rq = null_queue_rq, .complete = null_softirq_done_fn, .timeout = null_timeout_rq, }; static void cleanup_queue(struct nullb_queue *nq) { kfree(nq->tag_map); kfree(nq->cmds); } static void cleanup_queues(struct nullb *nullb) { int i; for (i = 0; i < nullb->nr_queues; i++) cleanup_queue(&nullb->queues[i]); kfree(nullb->queues); } static void null_del_dev(struct nullb *nullb) { struct nullb_device *dev = nullb->dev; ida_simple_remove(&nullb_indexes, nullb->index); list_del_init(&nullb->list); del_gendisk(nullb->disk); if (test_bit(NULLB_DEV_FL_THROTTLED, &nullb->dev->flags)) { hrtimer_cancel(&nullb->bw_timer); atomic_long_set(&nullb->cur_bytes, LONG_MAX); null_restart_queue_async(nullb); } blk_cleanup_queue(nullb->q); if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set) blk_mq_free_tag_set(nullb->tag_set); put_disk(nullb->disk); cleanup_queues(nullb); if (null_cache_active(nullb)) null_free_device_storage(nullb->dev, true); kfree(nullb); dev->nullb = NULL; } static void null_config_discard(struct nullb *nullb) { if (nullb->dev->discard == false) return; nullb->q->limits.discard_granularity = nullb->dev->blocksize; nullb->q->limits.discard_alignment = nullb->dev->blocksize; blk_queue_max_discard_sectors(nullb->q, UINT_MAX >> 9); queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, nullb->q); } static int null_open(struct block_device *bdev, fmode_t mode) { return 0; } static void null_release(struct gendisk *disk, fmode_t mode) { } static const struct block_device_operations null_fops = { .owner = THIS_MODULE, .open = null_open, .release = null_release, }; static void null_init_queue(struct nullb *nullb, struct nullb_queue *nq) { BUG_ON(!nullb); BUG_ON(!nq); init_waitqueue_head(&nq->wait); nq->queue_depth = nullb->queue_depth; nq->dev = nullb->dev; } static void null_init_queues(struct nullb *nullb) { struct request_queue *q = nullb->q; struct blk_mq_hw_ctx *hctx; struct nullb_queue *nq; int i; queue_for_each_hw_ctx(q, hctx, i) { if (!hctx->nr_ctx || !hctx->tags) continue; nq = &nullb->queues[i]; hctx->driver_data = nq; null_init_queue(nullb, nq); nullb->nr_queues++; } } static int setup_commands(struct nullb_queue *nq) { struct nullb_cmd *cmd; int i, tag_size; nq->cmds = kzalloc(nq->queue_depth * sizeof(*cmd), GFP_KERNEL); if (!nq->cmds) return -ENOMEM; tag_size = ALIGN(nq->queue_depth, BITS_PER_LONG) / BITS_PER_LONG; nq->tag_map = kzalloc(tag_size * sizeof(unsigned long), GFP_KERNEL); if (!nq->tag_map) { kfree(nq->cmds); return -ENOMEM; } for (i = 0; i < nq->queue_depth; i++) { cmd = &nq->cmds[i]; INIT_LIST_HEAD(&cmd->list); cmd->ll_list.next = NULL; cmd->tag = -1U; } return 0; } static int setup_queues(struct nullb *nullb) { nullb->queues = kzalloc(nullb->dev->submit_queues * sizeof(struct nullb_queue), GFP_KERNEL); if (!nullb->queues) return -ENOMEM; nullb->nr_queues = 0; nullb->queue_depth = nullb->dev->hw_queue_depth; return 0; } static int init_driver_queues(struct nullb *nullb) { struct nullb_queue *nq; int i, ret = 0; for (i = 0; i < nullb->dev->submit_queues; i++) { nq = &nullb->queues[i]; null_init_queue(nullb, nq); ret = setup_commands(nq); if (ret) return ret; nullb->nr_queues++; } return 0; } static int null_gendisk_register(struct nullb *nullb) { struct gendisk *disk; sector_t size; disk = nullb->disk = alloc_disk_node(1, nullb->dev->home_node); if (!disk) return -ENOMEM; size = (sector_t)nullb->dev->size * 1024 * 1024ULL; set_capacity(disk, size >> 9); disk->flags |= GENHD_FL_EXT_DEVT | GENHD_FL_SUPPRESS_PARTITION_INFO; disk->major = null_major; disk->first_minor = nullb->index; disk->fops = &null_fops; disk->private_data = nullb; disk->queue = nullb->q; strncpy(disk->disk_name, nullb->disk_name, DISK_NAME_LEN); add_disk(disk); return 0; } static int null_init_tag_set(struct nullb *nullb, struct blk_mq_tag_set *set) { set->ops = &null_mq_ops; set->nr_hw_queues = nullb ? nullb->dev->submit_queues : g_submit_queues; set->queue_depth = nullb ? nullb->dev->hw_queue_depth : g_hw_queue_depth; set->numa_node = nullb ? nullb->dev->home_node : g_home_node; set->cmd_size = sizeof(struct nullb_cmd); set->flags = BLK_MQ_F_SHOULD_MERGE; if (g_no_sched) set->flags |= BLK_MQ_F_NO_SCHED; set->driver_data = NULL; if ((nullb && nullb->dev->blocking) || g_blocking) set->flags |= BLK_MQ_F_BLOCKING; return blk_mq_alloc_tag_set(set); } static void null_validate_conf(struct nullb_device *dev) { dev->blocksize = round_down(dev->blocksize, 512); dev->blocksize = clamp_t(unsigned int, dev->blocksize, 512, 4096); if (dev->queue_mode == NULL_Q_MQ && dev->use_per_node_hctx) { if (dev->submit_queues != nr_online_nodes) dev->submit_queues = nr_online_nodes; } else if (dev->submit_queues > nr_cpu_ids) dev->submit_queues = nr_cpu_ids; else if (dev->submit_queues == 0) dev->submit_queues = 1; dev->queue_mode = min_t(unsigned int, dev->queue_mode, NULL_Q_MQ); dev->irqmode = min_t(unsigned int, dev->irqmode, NULL_IRQ_TIMER); /* Do memory allocation, so set blocking */ if (dev->memory_backed) dev->blocking = true; else /* cache is meaningless */ dev->cache_size = 0; dev->cache_size = min_t(unsigned long, ULONG_MAX / 1024 / 1024, dev->cache_size); dev->mbps = min_t(unsigned int, 1024 * 40, dev->mbps); /* can not stop a queue */ if (dev->queue_mode == NULL_Q_BIO) dev->mbps = 0; } static bool null_setup_fault(void) { if (!g_timeout_str[0]) return true; if (!setup_fault_attr(&null_timeout_attr, g_timeout_str)) return false; null_timeout_attr.verbose = 0; return true; } static int null_add_dev(struct nullb_device *dev) { struct nullb *nullb; int rv; null_validate_conf(dev); nullb = kzalloc_node(sizeof(*nullb), GFP_KERNEL, dev->home_node); if (!nullb) { rv = -ENOMEM; goto out; } nullb->dev = dev; dev->nullb = nullb; spin_lock_init(&nullb->lock); rv = setup_queues(nullb); if (rv) goto out_free_nullb; if (dev->queue_mode == NULL_Q_MQ) { if (shared_tags) { nullb->tag_set = &tag_set; rv = 0; } else { nullb->tag_set = &nullb->__tag_set; rv = null_init_tag_set(nullb, nullb->tag_set); } if (rv) goto out_cleanup_queues; if (!null_setup_fault()) goto out_cleanup_queues; nullb->tag_set->timeout = 5 * HZ; nullb->q = blk_mq_init_queue(nullb->tag_set); if (IS_ERR(nullb->q)) { rv = -ENOMEM; goto out_cleanup_tags; } null_init_queues(nullb); } else if (dev->queue_mode == NULL_Q_BIO) { nullb->q = blk_alloc_queue_node(GFP_KERNEL, dev->home_node); if (!nullb->q) { rv = -ENOMEM; goto out_cleanup_queues; } blk_queue_make_request(nullb->q, null_queue_bio); rv = init_driver_queues(nullb); if (rv) goto out_cleanup_blk_queue; } else { nullb->q = blk_init_queue_node(null_request_fn, &nullb->lock, dev->home_node); if (!nullb->q) { rv = -ENOMEM; goto out_cleanup_queues; } if (!null_setup_fault()) goto out_cleanup_blk_queue; blk_queue_prep_rq(nullb->q, null_rq_prep_fn); blk_queue_softirq_done(nullb->q, null_softirq_done_fn); blk_queue_rq_timed_out(nullb->q, null_rq_timed_out_fn); nullb->q->rq_timeout = 5 * HZ; rv = init_driver_queues(nullb); if (rv) goto out_cleanup_blk_queue; } if (dev->mbps) { set_bit(NULLB_DEV_FL_THROTTLED, &dev->flags); nullb_setup_bwtimer(nullb); } if (dev->cache_size > 0) { set_bit(NULLB_DEV_FL_CACHE, &nullb->dev->flags); blk_queue_write_cache(nullb->q, true, true); blk_queue_flush_queueable(nullb->q, true); } nullb->q->queuedata = nullb; queue_flag_set_unlocked(QUEUE_FLAG_NONROT, nullb->q); queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, nullb->q); mutex_lock(&lock); nullb->index = ida_simple_get(&nullb_indexes, 0, 0, GFP_KERNEL); dev->index = nullb->index; mutex_unlock(&lock); blk_queue_logical_block_size(nullb->q, dev->blocksize); blk_queue_physical_block_size(nullb->q, dev->blocksize); null_config_discard(nullb); sprintf(nullb->disk_name, "nullb%d", nullb->index); rv = null_gendisk_register(nullb); if (rv) goto out_cleanup_blk_queue; mutex_lock(&lock); list_add_tail(&nullb->list, &nullb_list); mutex_unlock(&lock); return 0; out_cleanup_blk_queue: blk_cleanup_queue(nullb->q); out_cleanup_tags: if (dev->queue_mode == NULL_Q_MQ && nullb->tag_set == &nullb->__tag_set) blk_mq_free_tag_set(nullb->tag_set); out_cleanup_queues: cleanup_queues(nullb); out_free_nullb: kfree(nullb); out: return rv; } static int __init null_init(void) { int ret = 0; unsigned int i; struct nullb *nullb; struct nullb_device *dev; /* check for nullb_page.bitmap */ if (sizeof(unsigned long) * 8 - 2 < (PAGE_SIZE >> SECTOR_SHIFT)) return -EINVAL; if (g_bs > PAGE_SIZE) { pr_warn("null_blk: invalid block size\n"); pr_warn("null_blk: defaults block size to %lu\n", PAGE_SIZE); g_bs = PAGE_SIZE; } if (g_queue_mode == NULL_Q_MQ && g_use_per_node_hctx) { if (g_submit_queues != nr_online_nodes) { pr_warn("null_blk: submit_queues param is set to %u.\n", nr_online_nodes); g_submit_queues = nr_online_nodes; } } else if (g_submit_queues > nr_cpu_ids) g_submit_queues = nr_cpu_ids; else if (g_submit_queues <= 0) g_submit_queues = 1; if (g_queue_mode == NULL_Q_MQ && shared_tags) { ret = null_init_tag_set(NULL, &tag_set); if (ret) return ret; } config_group_init(&nullb_subsys.su_group); mutex_init(&nullb_subsys.su_mutex); ret = configfs_register_subsystem(&nullb_subsys); if (ret) goto err_tagset; mutex_init(&lock); null_major = register_blkdev(0, "nullb"); if (null_major < 0) { ret = null_major; goto err_conf; } for (i = 0; i < nr_devices; i++) { dev = null_alloc_dev(); if (!dev) { ret = -ENOMEM; goto err_dev; } ret = null_add_dev(dev); if (ret) { null_free_dev(dev); goto err_dev; } } pr_info("null: module loaded\n"); return 0; err_dev: while (!list_empty(&nullb_list)) { nullb = list_entry(nullb_list.next, struct nullb, list); dev = nullb->dev; null_del_dev(nullb); null_free_dev(dev); } unregister_blkdev(null_major, "nullb"); err_conf: configfs_unregister_subsystem(&nullb_subsys); err_tagset: if (g_queue_mode == NULL_Q_MQ && shared_tags) blk_mq_free_tag_set(&tag_set); return ret; } static void __exit null_exit(void) { struct nullb *nullb; configfs_unregister_subsystem(&nullb_subsys); unregister_blkdev(null_major, "nullb"); mutex_lock(&lock); while (!list_empty(&nullb_list)) { struct nullb_device *dev; nullb = list_entry(nullb_list.next, struct nullb, list); dev = nullb->dev; null_del_dev(nullb); null_free_dev(dev); } mutex_unlock(&lock); if (g_queue_mode == NULL_Q_MQ && shared_tags) blk_mq_free_tag_set(&tag_set); } module_init(null_init); module_exit(null_exit); MODULE_AUTHOR("Jens Axboe "); MODULE_LICENSE("GPL");