/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "mac.h" #include #include #include "hif.h" #include "core.h" #include "debug.h" #include "wmi.h" #include "htt.h" #include "txrx.h" #include "testmode.h" /**********/ /* Crypto */ /**********/ static int ath10k_send_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key, enum set_key_cmd cmd, const u8 *macaddr) { struct ath10k *ar = arvif->ar; struct wmi_vdev_install_key_arg arg = { .vdev_id = arvif->vdev_id, .key_idx = key->keyidx, .key_len = key->keylen, .key_data = key->key, .macaddr = macaddr, }; lockdep_assert_held(&arvif->ar->conf_mutex); if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) arg.key_flags = WMI_KEY_PAIRWISE; else arg.key_flags = WMI_KEY_GROUP; switch (key->cipher) { case WLAN_CIPHER_SUITE_CCMP: arg.key_cipher = WMI_CIPHER_AES_CCM; if (arvif->vdev_type == WMI_VDEV_TYPE_AP) key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV_MGMT; else key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX; break; case WLAN_CIPHER_SUITE_TKIP: arg.key_cipher = WMI_CIPHER_TKIP; arg.key_txmic_len = 8; arg.key_rxmic_len = 8; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: arg.key_cipher = WMI_CIPHER_WEP; /* AP/IBSS mode requires self-key to be groupwise * Otherwise pairwise key must be set */ if (memcmp(macaddr, arvif->vif->addr, ETH_ALEN)) arg.key_flags = WMI_KEY_PAIRWISE; break; default: ath10k_warn(ar, "cipher %d is not supported\n", key->cipher); return -EOPNOTSUPP; } if (cmd == DISABLE_KEY) { arg.key_cipher = WMI_CIPHER_NONE; arg.key_data = NULL; } return ath10k_wmi_vdev_install_key(arvif->ar, &arg); } static int ath10k_install_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key, enum set_key_cmd cmd, const u8 *macaddr) { struct ath10k *ar = arvif->ar; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->install_key_done); ret = ath10k_send_key(arvif, key, cmd, macaddr); if (ret) return ret; ret = wait_for_completion_timeout(&ar->install_key_done, 3*HZ); if (ret == 0) return -ETIMEDOUT; return 0; } static int ath10k_install_peer_wep_keys(struct ath10k_vif *arvif, const u8 *addr) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; int ret; int i; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, addr); spin_unlock_bh(&ar->data_lock); if (!peer) return -ENOENT; for (i = 0; i < ARRAY_SIZE(arvif->wep_keys); i++) { if (arvif->wep_keys[i] == NULL) continue; ret = ath10k_install_key(arvif, arvif->wep_keys[i], SET_KEY, addr); if (ret) return ret; spin_lock_bh(&ar->data_lock); peer->keys[i] = arvif->wep_keys[i]; spin_unlock_bh(&ar->data_lock); } return 0; } static int ath10k_clear_peer_keys(struct ath10k_vif *arvif, const u8 *addr) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; int first_errno = 0; int ret; int i; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, addr); spin_unlock_bh(&ar->data_lock); if (!peer) return -ENOENT; for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] == NULL) continue; ret = ath10k_install_key(arvif, peer->keys[i], DISABLE_KEY, addr); if (ret && first_errno == 0) first_errno = ret; if (ret) ath10k_warn(ar, "failed to remove peer wep key %d: %d\n", i, ret); spin_lock_bh(&ar->data_lock); peer->keys[i] = NULL; spin_unlock_bh(&ar->data_lock); } return first_errno; } bool ath10k_mac_is_peer_wep_key_set(struct ath10k *ar, const u8 *addr, u8 keyidx) { struct ath10k_peer *peer; int i; lockdep_assert_held(&ar->data_lock); /* We don't know which vdev this peer belongs to, * since WMI doesn't give us that information. * * FIXME: multi-bss needs to be handled. */ peer = ath10k_peer_find(ar, 0, addr); if (!peer) return false; for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] && peer->keys[i]->keyidx == keyidx) return true; } return false; } static int ath10k_clear_vdev_key(struct ath10k_vif *arvif, struct ieee80211_key_conf *key) { struct ath10k *ar = arvif->ar; struct ath10k_peer *peer; u8 addr[ETH_ALEN]; int first_errno = 0; int ret; int i; lockdep_assert_held(&ar->conf_mutex); for (;;) { /* since ath10k_install_key we can't hold data_lock all the * time, so we try to remove the keys incrementally */ spin_lock_bh(&ar->data_lock); i = 0; list_for_each_entry(peer, &ar->peers, list) { for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { if (peer->keys[i] == key) { ether_addr_copy(addr, peer->addr); peer->keys[i] = NULL; break; } } if (i < ARRAY_SIZE(peer->keys)) break; } spin_unlock_bh(&ar->data_lock); if (i == ARRAY_SIZE(peer->keys)) break; ret = ath10k_install_key(arvif, key, DISABLE_KEY, addr); if (ret && first_errno == 0) first_errno = ret; if (ret) ath10k_warn(ar, "failed to remove key for %pM: %d\n", addr, ret); } return first_errno; } /*********************/ /* General utilities */ /*********************/ static inline enum wmi_phy_mode chan_to_phymode(const struct cfg80211_chan_def *chandef) { enum wmi_phy_mode phymode = MODE_UNKNOWN; switch (chandef->chan->band) { case IEEE80211_BAND_2GHZ: switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: phymode = MODE_11G; break; case NL80211_CHAN_WIDTH_20: phymode = MODE_11NG_HT20; break; case NL80211_CHAN_WIDTH_40: phymode = MODE_11NG_HT40; break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_80: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: phymode = MODE_UNKNOWN; break; } break; case IEEE80211_BAND_5GHZ: switch (chandef->width) { case NL80211_CHAN_WIDTH_20_NOHT: phymode = MODE_11A; break; case NL80211_CHAN_WIDTH_20: phymode = MODE_11NA_HT20; break; case NL80211_CHAN_WIDTH_40: phymode = MODE_11NA_HT40; break; case NL80211_CHAN_WIDTH_80: phymode = MODE_11AC_VHT80; break; case NL80211_CHAN_WIDTH_5: case NL80211_CHAN_WIDTH_10: case NL80211_CHAN_WIDTH_80P80: case NL80211_CHAN_WIDTH_160: phymode = MODE_UNKNOWN; break; } break; default: break; } WARN_ON(phymode == MODE_UNKNOWN); return phymode; } static u8 ath10k_parse_mpdudensity(u8 mpdudensity) { /* * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing": * 0 for no restriction * 1 for 1/4 us * 2 for 1/2 us * 3 for 1 us * 4 for 2 us * 5 for 4 us * 6 for 8 us * 7 for 16 us */ switch (mpdudensity) { case 0: return 0; case 1: case 2: case 3: /* Our lower layer calculations limit our precision to 1 microsecond */ return 1; case 4: return 2; case 5: return 4; case 6: return 8; case 7: return 16; default: return 0; } } static int ath10k_peer_create(struct ath10k *ar, u32 vdev_id, const u8 *addr) { int ret; lockdep_assert_held(&ar->conf_mutex); if (ar->num_peers >= ar->max_num_peers) return -ENOBUFS; ret = ath10k_wmi_peer_create(ar, vdev_id, addr); if (ret) { ath10k_warn(ar, "failed to create wmi peer %pM on vdev %i: %i\n", addr, vdev_id, ret); return ret; } ret = ath10k_wait_for_peer_created(ar, vdev_id, addr); if (ret) { ath10k_warn(ar, "failed to wait for created wmi peer %pM on vdev %i: %i\n", addr, vdev_id, ret); return ret; } ar->num_peers++; return 0; } static int ath10k_mac_set_kickout(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 param; int ret; param = ar->wmi.pdev_param->sta_kickout_th; ret = ath10k_wmi_pdev_set_param(ar, param, ATH10K_KICKOUT_THRESHOLD); if (ret) { ath10k_warn(ar, "failed to set kickout threshold on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_min_idle_inactive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MIN_IDLE); if (ret) { ath10k_warn(ar, "failed to set keepalive minimum idle time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_max_idle_inactive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MAX_IDLE); if (ret) { ath10k_warn(ar, "failed to set keepalive maximum idle time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } param = ar->wmi.vdev_param->ap_keepalive_max_unresponsive_time_secs; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, param, ATH10K_KEEPALIVE_MAX_UNRESPONSIVE); if (ret) { ath10k_warn(ar, "failed to set keepalive maximum unresponsive time on vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return 0; } static int ath10k_mac_set_rts(struct ath10k_vif *arvif, u32 value) { struct ath10k *ar = arvif->ar; u32 vdev_param; vdev_param = ar->wmi.vdev_param->rts_threshold; return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); } static int ath10k_mac_set_frag(struct ath10k_vif *arvif, u32 value) { struct ath10k *ar = arvif->ar; u32 vdev_param; if (value != 0xFFFFFFFF) value = clamp_t(u32, arvif->ar->hw->wiphy->frag_threshold, ATH10K_FRAGMT_THRESHOLD_MIN, ATH10K_FRAGMT_THRESHOLD_MAX); vdev_param = ar->wmi.vdev_param->fragmentation_threshold; return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, value); } static int ath10k_peer_delete(struct ath10k *ar, u32 vdev_id, const u8 *addr) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_peer_delete(ar, vdev_id, addr); if (ret) return ret; ret = ath10k_wait_for_peer_deleted(ar, vdev_id, addr); if (ret) return ret; ar->num_peers--; return 0; } static void ath10k_peer_cleanup(struct ath10k *ar, u32 vdev_id) { struct ath10k_peer *peer, *tmp; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); list_for_each_entry_safe(peer, tmp, &ar->peers, list) { if (peer->vdev_id != vdev_id) continue; ath10k_warn(ar, "removing stale peer %pM from vdev_id %d\n", peer->addr, vdev_id); list_del(&peer->list); kfree(peer); ar->num_peers--; } spin_unlock_bh(&ar->data_lock); } static void ath10k_peer_cleanup_all(struct ath10k *ar) { struct ath10k_peer *peer, *tmp; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); list_for_each_entry_safe(peer, tmp, &ar->peers, list) { list_del(&peer->list); kfree(peer); } spin_unlock_bh(&ar->data_lock); ar->num_peers = 0; ar->num_stations = 0; } /************************/ /* Interface management */ /************************/ void ath10k_mac_vif_beacon_free(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->data_lock); if (!arvif->beacon) return; if (!arvif->beacon_buf) dma_unmap_single(ar->dev, ATH10K_SKB_CB(arvif->beacon)->paddr, arvif->beacon->len, DMA_TO_DEVICE); dev_kfree_skb_any(arvif->beacon); arvif->beacon = NULL; arvif->beacon_sent = false; } static void ath10k_mac_vif_beacon_cleanup(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->data_lock); ath10k_mac_vif_beacon_free(arvif); if (arvif->beacon_buf) { dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, arvif->beacon_buf, arvif->beacon_paddr); arvif->beacon_buf = NULL; } } static inline int ath10k_vdev_setup_sync(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); if (test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags)) return -ESHUTDOWN; ret = wait_for_completion_timeout(&ar->vdev_setup_done, ATH10K_VDEV_SETUP_TIMEOUT_HZ); if (ret == 0) return -ETIMEDOUT; return 0; } static int ath10k_monitor_vdev_start(struct ath10k *ar, int vdev_id) { struct cfg80211_chan_def *chandef = &ar->chandef; struct ieee80211_channel *channel = chandef->chan; struct wmi_vdev_start_request_arg arg = {}; int ret = 0; lockdep_assert_held(&ar->conf_mutex); arg.vdev_id = vdev_id; arg.channel.freq = channel->center_freq; arg.channel.band_center_freq1 = chandef->center_freq1; /* TODO setup this dynamically, what in case we don't have any vifs? */ arg.channel.mode = chan_to_phymode(chandef); arg.channel.chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); arg.channel.min_power = 0; arg.channel.max_power = channel->max_power * 2; arg.channel.max_reg_power = channel->max_reg_power * 2; arg.channel.max_antenna_gain = channel->max_antenna_gain * 2; reinit_completion(&ar->vdev_setup_done); ret = ath10k_wmi_vdev_start(ar, &arg); if (ret) { ath10k_warn(ar, "failed to request monitor vdev %i start: %d\n", vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn(ar, "failed to synchronize setup for monitor vdev %i: %d\n", vdev_id, ret); return ret; } ret = ath10k_wmi_vdev_up(ar, vdev_id, 0, ar->mac_addr); if (ret) { ath10k_warn(ar, "failed to put up monitor vdev %i: %d\n", vdev_id, ret); goto vdev_stop; } ar->monitor_vdev_id = vdev_id; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i started\n", ar->monitor_vdev_id); return 0; vdev_stop: ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); if (ret) ath10k_warn(ar, "failed to stop monitor vdev %i after start failure: %d\n", ar->monitor_vdev_id, ret); return ret; } static int ath10k_monitor_vdev_stop(struct ath10k *ar) { int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_vdev_down(ar, ar->monitor_vdev_id); if (ret) ath10k_warn(ar, "failed to put down monitor vdev %i: %d\n", ar->monitor_vdev_id, ret); reinit_completion(&ar->vdev_setup_done); ret = ath10k_wmi_vdev_stop(ar, ar->monitor_vdev_id); if (ret) ath10k_warn(ar, "failed to to request monitor vdev %i stop: %d\n", ar->monitor_vdev_id, ret); ret = ath10k_vdev_setup_sync(ar); if (ret) ath10k_warn(ar, "failed to synchronise monitor vdev %i: %d\n", ar->monitor_vdev_id, ret); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %i stopped\n", ar->monitor_vdev_id); return ret; } static int ath10k_monitor_vdev_create(struct ath10k *ar) { int bit, ret = 0; lockdep_assert_held(&ar->conf_mutex); if (ar->free_vdev_map == 0) { ath10k_warn(ar, "failed to find free vdev id for monitor vdev\n"); return -ENOMEM; } bit = __ffs64(ar->free_vdev_map); ar->monitor_vdev_id = bit; ret = ath10k_wmi_vdev_create(ar, ar->monitor_vdev_id, WMI_VDEV_TYPE_MONITOR, 0, ar->mac_addr); if (ret) { ath10k_warn(ar, "failed to request monitor vdev %i creation: %d\n", ar->monitor_vdev_id, ret); return ret; } ar->free_vdev_map &= ~(1LL << ar->monitor_vdev_id); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d created\n", ar->monitor_vdev_id); return 0; } static int ath10k_monitor_vdev_delete(struct ath10k *ar) { int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_vdev_delete(ar, ar->monitor_vdev_id); if (ret) { ath10k_warn(ar, "failed to request wmi monitor vdev %i removal: %d\n", ar->monitor_vdev_id, ret); return ret; } ar->free_vdev_map |= 1LL << ar->monitor_vdev_id; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor vdev %d deleted\n", ar->monitor_vdev_id); return ret; } static int ath10k_monitor_start(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_monitor_vdev_create(ar); if (ret) { ath10k_warn(ar, "failed to create monitor vdev: %d\n", ret); return ret; } ret = ath10k_monitor_vdev_start(ar, ar->monitor_vdev_id); if (ret) { ath10k_warn(ar, "failed to start monitor vdev: %d\n", ret); ath10k_monitor_vdev_delete(ar); return ret; } ar->monitor_started = true; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor started\n"); return 0; } static int ath10k_monitor_stop(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_monitor_vdev_stop(ar); if (ret) { ath10k_warn(ar, "failed to stop monitor vdev: %d\n", ret); return ret; } ret = ath10k_monitor_vdev_delete(ar); if (ret) { ath10k_warn(ar, "failed to delete monitor vdev: %d\n", ret); return ret; } ar->monitor_started = false; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor stopped\n"); return 0; } static int ath10k_monitor_recalc(struct ath10k *ar) { bool should_start; lockdep_assert_held(&ar->conf_mutex); should_start = ar->monitor || ar->filter_flags & FIF_PROMISC_IN_BSS || test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac monitor recalc started? %d should? %d\n", ar->monitor_started, should_start); if (should_start == ar->monitor_started) return 0; if (should_start) return ath10k_monitor_start(ar); return ath10k_monitor_stop(ar); } static int ath10k_recalc_rtscts_prot(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; u32 vdev_param, rts_cts = 0; lockdep_assert_held(&ar->conf_mutex); vdev_param = ar->wmi.vdev_param->enable_rtscts; if (arvif->use_cts_prot || arvif->num_legacy_stations > 0) rts_cts |= SM(WMI_RTSCTS_ENABLED, WMI_RTSCTS_SET); if (arvif->num_legacy_stations > 0) rts_cts |= SM(WMI_RTSCTS_ACROSS_SW_RETRIES, WMI_RTSCTS_PROFILE); return ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, rts_cts); } static int ath10k_start_cac(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); set_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ret = ath10k_monitor_recalc(ar); if (ret) { ath10k_warn(ar, "failed to start monitor (cac): %d\n", ret); clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); return ret; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac start monitor vdev %d\n", ar->monitor_vdev_id); return 0; } static int ath10k_stop_cac(struct ath10k *ar) { lockdep_assert_held(&ar->conf_mutex); /* CAC is not running - do nothing */ if (!test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) return 0; clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ath10k_monitor_stop(ar); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac cac finished\n"); return 0; } static void ath10k_recalc_radar_detection(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_stop_cac(ar); if (!ar->radar_enabled) return; if (ar->num_started_vdevs > 0) return; ret = ath10k_start_cac(ar); if (ret) { /* * Not possible to start CAC on current channel so starting * radiation is not allowed, make this channel DFS_UNAVAILABLE * by indicating that radar was detected. */ ath10k_warn(ar, "failed to start CAC: %d\n", ret); ieee80211_radar_detected(ar->hw); } } static int ath10k_vdev_start_restart(struct ath10k_vif *arvif, bool restart) { struct ath10k *ar = arvif->ar; struct cfg80211_chan_def *chandef = &ar->chandef; struct wmi_vdev_start_request_arg arg = {}; int ret = 0; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); arg.vdev_id = arvif->vdev_id; arg.dtim_period = arvif->dtim_period; arg.bcn_intval = arvif->beacon_interval; arg.channel.freq = chandef->chan->center_freq; arg.channel.band_center_freq1 = chandef->center_freq1; arg.channel.mode = chan_to_phymode(chandef); arg.channel.min_power = 0; arg.channel.max_power = chandef->chan->max_power * 2; arg.channel.max_reg_power = chandef->chan->max_reg_power * 2; arg.channel.max_antenna_gain = chandef->chan->max_antenna_gain * 2; if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { arg.ssid = arvif->u.ap.ssid; arg.ssid_len = arvif->u.ap.ssid_len; arg.hidden_ssid = arvif->u.ap.hidden_ssid; /* For now allow DFS for AP mode */ arg.channel.chan_radar = !!(chandef->chan->flags & IEEE80211_CHAN_RADAR); } else if (arvif->vdev_type == WMI_VDEV_TYPE_IBSS) { arg.ssid = arvif->vif->bss_conf.ssid; arg.ssid_len = arvif->vif->bss_conf.ssid_len; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d start center_freq %d phymode %s\n", arg.vdev_id, arg.channel.freq, ath10k_wmi_phymode_str(arg.channel.mode)); if (restart) ret = ath10k_wmi_vdev_restart(ar, &arg); else ret = ath10k_wmi_vdev_start(ar, &arg); if (ret) { ath10k_warn(ar, "failed to start WMI vdev %i: %d\n", arg.vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn(ar, "failed to synchronise setup for vdev %i: %d\n", arg.vdev_id, ret); return ret; } ar->num_started_vdevs++; ath10k_recalc_radar_detection(ar); return ret; } static int ath10k_vdev_start(struct ath10k_vif *arvif) { return ath10k_vdev_start_restart(arvif, false); } static int ath10k_vdev_restart(struct ath10k_vif *arvif) { return ath10k_vdev_start_restart(arvif, true); } static int ath10k_vdev_stop(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; int ret; lockdep_assert_held(&ar->conf_mutex); reinit_completion(&ar->vdev_setup_done); ret = ath10k_wmi_vdev_stop(ar, arvif->vdev_id); if (ret) { ath10k_warn(ar, "failed to stop WMI vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_vdev_setup_sync(ar); if (ret) { ath10k_warn(ar, "failed to syncronise setup for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } WARN_ON(ar->num_started_vdevs == 0); if (ar->num_started_vdevs != 0) { ar->num_started_vdevs--; ath10k_recalc_radar_detection(ar); } return ret; } static void ath10k_control_beaconing(struct ath10k_vif *arvif, struct ieee80211_bss_conf *info) { struct ath10k *ar = arvif->ar; int ret = 0; lockdep_assert_held(&arvif->ar->conf_mutex); if (!info->enable_beacon) { ath10k_vdev_stop(arvif); arvif->is_started = false; arvif->is_up = false; spin_lock_bh(&arvif->ar->data_lock); ath10k_mac_vif_beacon_free(arvif); spin_unlock_bh(&arvif->ar->data_lock); return; } arvif->tx_seq_no = 0x1000; ret = ath10k_vdev_start(arvif); if (ret) return; arvif->aid = 0; ether_addr_copy(arvif->bssid, info->bssid); ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn(ar, "failed to bring up vdev %d: %i\n", arvif->vdev_id, ret); ath10k_vdev_stop(arvif); return; } arvif->is_started = true; arvif->is_up = true; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up\n", arvif->vdev_id); } static void ath10k_control_ibss(struct ath10k_vif *arvif, struct ieee80211_bss_conf *info, const u8 self_peer[ETH_ALEN]) { struct ath10k *ar = arvif->ar; u32 vdev_param; int ret = 0; lockdep_assert_held(&arvif->ar->conf_mutex); if (!info->ibss_joined) { ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, self_peer); if (ret) ath10k_warn(ar, "failed to delete IBSS self peer %pM for vdev %d: %d\n", self_peer, arvif->vdev_id, ret); if (is_zero_ether_addr(arvif->bssid)) return; memset(arvif->bssid, 0, ETH_ALEN); return; } ret = ath10k_peer_create(arvif->ar, arvif->vdev_id, self_peer); if (ret) { ath10k_warn(ar, "failed to create IBSS self peer %pM for vdev %d: %d\n", self_peer, arvif->vdev_id, ret); return; } vdev_param = arvif->ar->wmi.vdev_param->atim_window; ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, vdev_param, ATH10K_DEFAULT_ATIM); if (ret) ath10k_warn(ar, "failed to set IBSS ATIM for vdev %d: %d\n", arvif->vdev_id, ret); } /* * Review this when mac80211 gains per-interface powersave support. */ static int ath10k_mac_vif_setup_ps(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; struct ieee80211_conf *conf = &ar->hw->conf; enum wmi_sta_powersave_param param; enum wmi_sta_ps_mode psmode; int ret; lockdep_assert_held(&arvif->ar->conf_mutex); if (arvif->vif->type != NL80211_IFTYPE_STATION) return 0; if (conf->flags & IEEE80211_CONF_PS) { psmode = WMI_STA_PS_MODE_ENABLED; param = WMI_STA_PS_PARAM_INACTIVITY_TIME; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, conf->dynamic_ps_timeout); if (ret) { ath10k_warn(ar, "failed to set inactivity time for vdev %d: %i\n", arvif->vdev_id, ret); return ret; } } else { psmode = WMI_STA_PS_MODE_DISABLED; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d psmode %s\n", arvif->vdev_id, psmode ? "enable" : "disable"); ret = ath10k_wmi_set_psmode(ar, arvif->vdev_id, psmode); if (ret) { ath10k_warn(ar, "failed to set PS Mode %d for vdev %d: %d\n", psmode, arvif->vdev_id, ret); return ret; } return 0; } /**********************/ /* Station management */ /**********************/ static u32 ath10k_peer_assoc_h_listen_intval(struct ath10k *ar, struct ieee80211_vif *vif) { /* Some firmware revisions have unstable STA powersave when listen * interval is set too high (e.g. 5). The symptoms are firmware doesn't * generate NullFunc frames properly even if buffered frames have been * indicated in Beacon TIM. Firmware would seldom wake up to pull * buffered frames. Often pinging the device from AP would simply fail. * * As a workaround set it to 1. */ if (vif->type == NL80211_IFTYPE_STATION) return 1; return ar->hw->conf.listen_interval; } static void ath10k_peer_assoc_h_basic(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); lockdep_assert_held(&ar->conf_mutex); ether_addr_copy(arg->addr, sta->addr); arg->vdev_id = arvif->vdev_id; arg->peer_aid = sta->aid; arg->peer_flags |= WMI_PEER_AUTH; arg->peer_listen_intval = ath10k_peer_assoc_h_listen_intval(ar, vif); arg->peer_num_spatial_streams = 1; arg->peer_caps = vif->bss_conf.assoc_capability; } static void ath10k_peer_assoc_h_crypto(struct ath10k *ar, struct ieee80211_vif *vif, struct wmi_peer_assoc_complete_arg *arg) { struct ieee80211_bss_conf *info = &vif->bss_conf; struct cfg80211_bss *bss; const u8 *rsnie = NULL; const u8 *wpaie = NULL; lockdep_assert_held(&ar->conf_mutex); bss = cfg80211_get_bss(ar->hw->wiphy, ar->hw->conf.chandef.chan, info->bssid, NULL, 0, 0, 0); if (bss) { const struct cfg80211_bss_ies *ies; rcu_read_lock(); rsnie = ieee80211_bss_get_ie(bss, WLAN_EID_RSN); ies = rcu_dereference(bss->ies); wpaie = cfg80211_find_vendor_ie(WLAN_OUI_MICROSOFT, WLAN_OUI_TYPE_MICROSOFT_WPA, ies->data, ies->len); rcu_read_unlock(); cfg80211_put_bss(ar->hw->wiphy, bss); } /* FIXME: base on RSN IE/WPA IE is a correct idea? */ if (rsnie || wpaie) { ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: rsn ie found\n", __func__); arg->peer_flags |= WMI_PEER_NEED_PTK_4_WAY; } if (wpaie) { ath10k_dbg(ar, ATH10K_DBG_WMI, "%s: wpa ie found\n", __func__); arg->peer_flags |= WMI_PEER_NEED_GTK_2_WAY; } } static void ath10k_peer_assoc_h_rates(struct ath10k *ar, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct wmi_rate_set_arg *rateset = &arg->peer_legacy_rates; const struct ieee80211_supported_band *sband; const struct ieee80211_rate *rates; u32 ratemask; int i; lockdep_assert_held(&ar->conf_mutex); sband = ar->hw->wiphy->bands[ar->hw->conf.chandef.chan->band]; ratemask = sta->supp_rates[ar->hw->conf.chandef.chan->band]; rates = sband->bitrates; rateset->num_rates = 0; for (i = 0; i < 32; i++, ratemask >>= 1, rates++) { if (!(ratemask & 1)) continue; rateset->rates[rateset->num_rates] = rates->hw_value; rateset->num_rates++; } } static void ath10k_peer_assoc_h_ht(struct ath10k *ar, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { const struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap; int i, n; u32 stbc; lockdep_assert_held(&ar->conf_mutex); if (!ht_cap->ht_supported) return; arg->peer_flags |= WMI_PEER_HT; arg->peer_max_mpdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + ht_cap->ampdu_factor)) - 1; arg->peer_mpdu_density = ath10k_parse_mpdudensity(ht_cap->ampdu_density); arg->peer_ht_caps = ht_cap->cap; arg->peer_rate_caps |= WMI_RC_HT_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_LDPC_CODING) arg->peer_flags |= WMI_PEER_LDPC; if (sta->bandwidth >= IEEE80211_STA_RX_BW_40) { arg->peer_flags |= WMI_PEER_40MHZ; arg->peer_rate_caps |= WMI_RC_CW40_FLAG; } if (ht_cap->cap & IEEE80211_HT_CAP_SGI_20) arg->peer_rate_caps |= WMI_RC_SGI_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_SGI_40) arg->peer_rate_caps |= WMI_RC_SGI_FLAG; if (ht_cap->cap & IEEE80211_HT_CAP_TX_STBC) { arg->peer_rate_caps |= WMI_RC_TX_STBC_FLAG; arg->peer_flags |= WMI_PEER_STBC; } if (ht_cap->cap & IEEE80211_HT_CAP_RX_STBC) { stbc = ht_cap->cap & IEEE80211_HT_CAP_RX_STBC; stbc = stbc >> IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc = stbc << WMI_RC_RX_STBC_FLAG_S; arg->peer_rate_caps |= stbc; arg->peer_flags |= WMI_PEER_STBC; } if (ht_cap->mcs.rx_mask[1] && ht_cap->mcs.rx_mask[2]) arg->peer_rate_caps |= WMI_RC_TS_FLAG; else if (ht_cap->mcs.rx_mask[1]) arg->peer_rate_caps |= WMI_RC_DS_FLAG; for (i = 0, n = 0; i < IEEE80211_HT_MCS_MASK_LEN*8; i++) if (ht_cap->mcs.rx_mask[i/8] & (1 << i%8)) arg->peer_ht_rates.rates[n++] = i; /* * This is a workaround for HT-enabled STAs which break the spec * and have no HT capabilities RX mask (no HT RX MCS map). * * As per spec, in section 20.3.5 Modulation and coding scheme (MCS), * MCS 0 through 7 are mandatory in 20MHz with 800 ns GI at all STAs. * * Firmware asserts if such situation occurs. */ if (n == 0) { arg->peer_ht_rates.num_rates = 8; for (i = 0; i < arg->peer_ht_rates.num_rates; i++) arg->peer_ht_rates.rates[i] = i; } else { arg->peer_ht_rates.num_rates = n; arg->peer_num_spatial_streams = sta->rx_nss; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ht peer %pM mcs cnt %d nss %d\n", arg->addr, arg->peer_ht_rates.num_rates, arg->peer_num_spatial_streams); } static int ath10k_peer_assoc_qos_ap(struct ath10k *ar, struct ath10k_vif *arvif, struct ieee80211_sta *sta) { u32 uapsd = 0; u32 max_sp = 0; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (sta->wme && sta->uapsd_queues) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac uapsd_queues 0x%x max_sp %d\n", sta->uapsd_queues, sta->max_sp); if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) uapsd |= WMI_AP_PS_UAPSD_AC3_DELIVERY_EN | WMI_AP_PS_UAPSD_AC3_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VI) uapsd |= WMI_AP_PS_UAPSD_AC2_DELIVERY_EN | WMI_AP_PS_UAPSD_AC2_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BK) uapsd |= WMI_AP_PS_UAPSD_AC1_DELIVERY_EN | WMI_AP_PS_UAPSD_AC1_TRIGGER_EN; if (sta->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_BE) uapsd |= WMI_AP_PS_UAPSD_AC0_DELIVERY_EN | WMI_AP_PS_UAPSD_AC0_TRIGGER_EN; if (sta->max_sp < MAX_WMI_AP_PS_PEER_PARAM_MAX_SP) max_sp = sta->max_sp; ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_UAPSD, uapsd); if (ret) { ath10k_warn(ar, "failed to set ap ps peer param uapsd for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_MAX_SP, max_sp); if (ret) { ath10k_warn(ar, "failed to set ap ps peer param max sp for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } /* TODO setup this based on STA listen interval and beacon interval. Currently we don't know sta->listen_interval - mac80211 patch required. Currently use 10 seconds */ ret = ath10k_wmi_set_ap_ps_param(ar, arvif->vdev_id, sta->addr, WMI_AP_PS_PEER_PARAM_AGEOUT_TIME, 10); if (ret) { ath10k_warn(ar, "failed to set ap ps peer param ageout time for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } } return 0; } static void ath10k_peer_assoc_h_vht(struct ath10k *ar, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { const struct ieee80211_sta_vht_cap *vht_cap = &sta->vht_cap; u8 ampdu_factor; if (!vht_cap->vht_supported) return; arg->peer_flags |= WMI_PEER_VHT; arg->peer_vht_caps = vht_cap->cap; ampdu_factor = (vht_cap->cap & IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK) >> IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT; /* Workaround: Some Netgear/Linksys 11ac APs set Rx A-MPDU factor to * zero in VHT IE. Using it would result in degraded throughput. * arg->peer_max_mpdu at this point contains HT max_mpdu so keep * it if VHT max_mpdu is smaller. */ arg->peer_max_mpdu = max(arg->peer_max_mpdu, (1U << (IEEE80211_HT_MAX_AMPDU_FACTOR + ampdu_factor)) - 1); if (sta->bandwidth == IEEE80211_STA_RX_BW_80) arg->peer_flags |= WMI_PEER_80MHZ; arg->peer_vht_rates.rx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.rx_highest); arg->peer_vht_rates.rx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.rx_mcs_map); arg->peer_vht_rates.tx_max_rate = __le16_to_cpu(vht_cap->vht_mcs.tx_highest); arg->peer_vht_rates.tx_mcs_set = __le16_to_cpu(vht_cap->vht_mcs.tx_mcs_map); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vht peer %pM max_mpdu %d flags 0x%x\n", sta->addr, arg->peer_max_mpdu, arg->peer_flags); } static void ath10k_peer_assoc_h_qos(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); switch (arvif->vdev_type) { case WMI_VDEV_TYPE_AP: if (sta->wme) arg->peer_flags |= WMI_PEER_QOS; if (sta->wme && sta->uapsd_queues) { arg->peer_flags |= WMI_PEER_APSD; arg->peer_rate_caps |= WMI_RC_UAPSD_FLAG; } break; case WMI_VDEV_TYPE_STA: if (vif->bss_conf.qos) arg->peer_flags |= WMI_PEER_QOS; break; default: break; } } static void ath10k_peer_assoc_h_phymode(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { enum wmi_phy_mode phymode = MODE_UNKNOWN; switch (ar->hw->conf.chandef.chan->band) { case IEEE80211_BAND_2GHZ: if (sta->ht_cap.ht_supported) { if (sta->bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11NG_HT40; else phymode = MODE_11NG_HT20; } else { phymode = MODE_11G; } break; case IEEE80211_BAND_5GHZ: /* * Check VHT first. */ if (sta->vht_cap.vht_supported) { if (sta->bandwidth == IEEE80211_STA_RX_BW_80) phymode = MODE_11AC_VHT80; else if (sta->bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11AC_VHT40; else if (sta->bandwidth == IEEE80211_STA_RX_BW_20) phymode = MODE_11AC_VHT20; } else if (sta->ht_cap.ht_supported) { if (sta->bandwidth == IEEE80211_STA_RX_BW_40) phymode = MODE_11NA_HT40; else phymode = MODE_11NA_HT20; } else { phymode = MODE_11A; } break; default: break; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac peer %pM phymode %s\n", sta->addr, ath10k_wmi_phymode_str(phymode)); arg->peer_phymode = phymode; WARN_ON(phymode == MODE_UNKNOWN); } static int ath10k_peer_assoc_prepare(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct wmi_peer_assoc_complete_arg *arg) { lockdep_assert_held(&ar->conf_mutex); memset(arg, 0, sizeof(*arg)); ath10k_peer_assoc_h_basic(ar, vif, sta, arg); ath10k_peer_assoc_h_crypto(ar, vif, arg); ath10k_peer_assoc_h_rates(ar, sta, arg); ath10k_peer_assoc_h_ht(ar, sta, arg); ath10k_peer_assoc_h_vht(ar, sta, arg); ath10k_peer_assoc_h_qos(ar, vif, sta, arg); ath10k_peer_assoc_h_phymode(ar, vif, sta, arg); return 0; } static const u32 ath10k_smps_map[] = { [WLAN_HT_CAP_SM_PS_STATIC] = WMI_PEER_SMPS_STATIC, [WLAN_HT_CAP_SM_PS_DYNAMIC] = WMI_PEER_SMPS_DYNAMIC, [WLAN_HT_CAP_SM_PS_INVALID] = WMI_PEER_SMPS_PS_NONE, [WLAN_HT_CAP_SM_PS_DISABLED] = WMI_PEER_SMPS_PS_NONE, }; static int ath10k_setup_peer_smps(struct ath10k *ar, struct ath10k_vif *arvif, const u8 *addr, const struct ieee80211_sta_ht_cap *ht_cap) { int smps; if (!ht_cap->ht_supported) return 0; smps = ht_cap->cap & IEEE80211_HT_CAP_SM_PS; smps >>= IEEE80211_HT_CAP_SM_PS_SHIFT; if (smps >= ARRAY_SIZE(ath10k_smps_map)) return -EINVAL; return ath10k_wmi_peer_set_param(ar, arvif->vdev_id, addr, WMI_PEER_SMPS_STATE, ath10k_smps_map[smps]); } /* can be called only in mac80211 callbacks due to `key_count` usage */ static void ath10k_bss_assoc(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *bss_conf) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ieee80211_sta_ht_cap ht_cap; struct wmi_peer_assoc_complete_arg peer_arg; struct ieee80211_sta *ap_sta; int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i assoc bssid %pM aid %d\n", arvif->vdev_id, arvif->bssid, arvif->aid); rcu_read_lock(); ap_sta = ieee80211_find_sta(vif, bss_conf->bssid); if (!ap_sta) { ath10k_warn(ar, "failed to find station entry for bss %pM vdev %i\n", bss_conf->bssid, arvif->vdev_id); rcu_read_unlock(); return; } /* ap_sta must be accessed only within rcu section which must be left * before calling ath10k_setup_peer_smps() which might sleep. */ ht_cap = ap_sta->ht_cap; ret = ath10k_peer_assoc_prepare(ar, vif, ap_sta, &peer_arg); if (ret) { ath10k_warn(ar, "failed to prepare peer assoc for %pM vdev %i: %d\n", bss_conf->bssid, arvif->vdev_id, ret); rcu_read_unlock(); return; } rcu_read_unlock(); ret = ath10k_wmi_peer_assoc(ar, &peer_arg); if (ret) { ath10k_warn(ar, "failed to run peer assoc for %pM vdev %i: %d\n", bss_conf->bssid, arvif->vdev_id, ret); return; } ret = ath10k_setup_peer_smps(ar, arvif, bss_conf->bssid, &ht_cap); if (ret) { ath10k_warn(ar, "failed to setup peer SMPS for vdev %i: %d\n", arvif->vdev_id, ret); return; } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d up (associated) bssid %pM aid %d\n", arvif->vdev_id, bss_conf->bssid, bss_conf->aid); WARN_ON(arvif->is_up); arvif->aid = bss_conf->aid; ether_addr_copy(arvif->bssid, bss_conf->bssid); ret = ath10k_wmi_vdev_up(ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn(ar, "failed to set vdev %d up: %d\n", arvif->vdev_id, ret); return; } arvif->is_up = true; } static void ath10k_bss_disassoc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i disassoc bssid %pM\n", arvif->vdev_id, arvif->bssid); ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) ath10k_warn(ar, "faield to down vdev %i: %d\n", arvif->vdev_id, ret); arvif->def_wep_key_idx = 0; arvif->is_up = false; } static int ath10k_station_assoc(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta, bool reassoc) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct wmi_peer_assoc_complete_arg peer_arg; int ret = 0; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_peer_assoc_prepare(ar, vif, sta, &peer_arg); if (ret) { ath10k_warn(ar, "failed to prepare WMI peer assoc for %pM vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); return ret; } peer_arg.peer_reassoc = reassoc; ret = ath10k_wmi_peer_assoc(ar, &peer_arg); if (ret) { ath10k_warn(ar, "failed to run peer assoc for STA %pM vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } /* Re-assoc is run only to update supported rates for given station. It * doesn't make much sense to reconfigure the peer completely. */ if (!reassoc) { ret = ath10k_setup_peer_smps(ar, arvif, sta->addr, &sta->ht_cap); if (ret) { ath10k_warn(ar, "failed to setup peer SMPS for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } ret = ath10k_peer_assoc_qos_ap(ar, arvif, sta); if (ret) { ath10k_warn(ar, "failed to set qos params for STA %pM for vdev %i: %d\n", sta->addr, arvif->vdev_id, ret); return ret; } if (!sta->wme) { arvif->num_legacy_stations++; ret = ath10k_recalc_rtscts_prot(arvif); if (ret) { ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } } ret = ath10k_install_peer_wep_keys(arvif, sta->addr); if (ret) { ath10k_warn(ar, "failed to install peer wep keys for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } } return ret; } static int ath10k_station_disassoc(struct ath10k *ar, struct ieee80211_vif *vif, struct ieee80211_sta *sta) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (!sta->wme) { arvif->num_legacy_stations--; ret = ath10k_recalc_rtscts_prot(arvif); if (ret) { ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", arvif->vdev_id, ret); return ret; } } ret = ath10k_clear_peer_keys(arvif, sta->addr); if (ret) { ath10k_warn(ar, "failed to clear all peer wep keys for vdev %i: %d\n", arvif->vdev_id, ret); return ret; } return ret; } /**************/ /* Regulatory */ /**************/ static int ath10k_update_channel_list(struct ath10k *ar) { struct ieee80211_hw *hw = ar->hw; struct ieee80211_supported_band **bands; enum ieee80211_band band; struct ieee80211_channel *channel; struct wmi_scan_chan_list_arg arg = {0}; struct wmi_channel_arg *ch; bool passive; int len; int ret; int i; lockdep_assert_held(&ar->conf_mutex); bands = hw->wiphy->bands; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { if (bands[band]->channels[i].flags & IEEE80211_CHAN_DISABLED) continue; arg.n_channels++; } } len = sizeof(struct wmi_channel_arg) * arg.n_channels; arg.channels = kzalloc(len, GFP_KERNEL); if (!arg.channels) return -ENOMEM; ch = arg.channels; for (band = 0; band < IEEE80211_NUM_BANDS; band++) { if (!bands[band]) continue; for (i = 0; i < bands[band]->n_channels; i++) { channel = &bands[band]->channels[i]; if (channel->flags & IEEE80211_CHAN_DISABLED) continue; ch->allow_ht = true; /* FIXME: when should we really allow VHT? */ ch->allow_vht = true; ch->allow_ibss = !(channel->flags & IEEE80211_CHAN_NO_IR); ch->ht40plus = !(channel->flags & IEEE80211_CHAN_NO_HT40PLUS); ch->chan_radar = !!(channel->flags & IEEE80211_CHAN_RADAR); passive = channel->flags & IEEE80211_CHAN_NO_IR; ch->passive = passive; ch->freq = channel->center_freq; ch->band_center_freq1 = channel->center_freq; ch->min_power = 0; ch->max_power = channel->max_power * 2; ch->max_reg_power = channel->max_reg_power * 2; ch->max_antenna_gain = channel->max_antenna_gain * 2; ch->reg_class_id = 0; /* FIXME */ /* FIXME: why use only legacy modes, why not any * HT/VHT modes? Would that even make any * difference? */ if (channel->band == IEEE80211_BAND_2GHZ) ch->mode = MODE_11G; else ch->mode = MODE_11A; if (WARN_ON_ONCE(ch->mode == MODE_UNKNOWN)) continue; ath10k_dbg(ar, ATH10K_DBG_WMI, "mac channel [%zd/%d] freq %d maxpower %d regpower %d antenna %d mode %d\n", ch - arg.channels, arg.n_channels, ch->freq, ch->max_power, ch->max_reg_power, ch->max_antenna_gain, ch->mode); ch++; } } ret = ath10k_wmi_scan_chan_list(ar, &arg); kfree(arg.channels); return ret; } static enum wmi_dfs_region ath10k_mac_get_dfs_region(enum nl80211_dfs_regions dfs_region) { switch (dfs_region) { case NL80211_DFS_UNSET: return WMI_UNINIT_DFS_DOMAIN; case NL80211_DFS_FCC: return WMI_FCC_DFS_DOMAIN; case NL80211_DFS_ETSI: return WMI_ETSI_DFS_DOMAIN; case NL80211_DFS_JP: return WMI_MKK4_DFS_DOMAIN; } return WMI_UNINIT_DFS_DOMAIN; } static void ath10k_regd_update(struct ath10k *ar) { struct reg_dmn_pair_mapping *regpair; int ret; enum wmi_dfs_region wmi_dfs_reg; enum nl80211_dfs_regions nl_dfs_reg; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_update_channel_list(ar); if (ret) ath10k_warn(ar, "failed to update channel list: %d\n", ret); regpair = ar->ath_common.regulatory.regpair; if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { nl_dfs_reg = ar->dfs_detector->region; wmi_dfs_reg = ath10k_mac_get_dfs_region(nl_dfs_reg); } else { wmi_dfs_reg = WMI_UNINIT_DFS_DOMAIN; } /* Target allows setting up per-band regdomain but ath_common provides * a combined one only */ ret = ath10k_wmi_pdev_set_regdomain(ar, regpair->reg_domain, regpair->reg_domain, /* 2ghz */ regpair->reg_domain, /* 5ghz */ regpair->reg_2ghz_ctl, regpair->reg_5ghz_ctl, wmi_dfs_reg); if (ret) ath10k_warn(ar, "failed to set pdev regdomain: %d\n", ret); } static void ath10k_reg_notifier(struct wiphy *wiphy, struct regulatory_request *request) { struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy); struct ath10k *ar = hw->priv; bool result; ath_reg_notifier_apply(wiphy, request, &ar->ath_common.regulatory); if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) { ath10k_dbg(ar, ATH10K_DBG_REGULATORY, "dfs region 0x%x\n", request->dfs_region); result = ar->dfs_detector->set_dfs_domain(ar->dfs_detector, request->dfs_region); if (!result) ath10k_warn(ar, "DFS region 0x%X not supported, will trigger radar for every pulse\n", request->dfs_region); } mutex_lock(&ar->conf_mutex); if (ar->state == ATH10K_STATE_ON) ath10k_regd_update(ar); mutex_unlock(&ar->conf_mutex); } /***************/ /* TX handlers */ /***************/ static u8 ath10k_tx_h_get_tid(struct ieee80211_hdr *hdr) { if (ieee80211_is_mgmt(hdr->frame_control)) return HTT_DATA_TX_EXT_TID_MGMT; if (!ieee80211_is_data_qos(hdr->frame_control)) return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; if (!is_unicast_ether_addr(ieee80211_get_DA(hdr))) return HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; return ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; } static u8 ath10k_tx_h_get_vdev_id(struct ath10k *ar, struct ieee80211_vif *vif) { if (vif) return ath10k_vif_to_arvif(vif)->vdev_id; if (ar->monitor_started) return ar->monitor_vdev_id; ath10k_warn(ar, "failed to resolve vdev id\n"); return 0; } /* HTT Tx uses Native Wifi tx mode which expects 802.11 frames without QoS * Control in the header. */ static void ath10k_tx_h_nwifi(struct ieee80211_hw *hw, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (void *)skb->data; struct ath10k_skb_cb *cb = ATH10K_SKB_CB(skb); u8 *qos_ctl; if (!ieee80211_is_data_qos(hdr->frame_control)) return; qos_ctl = ieee80211_get_qos_ctl(hdr); memmove(skb->data + IEEE80211_QOS_CTL_LEN, skb->data, (void *)qos_ctl - (void *)skb->data); skb_pull(skb, IEEE80211_QOS_CTL_LEN); /* Fw/Hw generates a corrupted QoS Control Field for QoS NullFunc * frames. Powersave is handled by the fw/hw so QoS NyllFunc frames are * used only for CQM purposes (e.g. hostapd station keepalive ping) so * it is safe to downgrade to NullFunc. */ if (ieee80211_is_qos_nullfunc(hdr->frame_control)) { hdr->frame_control &= ~__cpu_to_le16(IEEE80211_STYPE_QOS_DATA); cb->htt.tid = HTT_DATA_TX_EXT_TID_NON_QOS_MCAST_BCAST; } } static void ath10k_tx_wep_key_work(struct work_struct *work) { struct ath10k_vif *arvif = container_of(work, struct ath10k_vif, wep_key_work); struct ath10k *ar = arvif->ar; int ret, keyidx = arvif->def_wep_key_newidx; mutex_lock(&arvif->ar->conf_mutex); if (arvif->ar->state != ATH10K_STATE_ON) goto unlock; if (arvif->def_wep_key_idx == keyidx) goto unlock; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d set keyidx %d\n", arvif->vdev_id, keyidx); ret = ath10k_wmi_vdev_set_param(arvif->ar, arvif->vdev_id, arvif->ar->wmi.vdev_param->def_keyid, keyidx); if (ret) { ath10k_warn(ar, "failed to update wep key index for vdev %d: %d\n", arvif->vdev_id, ret); goto unlock; } arvif->def_wep_key_idx = keyidx; unlock: mutex_unlock(&arvif->ar->conf_mutex); } static void ath10k_tx_h_update_wep_key(struct ieee80211_vif *vif, struct ieee80211_key_conf *key, struct sk_buff *skb) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k *ar = arvif->ar; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; if (!ieee80211_has_protected(hdr->frame_control)) return; if (!key) return; if (key->cipher != WLAN_CIPHER_SUITE_WEP40 && key->cipher != WLAN_CIPHER_SUITE_WEP104) return; if (key->keyidx == arvif->def_wep_key_idx) return; /* FIXME: Most likely a few frames will be TXed with an old key. Simply * queueing frames until key index is updated is not an option because * sk_buff may need more processing to be done, e.g. offchannel */ arvif->def_wep_key_newidx = key->keyidx; ieee80211_queue_work(ar->hw, &arvif->wep_key_work); } static void ath10k_tx_h_add_p2p_noa_ie(struct ath10k *ar, struct ieee80211_vif *vif, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); /* This is case only for P2P_GO */ if (arvif->vdev_type != WMI_VDEV_TYPE_AP || arvif->vdev_subtype != WMI_VDEV_SUBTYPE_P2P_GO) return; if (unlikely(ieee80211_is_probe_resp(hdr->frame_control))) { spin_lock_bh(&ar->data_lock); if (arvif->u.ap.noa_data) if (!pskb_expand_head(skb, 0, arvif->u.ap.noa_len, GFP_ATOMIC)) memcpy(skb_put(skb, arvif->u.ap.noa_len), arvif->u.ap.noa_data, arvif->u.ap.noa_len); spin_unlock_bh(&ar->data_lock); } } static bool ath10k_mac_need_offchan_tx_work(struct ath10k *ar) { /* FIXME: Not really sure since when the behaviour changed. At some * point new firmware stopped requiring creation of peer entries for * offchannel tx (and actually creating them causes issues with wmi-htc * tx credit replenishment and reliability). Assuming it's at least 3.4 * because that's when the `freq` was introduced to TX_FRM HTT command. */ return !(ar->htt.target_version_major >= 3 && ar->htt.target_version_minor >= 4); } static void ath10k_tx_htt(struct ath10k *ar, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; int ret = 0; if (ar->htt.target_version_major >= 3) { /* Since HTT 3.0 there is no separate mgmt tx command */ ret = ath10k_htt_tx(&ar->htt, skb); goto exit; } if (ieee80211_is_mgmt(hdr->frame_control)) { if (test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, ar->fw_features)) { if (skb_queue_len(&ar->wmi_mgmt_tx_queue) >= ATH10K_MAX_NUM_MGMT_PENDING) { ath10k_warn(ar, "reached WMI management transmit queue limit\n"); ret = -EBUSY; goto exit; } skb_queue_tail(&ar->wmi_mgmt_tx_queue, skb); ieee80211_queue_work(ar->hw, &ar->wmi_mgmt_tx_work); } else { ret = ath10k_htt_mgmt_tx(&ar->htt, skb); } } else if (!test_bit(ATH10K_FW_FEATURE_HAS_WMI_MGMT_TX, ar->fw_features) && ieee80211_is_nullfunc(hdr->frame_control)) { /* FW does not report tx status properly for NullFunc frames * unless they are sent through mgmt tx path. mac80211 sends * those frames when it detects link/beacon loss and depends * on the tx status to be correct. */ ret = ath10k_htt_mgmt_tx(&ar->htt, skb); } else { ret = ath10k_htt_tx(&ar->htt, skb); } exit: if (ret) { ath10k_warn(ar, "failed to transmit packet, dropping: %d\n", ret); ieee80211_free_txskb(ar->hw, skb); } } void ath10k_offchan_tx_purge(struct ath10k *ar) { struct sk_buff *skb; for (;;) { skb = skb_dequeue(&ar->offchan_tx_queue); if (!skb) break; ieee80211_free_txskb(ar->hw, skb); } } void ath10k_offchan_tx_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, offchan_tx_work); struct ath10k_peer *peer; struct ieee80211_hdr *hdr; struct sk_buff *skb; const u8 *peer_addr; int vdev_id; int ret; /* FW requirement: We must create a peer before FW will send out * an offchannel frame. Otherwise the frame will be stuck and * never transmitted. We delete the peer upon tx completion. * It is unlikely that a peer for offchannel tx will already be * present. However it may be in some rare cases so account for that. * Otherwise we might remove a legitimate peer and break stuff. */ for (;;) { skb = skb_dequeue(&ar->offchan_tx_queue); if (!skb) break; mutex_lock(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac offchannel skb %p\n", skb); hdr = (struct ieee80211_hdr *)skb->data; peer_addr = ieee80211_get_DA(hdr); vdev_id = ATH10K_SKB_CB(skb)->vdev_id; spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, vdev_id, peer_addr); spin_unlock_bh(&ar->data_lock); if (peer) /* FIXME: should this use ath10k_warn()? */ ath10k_dbg(ar, ATH10K_DBG_MAC, "peer %pM on vdev %d already present\n", peer_addr, vdev_id); if (!peer) { ret = ath10k_peer_create(ar, vdev_id, peer_addr); if (ret) ath10k_warn(ar, "failed to create peer %pM on vdev %d: %d\n", peer_addr, vdev_id, ret); } spin_lock_bh(&ar->data_lock); reinit_completion(&ar->offchan_tx_completed); ar->offchan_tx_skb = skb; spin_unlock_bh(&ar->data_lock); ath10k_tx_htt(ar, skb); ret = wait_for_completion_timeout(&ar->offchan_tx_completed, 3 * HZ); if (ret <= 0) ath10k_warn(ar, "timed out waiting for offchannel skb %p\n", skb); if (!peer) { ret = ath10k_peer_delete(ar, vdev_id, peer_addr); if (ret) ath10k_warn(ar, "failed to delete peer %pM on vdev %d: %d\n", peer_addr, vdev_id, ret); } mutex_unlock(&ar->conf_mutex); } } void ath10k_mgmt_over_wmi_tx_purge(struct ath10k *ar) { struct sk_buff *skb; for (;;) { skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); if (!skb) break; ieee80211_free_txskb(ar->hw, skb); } } void ath10k_mgmt_over_wmi_tx_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, wmi_mgmt_tx_work); struct sk_buff *skb; int ret; for (;;) { skb = skb_dequeue(&ar->wmi_mgmt_tx_queue); if (!skb) break; ret = ath10k_wmi_mgmt_tx(ar, skb); if (ret) { ath10k_warn(ar, "failed to transmit management frame via WMI: %d\n", ret); ieee80211_free_txskb(ar->hw, skb); } } } /************/ /* Scanning */ /************/ void __ath10k_scan_finish(struct ath10k *ar) { lockdep_assert_held(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: break; case ATH10K_SCAN_RUNNING: if (ar->scan.is_roc) ieee80211_remain_on_channel_expired(ar->hw); case ATH10K_SCAN_ABORTING: if (!ar->scan.is_roc) ieee80211_scan_completed(ar->hw, (ar->scan.state == ATH10K_SCAN_ABORTING)); /* fall through */ case ATH10K_SCAN_STARTING: ar->scan.state = ATH10K_SCAN_IDLE; ar->scan_channel = NULL; ath10k_offchan_tx_purge(ar); cancel_delayed_work(&ar->scan.timeout); complete_all(&ar->scan.completed); break; } } void ath10k_scan_finish(struct ath10k *ar) { spin_lock_bh(&ar->data_lock); __ath10k_scan_finish(ar); spin_unlock_bh(&ar->data_lock); } static int ath10k_scan_stop(struct ath10k *ar) { struct wmi_stop_scan_arg arg = { .req_id = 1, /* FIXME */ .req_type = WMI_SCAN_STOP_ONE, .u.scan_id = ATH10K_SCAN_ID, }; int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_stop_scan(ar, &arg); if (ret) { ath10k_warn(ar, "failed to stop wmi scan: %d\n", ret); goto out; } ret = wait_for_completion_timeout(&ar->scan.completed, 3*HZ); if (ret == 0) { ath10k_warn(ar, "failed to receive scan abortion completion: timed out\n"); ret = -ETIMEDOUT; } else if (ret > 0) { ret = 0; } out: /* Scan state should be updated upon scan completion but in case * firmware fails to deliver the event (for whatever reason) it is * desired to clean up scan state anyway. Firmware may have just * dropped the scan completion event delivery due to transport pipe * being overflown with data and/or it can recover on its own before * next scan request is submitted. */ spin_lock_bh(&ar->data_lock); if (ar->scan.state != ATH10K_SCAN_IDLE) __ath10k_scan_finish(ar); spin_unlock_bh(&ar->data_lock); return ret; } static void ath10k_scan_abort(struct ath10k *ar) { int ret; lockdep_assert_held(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: /* This can happen if timeout worker kicked in and called * abortion while scan completion was being processed. */ break; case ATH10K_SCAN_STARTING: case ATH10K_SCAN_ABORTING: ath10k_warn(ar, "refusing scan abortion due to invalid scan state: %s (%d)\n", ath10k_scan_state_str(ar->scan.state), ar->scan.state); break; case ATH10K_SCAN_RUNNING: ar->scan.state = ATH10K_SCAN_ABORTING; spin_unlock_bh(&ar->data_lock); ret = ath10k_scan_stop(ar); if (ret) ath10k_warn(ar, "failed to abort scan: %d\n", ret); spin_lock_bh(&ar->data_lock); break; } spin_unlock_bh(&ar->data_lock); } void ath10k_scan_timeout_work(struct work_struct *work) { struct ath10k *ar = container_of(work, struct ath10k, scan.timeout.work); mutex_lock(&ar->conf_mutex); ath10k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); } static int ath10k_start_scan(struct ath10k *ar, const struct wmi_start_scan_arg *arg) { int ret; lockdep_assert_held(&ar->conf_mutex); ret = ath10k_wmi_start_scan(ar, arg); if (ret) return ret; ret = wait_for_completion_timeout(&ar->scan.started, 1*HZ); if (ret == 0) { ret = ath10k_scan_stop(ar); if (ret) ath10k_warn(ar, "failed to stop scan: %d\n", ret); return -ETIMEDOUT; } /* Add a 200ms margin to account for event/command processing */ ieee80211_queue_delayed_work(ar->hw, &ar->scan.timeout, msecs_to_jiffies(arg->max_scan_time+200)); return 0; } /**********************/ /* mac80211 callbacks */ /**********************/ static void ath10k_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control, struct sk_buff *skb) { struct ath10k *ar = hw->priv; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_vif *vif = info->control.vif; struct ieee80211_key_conf *key = info->control.hw_key; struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; /* We should disable CCK RATE due to P2P */ if (info->flags & IEEE80211_TX_CTL_NO_CCK_RATE) ath10k_dbg(ar, ATH10K_DBG_MAC, "IEEE80211_TX_CTL_NO_CCK_RATE\n"); ATH10K_SKB_CB(skb)->htt.is_offchan = false; ATH10K_SKB_CB(skb)->htt.tid = ath10k_tx_h_get_tid(hdr); ATH10K_SKB_CB(skb)->vdev_id = ath10k_tx_h_get_vdev_id(ar, vif); /* it makes no sense to process injected frames like that */ if (vif && vif->type != NL80211_IFTYPE_MONITOR) { ath10k_tx_h_nwifi(hw, skb); ath10k_tx_h_update_wep_key(vif, key, skb); ath10k_tx_h_add_p2p_noa_ie(ar, vif, skb); ath10k_tx_h_seq_no(vif, skb); } if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) { spin_lock_bh(&ar->data_lock); ATH10K_SKB_CB(skb)->htt.freq = ar->scan.roc_freq; ATH10K_SKB_CB(skb)->vdev_id = ar->scan.vdev_id; spin_unlock_bh(&ar->data_lock); if (ath10k_mac_need_offchan_tx_work(ar)) { ATH10K_SKB_CB(skb)->htt.freq = 0; ATH10K_SKB_CB(skb)->htt.is_offchan = true; ath10k_dbg(ar, ATH10K_DBG_MAC, "queued offchannel skb %p\n", skb); skb_queue_tail(&ar->offchan_tx_queue, skb); ieee80211_queue_work(hw, &ar->offchan_tx_work); return; } } ath10k_tx_htt(ar, skb); } /* Must not be called with conf_mutex held as workers can use that also. */ void ath10k_drain_tx(struct ath10k *ar) { /* make sure rcu-protected mac80211 tx path itself is drained */ synchronize_net(); ath10k_offchan_tx_purge(ar); ath10k_mgmt_over_wmi_tx_purge(ar); cancel_work_sync(&ar->offchan_tx_work); cancel_work_sync(&ar->wmi_mgmt_tx_work); } void ath10k_halt(struct ath10k *ar) { struct ath10k_vif *arvif; lockdep_assert_held(&ar->conf_mutex); clear_bit(ATH10K_CAC_RUNNING, &ar->dev_flags); ar->filter_flags = 0; ar->monitor = false; if (ar->monitor_started) ath10k_monitor_stop(ar); ar->monitor_started = false; ath10k_scan_finish(ar); ath10k_peer_cleanup_all(ar); ath10k_core_stop(ar); ath10k_hif_power_down(ar); spin_lock_bh(&ar->data_lock); list_for_each_entry(arvif, &ar->arvifs, list) ath10k_mac_vif_beacon_cleanup(arvif); spin_unlock_bh(&ar->data_lock); } static int ath10k_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); if (ar->cfg_tx_chainmask) { *tx_ant = ar->cfg_tx_chainmask; *rx_ant = ar->cfg_rx_chainmask; } else { *tx_ant = ar->supp_tx_chainmask; *rx_ant = ar->supp_rx_chainmask; } mutex_unlock(&ar->conf_mutex); return 0; } static void ath10k_check_chain_mask(struct ath10k *ar, u32 cm, const char *dbg) { /* It is not clear that allowing gaps in chainmask * is helpful. Probably it will not do what user * is hoping for, so warn in that case. */ if (cm == 15 || cm == 7 || cm == 3 || cm == 1 || cm == 0) return; ath10k_warn(ar, "mac %s antenna chainmask may be invalid: 0x%x. Suggested values: 15, 7, 3, 1 or 0.\n", dbg, cm); } static int __ath10k_set_antenna(struct ath10k *ar, u32 tx_ant, u32 rx_ant) { int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_check_chain_mask(ar, tx_ant, "tx"); ath10k_check_chain_mask(ar, rx_ant, "rx"); ar->cfg_tx_chainmask = tx_ant; ar->cfg_rx_chainmask = rx_ant; if ((ar->state != ATH10K_STATE_ON) && (ar->state != ATH10K_STATE_RESTARTED)) return 0; ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->tx_chain_mask, tx_ant); if (ret) { ath10k_warn(ar, "failed to set tx-chainmask: %d, req 0x%x\n", ret, tx_ant); return ret; } ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->rx_chain_mask, rx_ant); if (ret) { ath10k_warn(ar, "failed to set rx-chainmask: %d, req 0x%x\n", ret, rx_ant); return ret; } return 0; } static int ath10k_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); ret = __ath10k_set_antenna(ar, tx_ant, rx_ant); mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_start(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; int ret = 0; /* * This makes sense only when restarting hw. It is harmless to call * uncoditionally. This is necessary to make sure no HTT/WMI tx * commands will be submitted while restarting. */ ath10k_drain_tx(ar); mutex_lock(&ar->conf_mutex); switch (ar->state) { case ATH10K_STATE_OFF: ar->state = ATH10K_STATE_ON; break; case ATH10K_STATE_RESTARTING: ath10k_halt(ar); ar->state = ATH10K_STATE_RESTARTED; break; case ATH10K_STATE_ON: case ATH10K_STATE_RESTARTED: case ATH10K_STATE_WEDGED: WARN_ON(1); ret = -EINVAL; goto err; case ATH10K_STATE_UTF: ret = -EBUSY; goto err; } ret = ath10k_hif_power_up(ar); if (ret) { ath10k_err(ar, "Could not init hif: %d\n", ret); goto err_off; } ret = ath10k_core_start(ar, ATH10K_FIRMWARE_MODE_NORMAL); if (ret) { ath10k_err(ar, "Could not init core: %d\n", ret); goto err_power_down; } ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->pmf_qos, 1); if (ret) { ath10k_warn(ar, "failed to enable PMF QOS: %d\n", ret); goto err_core_stop; } ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->dynamic_bw, 1); if (ret) { ath10k_warn(ar, "failed to enable dynamic BW: %d\n", ret); goto err_core_stop; } if (ar->cfg_tx_chainmask) __ath10k_set_antenna(ar, ar->cfg_tx_chainmask, ar->cfg_rx_chainmask); /* * By default FW set ARP frames ac to voice (6). In that case ARP * exchange is not working properly for UAPSD enabled AP. ARP requests * which arrives with access category 0 are processed by network stack * and send back with access category 0, but FW changes access category * to 6. Set ARP frames access category to best effort (0) solves * this problem. */ ret = ath10k_wmi_pdev_set_param(ar, ar->wmi.pdev_param->arp_ac_override, 0); if (ret) { ath10k_warn(ar, "failed to set arp ac override parameter: %d\n", ret); goto err_core_stop; } ar->num_started_vdevs = 0; ath10k_regd_update(ar); ath10k_spectral_start(ar); mutex_unlock(&ar->conf_mutex); return 0; err_core_stop: ath10k_core_stop(ar); err_power_down: ath10k_hif_power_down(ar); err_off: ar->state = ATH10K_STATE_OFF; err: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_stop(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; ath10k_drain_tx(ar); mutex_lock(&ar->conf_mutex); if (ar->state != ATH10K_STATE_OFF) { ath10k_halt(ar); ar->state = ATH10K_STATE_OFF; } mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); cancel_work_sync(&ar->restart_work); } static int ath10k_config_ps(struct ath10k *ar) { struct ath10k_vif *arvif; int ret = 0; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ret = ath10k_mac_vif_setup_ps(arvif); if (ret) { ath10k_warn(ar, "failed to setup powersave: %d\n", ret); break; } } return ret; } static const char *chandef_get_width(enum nl80211_chan_width width) { switch (width) { case NL80211_CHAN_WIDTH_20_NOHT: return "20 (noht)"; case NL80211_CHAN_WIDTH_20: return "20"; case NL80211_CHAN_WIDTH_40: return "40"; case NL80211_CHAN_WIDTH_80: return "80"; case NL80211_CHAN_WIDTH_80P80: return "80+80"; case NL80211_CHAN_WIDTH_160: return "160"; case NL80211_CHAN_WIDTH_5: return "5"; case NL80211_CHAN_WIDTH_10: return "10"; } return "?"; } static void ath10k_config_chan(struct ath10k *ar) { struct ath10k_vif *arvif; int ret; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac config channel to %dMHz (cf1 %dMHz cf2 %dMHz width %s)\n", ar->chandef.chan->center_freq, ar->chandef.center_freq1, ar->chandef.center_freq2, chandef_get_width(ar->chandef.width)); /* First stop monitor interface. Some FW versions crash if there's a * lone monitor interface. */ if (ar->monitor_started) ath10k_monitor_stop(ar); list_for_each_entry(arvif, &ar->arvifs, list) { if (!arvif->is_started) continue; if (!arvif->is_up) continue; if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) continue; ret = ath10k_wmi_vdev_down(ar, arvif->vdev_id); if (ret) { ath10k_warn(ar, "failed to down vdev %d: %d\n", arvif->vdev_id, ret); continue; } } /* all vdevs are downed now - attempt to restart and re-up them */ list_for_each_entry(arvif, &ar->arvifs, list) { if (!arvif->is_started) continue; if (arvif->vdev_type == WMI_VDEV_TYPE_MONITOR) continue; ret = ath10k_vdev_restart(arvif); if (ret) { ath10k_warn(ar, "failed to restart vdev %d: %d\n", arvif->vdev_id, ret); continue; } if (!arvif->is_up) continue; ret = ath10k_wmi_vdev_up(arvif->ar, arvif->vdev_id, arvif->aid, arvif->bssid); if (ret) { ath10k_warn(ar, "failed to bring vdev up %d: %d\n", arvif->vdev_id, ret); continue; } } ath10k_monitor_recalc(ar); } static int ath10k_mac_txpower_setup(struct ath10k *ar, int txpower) { int ret; u32 param; lockdep_assert_held(&ar->conf_mutex); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac txpower %d\n", txpower); param = ar->wmi.pdev_param->txpower_limit2g; ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2); if (ret) { ath10k_warn(ar, "failed to set 2g txpower %d: %d\n", txpower, ret); return ret; } param = ar->wmi.pdev_param->txpower_limit5g; ret = ath10k_wmi_pdev_set_param(ar, param, txpower * 2); if (ret) { ath10k_warn(ar, "failed to set 5g txpower %d: %d\n", txpower, ret); return ret; } return 0; } static int ath10k_mac_txpower_recalc(struct ath10k *ar) { struct ath10k_vif *arvif; int ret, txpower = -1; lockdep_assert_held(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { WARN_ON(arvif->txpower < 0); if (txpower == -1) txpower = arvif->txpower; else txpower = min(txpower, arvif->txpower); } if (WARN_ON(txpower == -1)) return -EINVAL; ret = ath10k_mac_txpower_setup(ar, txpower); if (ret) { ath10k_warn(ar, "failed to setup tx power %d: %d\n", txpower, ret); return ret; } return 0; } static int ath10k_config(struct ieee80211_hw *hw, u32 changed) { struct ath10k *ar = hw->priv; struct ieee80211_conf *conf = &hw->conf; int ret = 0; mutex_lock(&ar->conf_mutex); if (changed & IEEE80211_CONF_CHANGE_CHANNEL) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac config channel %dMHz flags 0x%x radar %d\n", conf->chandef.chan->center_freq, conf->chandef.chan->flags, conf->radar_enabled); spin_lock_bh(&ar->data_lock); ar->rx_channel = conf->chandef.chan; spin_unlock_bh(&ar->data_lock); ar->radar_enabled = conf->radar_enabled; ath10k_recalc_radar_detection(ar); if (!cfg80211_chandef_identical(&ar->chandef, &conf->chandef)) { ar->chandef = conf->chandef; ath10k_config_chan(ar); } } if (changed & IEEE80211_CONF_CHANGE_PS) ath10k_config_ps(ar); if (changed & IEEE80211_CONF_CHANGE_MONITOR) { ar->monitor = conf->flags & IEEE80211_CONF_MONITOR; ret = ath10k_monitor_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc monitor: %d\n", ret); } mutex_unlock(&ar->conf_mutex); return ret; } static u32 get_nss_from_chainmask(u16 chain_mask) { if ((chain_mask & 0x15) == 0x15) return 4; else if ((chain_mask & 0x7) == 0x7) return 3; else if ((chain_mask & 0x3) == 0x3) return 2; return 1; } /* * TODO: * Figure out how to handle WMI_VDEV_SUBTYPE_P2P_DEVICE, * because we will send mgmt frames without CCK. This requirement * for P2P_FIND/GO_NEG should be handled by checking CCK flag * in the TX packet. */ static int ath10k_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); enum wmi_sta_powersave_param param; int ret = 0; u32 value; int bit; u32 vdev_param; vif->driver_flags |= IEEE80211_VIF_SUPPORTS_UAPSD; mutex_lock(&ar->conf_mutex); memset(arvif, 0, sizeof(*arvif)); arvif->ar = ar; arvif->vif = vif; INIT_WORK(&arvif->wep_key_work, ath10k_tx_wep_key_work); INIT_LIST_HEAD(&arvif->list); if (ar->free_vdev_map == 0) { ath10k_warn(ar, "Free vdev map is empty, no more interfaces allowed.\n"); ret = -EBUSY; goto err; } bit = __ffs64(ar->free_vdev_map); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac create vdev %i map %llx\n", bit, ar->free_vdev_map); arvif->vdev_id = bit; arvif->vdev_subtype = WMI_VDEV_SUBTYPE_NONE; if (ar->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_DEVICE; switch (vif->type) { case NL80211_IFTYPE_UNSPECIFIED: case NL80211_IFTYPE_STATION: arvif->vdev_type = WMI_VDEV_TYPE_STA; if (vif->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_CLIENT; break; case NL80211_IFTYPE_ADHOC: arvif->vdev_type = WMI_VDEV_TYPE_IBSS; break; case NL80211_IFTYPE_AP: arvif->vdev_type = WMI_VDEV_TYPE_AP; if (vif->p2p) arvif->vdev_subtype = WMI_VDEV_SUBTYPE_P2P_GO; break; case NL80211_IFTYPE_MONITOR: arvif->vdev_type = WMI_VDEV_TYPE_MONITOR; break; default: WARN_ON(1); break; } /* Some firmware revisions don't wait for beacon tx completion before * sending another SWBA event. This could lead to hardware using old * (freed) beacon data in some cases, e.g. tx credit starvation * combined with missed TBTT. This is very very rare. * * On non-IOMMU-enabled hosts this could be a possible security issue * because hw could beacon some random data on the air. On * IOMMU-enabled hosts DMAR faults would occur in most cases and target * device would crash. * * Since there are no beacon tx completions (implicit nor explicit) * propagated to host the only workaround for this is to allocate a * DMA-coherent buffer for a lifetime of a vif and use it for all * beacon tx commands. Worst case for this approach is some beacons may * become corrupted, e.g. have garbled IEs or out-of-date TIM bitmap. */ if (vif->type == NL80211_IFTYPE_ADHOC || vif->type == NL80211_IFTYPE_AP) { arvif->beacon_buf = dma_zalloc_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, &arvif->beacon_paddr, GFP_ATOMIC); if (!arvif->beacon_buf) { ret = -ENOMEM; ath10k_warn(ar, "failed to allocate beacon buffer: %d\n", ret); goto err; } } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev create %d (add interface) type %d subtype %d bcnmode %s\n", arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, arvif->beacon_buf ? "single-buf" : "per-skb"); ret = ath10k_wmi_vdev_create(ar, arvif->vdev_id, arvif->vdev_type, arvif->vdev_subtype, vif->addr); if (ret) { ath10k_warn(ar, "failed to create WMI vdev %i: %d\n", arvif->vdev_id, ret); goto err; } ar->free_vdev_map &= ~(1LL << arvif->vdev_id); list_add(&arvif->list, &ar->arvifs); vdev_param = ar->wmi.vdev_param->def_keyid; ret = ath10k_wmi_vdev_set_param(ar, 0, vdev_param, arvif->def_wep_key_idx); if (ret) { ath10k_warn(ar, "failed to set vdev %i default key id: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } vdev_param = ar->wmi.vdev_param->tx_encap_type; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, ATH10K_HW_TXRX_NATIVE_WIFI); /* 10.X firmware does not support this VDEV parameter. Do not warn */ if (ret && ret != -EOPNOTSUPP) { ath10k_warn(ar, "failed to set vdev %i TX encapsulation: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } if (ar->cfg_tx_chainmask) { u16 nss = get_nss_from_chainmask(ar->cfg_tx_chainmask); vdev_param = ar->wmi.vdev_param->nss; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, nss); if (ret) { ath10k_warn(ar, "failed to set vdev %i chainmask 0x%x, nss %i: %d\n", arvif->vdev_id, ar->cfg_tx_chainmask, nss, ret); goto err_vdev_delete; } } if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { ret = ath10k_peer_create(ar, arvif->vdev_id, vif->addr); if (ret) { ath10k_warn(ar, "failed to create vdev %i peer for AP: %d\n", arvif->vdev_id, ret); goto err_vdev_delete; } ret = ath10k_mac_set_kickout(arvif); if (ret) { ath10k_warn(ar, "failed to set vdev %i kickout parameters: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } } if (arvif->vdev_type == WMI_VDEV_TYPE_STA) { param = WMI_STA_PS_PARAM_RX_WAKE_POLICY; value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn(ar, "failed to set vdev %i RX wake policy: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } param = WMI_STA_PS_PARAM_TX_WAKE_THRESHOLD; value = WMI_STA_PS_TX_WAKE_THRESHOLD_ALWAYS; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn(ar, "failed to set vdev %i TX wake thresh: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } param = WMI_STA_PS_PARAM_PSPOLL_COUNT; value = WMI_STA_PS_PSPOLL_COUNT_NO_MAX; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, param, value); if (ret) { ath10k_warn(ar, "failed to set vdev %i PSPOLL count: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } } ret = ath10k_mac_set_rts(arvif, ar->hw->wiphy->rts_threshold); if (ret) { ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } ret = ath10k_mac_set_frag(arvif, ar->hw->wiphy->frag_threshold); if (ret) { ath10k_warn(ar, "failed to set frag threshold for vdev %d: %d\n", arvif->vdev_id, ret); goto err_peer_delete; } arvif->txpower = vif->bss_conf.txpower; ret = ath10k_mac_txpower_recalc(ar); if (ret) { ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); goto err_peer_delete; } mutex_unlock(&ar->conf_mutex); return 0; err_peer_delete: if (arvif->vdev_type == WMI_VDEV_TYPE_AP) ath10k_wmi_peer_delete(ar, arvif->vdev_id, vif->addr); err_vdev_delete: ath10k_wmi_vdev_delete(ar, arvif->vdev_id); ar->free_vdev_map |= 1LL << arvif->vdev_id; list_del(&arvif->list); err: if (arvif->beacon_buf) { dma_free_coherent(ar->dev, IEEE80211_MAX_FRAME_LEN, arvif->beacon_buf, arvif->beacon_paddr); arvif->beacon_buf = NULL; } mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); int ret; cancel_work_sync(&arvif->wep_key_work); mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); ath10k_mac_vif_beacon_cleanup(arvif); spin_unlock_bh(&ar->data_lock); ret = ath10k_spectral_vif_stop(arvif); if (ret) ath10k_warn(ar, "failed to stop spectral for vdev %i: %d\n", arvif->vdev_id, ret); ar->free_vdev_map |= 1LL << arvif->vdev_id; list_del(&arvif->list); if (arvif->vdev_type == WMI_VDEV_TYPE_AP) { ret = ath10k_peer_delete(arvif->ar, arvif->vdev_id, vif->addr); if (ret) ath10k_warn(ar, "failed to remove peer for AP vdev %i: %d\n", arvif->vdev_id, ret); kfree(arvif->u.ap.noa_data); } ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %i delete (remove interface)\n", arvif->vdev_id); ret = ath10k_wmi_vdev_delete(ar, arvif->vdev_id); if (ret) ath10k_warn(ar, "failed to delete WMI vdev %i: %d\n", arvif->vdev_id, ret); ath10k_peer_cleanup(ar, arvif->vdev_id); mutex_unlock(&ar->conf_mutex); } /* * FIXME: Has to be verified. */ #define SUPPORTED_FILTERS \ (FIF_PROMISC_IN_BSS | \ FIF_ALLMULTI | \ FIF_CONTROL | \ FIF_PSPOLL | \ FIF_OTHER_BSS | \ FIF_BCN_PRBRESP_PROMISC | \ FIF_PROBE_REQ | \ FIF_FCSFAIL) static void ath10k_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags, unsigned int *total_flags, u64 multicast) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); changed_flags &= SUPPORTED_FILTERS; *total_flags &= SUPPORTED_FILTERS; ar->filter_flags = *total_flags; ret = ath10k_monitor_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc montior: %d\n", ret); mutex_unlock(&ar->conf_mutex); } static void ath10k_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_bss_conf *info, u32 changed) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); int ret = 0; u32 vdev_param, pdev_param, slottime, preamble; mutex_lock(&ar->conf_mutex); if (changed & BSS_CHANGED_IBSS) ath10k_control_ibss(arvif, info, vif->addr); if (changed & BSS_CHANGED_BEACON_INT) { arvif->beacon_interval = info->beacon_int; vdev_param = ar->wmi.vdev_param->beacon_interval; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->beacon_interval); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d beacon_interval %d\n", arvif->vdev_id, arvif->beacon_interval); if (ret) ath10k_warn(ar, "failed to set beacon interval for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_BEACON) { ath10k_dbg(ar, ATH10K_DBG_MAC, "vdev %d set beacon tx mode to staggered\n", arvif->vdev_id); pdev_param = ar->wmi.pdev_param->beacon_tx_mode; ret = ath10k_wmi_pdev_set_param(ar, pdev_param, WMI_BEACON_STAGGERED_MODE); if (ret) ath10k_warn(ar, "failed to set beacon mode for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_BEACON_INFO) { arvif->dtim_period = info->dtim_period; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d dtim_period %d\n", arvif->vdev_id, arvif->dtim_period); vdev_param = ar->wmi.vdev_param->dtim_period; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, arvif->dtim_period); if (ret) ath10k_warn(ar, "failed to set dtim period for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_SSID && vif->type == NL80211_IFTYPE_AP) { arvif->u.ap.ssid_len = info->ssid_len; if (info->ssid_len) memcpy(arvif->u.ap.ssid, info->ssid, info->ssid_len); arvif->u.ap.hidden_ssid = info->hidden_ssid; } if (changed & BSS_CHANGED_BSSID && !is_zero_ether_addr(info->bssid)) ether_addr_copy(arvif->bssid, info->bssid); if (changed & BSS_CHANGED_BEACON_ENABLED) ath10k_control_beaconing(arvif, info); if (changed & BSS_CHANGED_ERP_CTS_PROT) { arvif->use_cts_prot = info->use_cts_prot; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d cts_prot %d\n", arvif->vdev_id, info->use_cts_prot); ret = ath10k_recalc_rtscts_prot(arvif); if (ret) ath10k_warn(ar, "failed to recalculate rts/cts prot for vdev %d: %d\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ERP_SLOT) { if (info->use_short_slot) slottime = WMI_VDEV_SLOT_TIME_SHORT; /* 9us */ else slottime = WMI_VDEV_SLOT_TIME_LONG; /* 20us */ ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d slot_time %d\n", arvif->vdev_id, slottime); vdev_param = ar->wmi.vdev_param->slot_time; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, slottime); if (ret) ath10k_warn(ar, "failed to set erp slot for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ERP_PREAMBLE) { if (info->use_short_preamble) preamble = WMI_VDEV_PREAMBLE_SHORT; else preamble = WMI_VDEV_PREAMBLE_LONG; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d preamble %dn", arvif->vdev_id, preamble); vdev_param = ar->wmi.vdev_param->preamble; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, preamble); if (ret) ath10k_warn(ar, "failed to set preamble for vdev %d: %i\n", arvif->vdev_id, ret); } if (changed & BSS_CHANGED_ASSOC) { if (info->assoc) { /* Workaround: Make sure monitor vdev is not running * when associating to prevent some firmware revisions * (e.g. 10.1 and 10.2) from crashing. */ if (ar->monitor_started) ath10k_monitor_stop(ar); ath10k_bss_assoc(hw, vif, info); ath10k_monitor_recalc(ar); } else { ath10k_bss_disassoc(hw, vif); } } if (changed & BSS_CHANGED_TXPOWER) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev_id %i txpower %d\n", arvif->vdev_id, info->txpower); arvif->txpower = info->txpower; ret = ath10k_mac_txpower_recalc(ar); if (ret) ath10k_warn(ar, "failed to recalc tx power: %d\n", ret); } mutex_unlock(&ar->conf_mutex); } static int ath10k_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_scan_request *hw_req) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct cfg80211_scan_request *req = &hw_req->req; struct wmi_start_scan_arg arg; int ret = 0; int i; mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); ar->scan.state = ATH10K_SCAN_STARTING; ar->scan.is_roc = false; ar->scan.vdev_id = arvif->vdev_id; ret = 0; break; case ATH10K_SCAN_STARTING: case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: ret = -EBUSY; break; } spin_unlock_bh(&ar->data_lock); if (ret) goto exit; memset(&arg, 0, sizeof(arg)); ath10k_wmi_start_scan_init(ar, &arg); arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH10K_SCAN_ID; if (!req->no_cck) arg.scan_ctrl_flags |= WMI_SCAN_ADD_CCK_RATES; if (req->ie_len) { arg.ie_len = req->ie_len; memcpy(arg.ie, req->ie, arg.ie_len); } if (req->n_ssids) { arg.n_ssids = req->n_ssids; for (i = 0; i < arg.n_ssids; i++) { arg.ssids[i].len = req->ssids[i].ssid_len; arg.ssids[i].ssid = req->ssids[i].ssid; } } else { arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; } if (req->n_channels) { arg.n_channels = req->n_channels; for (i = 0; i < arg.n_channels; i++) arg.channels[i] = req->channels[i]->center_freq; } ret = ath10k_start_scan(ar, &arg); if (ret) { ath10k_warn(ar, "failed to start hw scan: %d\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.state = ATH10K_SCAN_IDLE; spin_unlock_bh(&ar->data_lock); } exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_cancel_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); ath10k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); } static void ath10k_set_key_h_def_keyidx(struct ath10k *ar, struct ath10k_vif *arvif, enum set_key_cmd cmd, struct ieee80211_key_conf *key) { u32 vdev_param = arvif->ar->wmi.vdev_param->def_keyid; int ret; /* 10.1 firmware branch requires default key index to be set to group * key index after installing it. Otherwise FW/HW Txes corrupted * frames with multi-vif APs. This is not required for main firmware * branch (e.g. 636). * * FIXME: This has been tested only in AP. It remains unknown if this * is required for multi-vif STA interfaces on 10.1 */ if (arvif->vdev_type != WMI_VDEV_TYPE_AP) return; if (key->cipher == WLAN_CIPHER_SUITE_WEP40) return; if (key->cipher == WLAN_CIPHER_SUITE_WEP104) return; if (key->flags & IEEE80211_KEY_FLAG_PAIRWISE) return; if (cmd != SET_KEY) return; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, key->keyidx); if (ret) ath10k_warn(ar, "failed to set vdev %i group key as default key: %d\n", arvif->vdev_id, ret); } static int ath10k_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct ieee80211_key_conf *key) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k_peer *peer; const u8 *peer_addr; bool is_wep = key->cipher == WLAN_CIPHER_SUITE_WEP40 || key->cipher == WLAN_CIPHER_SUITE_WEP104; int ret = 0; if (key->keyidx > WMI_MAX_KEY_INDEX) return -ENOSPC; mutex_lock(&ar->conf_mutex); if (sta) peer_addr = sta->addr; else if (arvif->vdev_type == WMI_VDEV_TYPE_STA) peer_addr = vif->bss_conf.bssid; else peer_addr = vif->addr; key->hw_key_idx = key->keyidx; /* the peer should not disappear in mid-way (unless FW goes awry) since * we already hold conf_mutex. we just make sure its there now. */ spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); spin_unlock_bh(&ar->data_lock); if (!peer) { if (cmd == SET_KEY) { ath10k_warn(ar, "failed to install key for non-existent peer %pM\n", peer_addr); ret = -EOPNOTSUPP; goto exit; } else { /* if the peer doesn't exist there is no key to disable * anymore */ goto exit; } } if (is_wep) { if (cmd == SET_KEY) arvif->wep_keys[key->keyidx] = key; else arvif->wep_keys[key->keyidx] = NULL; if (cmd == DISABLE_KEY) ath10k_clear_vdev_key(arvif, key); } ret = ath10k_install_key(arvif, key, cmd, peer_addr); if (ret) { ath10k_warn(ar, "failed to install key for vdev %i peer %pM: %d\n", arvif->vdev_id, peer_addr, ret); goto exit; } ath10k_set_key_h_def_keyidx(ar, arvif, cmd, key); spin_lock_bh(&ar->data_lock); peer = ath10k_peer_find(ar, arvif->vdev_id, peer_addr); if (peer && cmd == SET_KEY) peer->keys[key->keyidx] = key; else if (peer && cmd == DISABLE_KEY) peer->keys[key->keyidx] = NULL; else if (peer == NULL) /* impossible unless FW goes crazy */ ath10k_warn(ar, "Peer %pM disappeared!\n", peer_addr); spin_unlock_bh(&ar->data_lock); exit: mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_sta_rc_update_wk(struct work_struct *wk) { struct ath10k *ar; struct ath10k_vif *arvif; struct ath10k_sta *arsta; struct ieee80211_sta *sta; u32 changed, bw, nss, smps; int err; arsta = container_of(wk, struct ath10k_sta, update_wk); sta = container_of((void *)arsta, struct ieee80211_sta, drv_priv); arvif = arsta->arvif; ar = arvif->ar; spin_lock_bh(&ar->data_lock); changed = arsta->changed; arsta->changed = 0; bw = arsta->bw; nss = arsta->nss; smps = arsta->smps; spin_unlock_bh(&ar->data_lock); mutex_lock(&ar->conf_mutex); if (changed & IEEE80211_RC_BW_CHANGED) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM peer bw %d\n", sta->addr, bw); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_CHAN_WIDTH, bw); if (err) ath10k_warn(ar, "failed to update STA %pM peer bw %d: %d\n", sta->addr, bw, err); } if (changed & IEEE80211_RC_NSS_CHANGED) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM nss %d\n", sta->addr, nss); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_NSS, nss); if (err) ath10k_warn(ar, "failed to update STA %pM nss %d: %d\n", sta->addr, nss, err); } if (changed & IEEE80211_RC_SMPS_CHANGED) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM smps %d\n", sta->addr, smps); err = ath10k_wmi_peer_set_param(ar, arvif->vdev_id, sta->addr, WMI_PEER_SMPS_STATE, smps); if (err) ath10k_warn(ar, "failed to update STA %pM smps %d: %d\n", sta->addr, smps, err); } if (changed & IEEE80211_RC_SUPP_RATES_CHANGED) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac update sta %pM supp rates\n", sta->addr); err = ath10k_station_assoc(ar, arvif->vif, sta, true); if (err) ath10k_warn(ar, "failed to reassociate station: %pM\n", sta->addr); } mutex_unlock(&ar->conf_mutex); } static int ath10k_mac_inc_num_stations(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_IBSS) return 0; if (ar->num_stations >= ar->max_num_stations) return -ENOBUFS; ar->num_stations++; return 0; } static void ath10k_mac_dec_num_stations(struct ath10k_vif *arvif) { struct ath10k *ar = arvif->ar; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type != WMI_VDEV_TYPE_AP && arvif->vdev_type != WMI_VDEV_TYPE_IBSS) return; ar->num_stations--; } static int ath10k_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, enum ieee80211_sta_state old_state, enum ieee80211_sta_state new_state) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; int ret = 0; if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE) { memset(arsta, 0, sizeof(*arsta)); arsta->arvif = arvif; INIT_WORK(&arsta->update_wk, ath10k_sta_rc_update_wk); } /* cancel must be done outside the mutex to avoid deadlock */ if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) cancel_work_sync(&arsta->update_wk); mutex_lock(&ar->conf_mutex); if (old_state == IEEE80211_STA_NOTEXIST && new_state == IEEE80211_STA_NONE) { /* * New station addition. */ ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d peer create %pM (new sta) sta %d / %d peer %d / %d\n", arvif->vdev_id, sta->addr, ar->num_stations + 1, ar->max_num_stations, ar->num_peers + 1, ar->max_num_peers); ret = ath10k_mac_inc_num_stations(arvif); if (ret) { ath10k_warn(ar, "refusing to associate station: too many connected already (%d)\n", ar->max_num_stations); goto exit; } ret = ath10k_peer_create(ar, arvif->vdev_id, sta->addr); if (ret) { ath10k_warn(ar, "failed to add peer %pM for vdev %d when adding a new sta: %i\n", sta->addr, arvif->vdev_id, ret); ath10k_mac_dec_num_stations(arvif); goto exit; } if (vif->type == NL80211_IFTYPE_STATION) { WARN_ON(arvif->is_started); ret = ath10k_vdev_start(arvif); if (ret) { ath10k_warn(ar, "failed to start vdev %i: %d\n", arvif->vdev_id, ret); WARN_ON(ath10k_peer_delete(ar, arvif->vdev_id, sta->addr)); ath10k_mac_dec_num_stations(arvif); goto exit; } arvif->is_started = true; } } else if ((old_state == IEEE80211_STA_NONE && new_state == IEEE80211_STA_NOTEXIST)) { /* * Existing station deletion. */ ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d peer delete %pM (sta gone)\n", arvif->vdev_id, sta->addr); if (vif->type == NL80211_IFTYPE_STATION) { WARN_ON(!arvif->is_started); ret = ath10k_vdev_stop(arvif); if (ret) ath10k_warn(ar, "failed to stop vdev %i: %d\n", arvif->vdev_id, ret); arvif->is_started = false; } ret = ath10k_peer_delete(ar, arvif->vdev_id, sta->addr); if (ret) ath10k_warn(ar, "failed to delete peer %pM for vdev %d: %i\n", sta->addr, arvif->vdev_id, ret); ath10k_mac_dec_num_stations(arvif); } else if (old_state == IEEE80211_STA_AUTH && new_state == IEEE80211_STA_ASSOC && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_ADHOC)) { /* * New association. */ ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM associated\n", sta->addr); ret = ath10k_station_assoc(ar, vif, sta, false); if (ret) ath10k_warn(ar, "failed to associate station %pM for vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); } else if (old_state == IEEE80211_STA_ASSOC && new_state == IEEE80211_STA_AUTH && (vif->type == NL80211_IFTYPE_AP || vif->type == NL80211_IFTYPE_ADHOC)) { /* * Disassociation. */ ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta %pM disassociated\n", sta->addr); ret = ath10k_station_disassoc(ar, vif, sta); if (ret) ath10k_warn(ar, "failed to disassociate station: %pM vdev %i: %i\n", sta->addr, arvif->vdev_id, ret); } exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_conf_tx_uapsd(struct ath10k *ar, struct ieee80211_vif *vif, u16 ac, bool enable) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); u32 value = 0; int ret = 0; lockdep_assert_held(&ar->conf_mutex); if (arvif->vdev_type != WMI_VDEV_TYPE_STA) return 0; switch (ac) { case IEEE80211_AC_VO: value = WMI_STA_PS_UAPSD_AC3_DELIVERY_EN | WMI_STA_PS_UAPSD_AC3_TRIGGER_EN; break; case IEEE80211_AC_VI: value = WMI_STA_PS_UAPSD_AC2_DELIVERY_EN | WMI_STA_PS_UAPSD_AC2_TRIGGER_EN; break; case IEEE80211_AC_BE: value = WMI_STA_PS_UAPSD_AC1_DELIVERY_EN | WMI_STA_PS_UAPSD_AC1_TRIGGER_EN; break; case IEEE80211_AC_BK: value = WMI_STA_PS_UAPSD_AC0_DELIVERY_EN | WMI_STA_PS_UAPSD_AC0_TRIGGER_EN; break; } if (enable) arvif->u.sta.uapsd |= value; else arvif->u.sta.uapsd &= ~value; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_UAPSD, arvif->u.sta.uapsd); if (ret) { ath10k_warn(ar, "failed to set uapsd params: %d\n", ret); goto exit; } if (arvif->u.sta.uapsd) value = WMI_STA_PS_RX_WAKE_POLICY_POLL_UAPSD; else value = WMI_STA_PS_RX_WAKE_POLICY_WAKE; ret = ath10k_wmi_set_sta_ps_param(ar, arvif->vdev_id, WMI_STA_PS_PARAM_RX_WAKE_POLICY, value); if (ret) ath10k_warn(ar, "failed to set rx wake param: %d\n", ret); exit: return ret; } static int ath10k_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 ac, const struct ieee80211_tx_queue_params *params) { struct ath10k *ar = hw->priv; struct wmi_wmm_params_arg *p = NULL; int ret; mutex_lock(&ar->conf_mutex); switch (ac) { case IEEE80211_AC_VO: p = &ar->wmm_params.ac_vo; break; case IEEE80211_AC_VI: p = &ar->wmm_params.ac_vi; break; case IEEE80211_AC_BE: p = &ar->wmm_params.ac_be; break; case IEEE80211_AC_BK: p = &ar->wmm_params.ac_bk; break; } if (WARN_ON(!p)) { ret = -EINVAL; goto exit; } p->cwmin = params->cw_min; p->cwmax = params->cw_max; p->aifs = params->aifs; /* * The channel time duration programmed in the HW is in absolute * microseconds, while mac80211 gives the txop in units of * 32 microseconds. */ p->txop = params->txop * 32; /* FIXME: FW accepts wmm params per hw, not per vif */ ret = ath10k_wmi_pdev_set_wmm_params(ar, &ar->wmm_params); if (ret) { ath10k_warn(ar, "failed to set wmm params: %d\n", ret); goto exit; } ret = ath10k_conf_tx_uapsd(ar, vif, ac, params->uapsd); if (ret) ath10k_warn(ar, "failed to set sta uapsd: %d\n", ret); exit: mutex_unlock(&ar->conf_mutex); return ret; } #define ATH10K_ROC_TIMEOUT_HZ (2*HZ) static int ath10k_remain_on_channel(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_channel *chan, int duration, enum ieee80211_roc_type type) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct wmi_start_scan_arg arg; int ret = 0; mutex_lock(&ar->conf_mutex); spin_lock_bh(&ar->data_lock); switch (ar->scan.state) { case ATH10K_SCAN_IDLE: reinit_completion(&ar->scan.started); reinit_completion(&ar->scan.completed); reinit_completion(&ar->scan.on_channel); ar->scan.state = ATH10K_SCAN_STARTING; ar->scan.is_roc = true; ar->scan.vdev_id = arvif->vdev_id; ar->scan.roc_freq = chan->center_freq; ret = 0; break; case ATH10K_SCAN_STARTING: case ATH10K_SCAN_RUNNING: case ATH10K_SCAN_ABORTING: ret = -EBUSY; break; } spin_unlock_bh(&ar->data_lock); if (ret) goto exit; duration = max(duration, WMI_SCAN_CHAN_MIN_TIME_MSEC); memset(&arg, 0, sizeof(arg)); ath10k_wmi_start_scan_init(ar, &arg); arg.vdev_id = arvif->vdev_id; arg.scan_id = ATH10K_SCAN_ID; arg.n_channels = 1; arg.channels[0] = chan->center_freq; arg.dwell_time_active = duration; arg.dwell_time_passive = duration; arg.max_scan_time = 2 * duration; arg.scan_ctrl_flags |= WMI_SCAN_FLAG_PASSIVE; arg.scan_ctrl_flags |= WMI_SCAN_FILTER_PROBE_REQ; ret = ath10k_start_scan(ar, &arg); if (ret) { ath10k_warn(ar, "failed to start roc scan: %d\n", ret); spin_lock_bh(&ar->data_lock); ar->scan.state = ATH10K_SCAN_IDLE; spin_unlock_bh(&ar->data_lock); goto exit; } ret = wait_for_completion_timeout(&ar->scan.on_channel, 3*HZ); if (ret == 0) { ath10k_warn(ar, "failed to switch to channel for roc scan\n"); ret = ath10k_scan_stop(ar); if (ret) ath10k_warn(ar, "failed to stop scan: %d\n", ret); ret = -ETIMEDOUT; goto exit; } ret = 0; exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_cancel_remain_on_channel(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; mutex_lock(&ar->conf_mutex); ath10k_scan_abort(ar); mutex_unlock(&ar->conf_mutex); cancel_delayed_work_sync(&ar->scan.timeout); return 0; } /* * Both RTS and Fragmentation threshold are interface-specific * in ath10k, but device-specific in mac80211. */ static int ath10k_set_rts_threshold(struct ieee80211_hw *hw, u32 value) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif; int ret = 0; mutex_lock(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d rts threshold %d\n", arvif->vdev_id, value); ret = ath10k_mac_set_rts(arvif, value); if (ret) { ath10k_warn(ar, "failed to set rts threshold for vdev %d: %d\n", arvif->vdev_id, ret); break; } } mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_set_frag_threshold(struct ieee80211_hw *hw, u32 value) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif; int ret = 0; mutex_lock(&ar->conf_mutex); list_for_each_entry(arvif, &ar->arvifs, list) { ath10k_dbg(ar, ATH10K_DBG_MAC, "mac vdev %d fragmentation threshold %d\n", arvif->vdev_id, value); ret = ath10k_mac_set_frag(arvif, value); if (ret) { ath10k_warn(ar, "failed to set fragmentation threshold for vdev %d: %d\n", arvif->vdev_id, ret); break; } } mutex_unlock(&ar->conf_mutex); return ret; } static void ath10k_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u32 queues, bool drop) { struct ath10k *ar = hw->priv; bool skip; int ret; /* mac80211 doesn't care if we really xmit queued frames or not * we'll collect those frames either way if we stop/delete vdevs */ if (drop) return; mutex_lock(&ar->conf_mutex); if (ar->state == ATH10K_STATE_WEDGED) goto skip; ret = wait_event_timeout(ar->htt.empty_tx_wq, ({ bool empty; spin_lock_bh(&ar->htt.tx_lock); empty = (ar->htt.num_pending_tx == 0); spin_unlock_bh(&ar->htt.tx_lock); skip = (ar->state == ATH10K_STATE_WEDGED) || test_bit(ATH10K_FLAG_CRASH_FLUSH, &ar->dev_flags); (empty || skip); }), ATH10K_FLUSH_TIMEOUT_HZ); if (ret <= 0 || skip) ath10k_warn(ar, "failed to flush transmit queue (skip %i ar-state %i): %i\n", skip, ar->state, ret); skip: mutex_unlock(&ar->conf_mutex); } /* TODO: Implement this function properly * For now it is needed to reply to Probe Requests in IBSS mode. * Propably we need this information from FW. */ static int ath10k_tx_last_beacon(struct ieee80211_hw *hw) { return 1; } #ifdef CONFIG_PM static int ath10k_suspend(struct ieee80211_hw *hw, struct cfg80211_wowlan *wowlan) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); ret = ath10k_wait_for_suspend(ar, WMI_PDEV_SUSPEND); if (ret) { if (ret == -ETIMEDOUT) goto resume; ret = 1; goto exit; } ret = ath10k_hif_suspend(ar); if (ret) { ath10k_warn(ar, "failed to suspend hif: %d\n", ret); goto resume; } ret = 0; goto exit; resume: ret = ath10k_wmi_pdev_resume_target(ar); if (ret) ath10k_warn(ar, "failed to resume target: %d\n", ret); ret = 1; exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_resume(struct ieee80211_hw *hw) { struct ath10k *ar = hw->priv; int ret; mutex_lock(&ar->conf_mutex); ret = ath10k_hif_resume(ar); if (ret) { ath10k_warn(ar, "failed to resume hif: %d\n", ret); ret = 1; goto exit; } ret = ath10k_wmi_pdev_resume_target(ar); if (ret) { ath10k_warn(ar, "failed to resume target: %d\n", ret); ret = 1; goto exit; } ret = 0; exit: mutex_unlock(&ar->conf_mutex); return ret; } #endif static void ath10k_reconfig_complete(struct ieee80211_hw *hw, enum ieee80211_reconfig_type reconfig_type) { struct ath10k *ar = hw->priv; if (reconfig_type != IEEE80211_RECONFIG_TYPE_RESTART) return; mutex_lock(&ar->conf_mutex); /* If device failed to restart it will be in a different state, e.g. * ATH10K_STATE_WEDGED */ if (ar->state == ATH10K_STATE_RESTARTED) { ath10k_info(ar, "device successfully recovered\n"); ar->state = ATH10K_STATE_ON; ieee80211_wake_queues(ar->hw); } mutex_unlock(&ar->conf_mutex); } static int ath10k_get_survey(struct ieee80211_hw *hw, int idx, struct survey_info *survey) { struct ath10k *ar = hw->priv; struct ieee80211_supported_band *sband; struct survey_info *ar_survey = &ar->survey[idx]; int ret = 0; mutex_lock(&ar->conf_mutex); sband = hw->wiphy->bands[IEEE80211_BAND_2GHZ]; if (sband && idx >= sband->n_channels) { idx -= sband->n_channels; sband = NULL; } if (!sband) sband = hw->wiphy->bands[IEEE80211_BAND_5GHZ]; if (!sband || idx >= sband->n_channels) { ret = -ENOENT; goto exit; } spin_lock_bh(&ar->data_lock); memcpy(survey, ar_survey, sizeof(*survey)); spin_unlock_bh(&ar->data_lock); survey->channel = &sband->channels[idx]; if (ar->rx_channel == survey->channel) survey->filled |= SURVEY_INFO_IN_USE; exit: mutex_unlock(&ar->conf_mutex); return ret; } /* Helper table for legacy fixed_rate/bitrate_mask */ static const u8 cck_ofdm_rate[] = { /* CCK */ 3, /* 1Mbps */ 2, /* 2Mbps */ 1, /* 5.5Mbps */ 0, /* 11Mbps */ /* OFDM */ 3, /* 6Mbps */ 7, /* 9Mbps */ 2, /* 12Mbps */ 6, /* 18Mbps */ 1, /* 24Mbps */ 5, /* 36Mbps */ 0, /* 48Mbps */ 4, /* 54Mbps */ }; /* Check if only one bit set */ static int ath10k_check_single_mask(u32 mask) { int bit; bit = ffs(mask); if (!bit) return 0; mask &= ~BIT(bit - 1); if (mask) return 2; return 1; } static bool ath10k_default_bitrate_mask(struct ath10k *ar, enum ieee80211_band band, const struct cfg80211_bitrate_mask *mask) { u32 legacy = 0x00ff; u8 ht = 0xff, i; u16 vht = 0x3ff; u16 nrf = ar->num_rf_chains; if (ar->cfg_tx_chainmask) nrf = get_nss_from_chainmask(ar->cfg_tx_chainmask); switch (band) { case IEEE80211_BAND_2GHZ: legacy = 0x00fff; vht = 0; break; case IEEE80211_BAND_5GHZ: break; default: return false; } if (mask->control[band].legacy != legacy) return false; for (i = 0; i < nrf; i++) if (mask->control[band].ht_mcs[i] != ht) return false; for (i = 0; i < nrf; i++) if (mask->control[band].vht_mcs[i] != vht) return false; return true; } static bool ath10k_bitrate_mask_nss(const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, u8 *fixed_nss) { int ht_nss = 0, vht_nss = 0, i; /* check legacy */ if (ath10k_check_single_mask(mask->control[band].legacy)) return false; /* check HT */ for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) { if (mask->control[band].ht_mcs[i] == 0xff) continue; else if (mask->control[band].ht_mcs[i] == 0x00) break; return false; } ht_nss = i; /* check VHT */ for (i = 0; i < NL80211_VHT_NSS_MAX; i++) { if (mask->control[band].vht_mcs[i] == 0x03ff) continue; else if (mask->control[band].vht_mcs[i] == 0x0000) break; return false; } vht_nss = i; if (ht_nss > 0 && vht_nss > 0) return false; if (ht_nss) *fixed_nss = ht_nss; else if (vht_nss) *fixed_nss = vht_nss; else return false; return true; } static bool ath10k_bitrate_mask_correct(const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, enum wmi_rate_preamble *preamble) { int legacy = 0, ht = 0, vht = 0, i; *preamble = WMI_RATE_PREAMBLE_OFDM; /* check legacy */ legacy = ath10k_check_single_mask(mask->control[band].legacy); if (legacy > 1) return false; /* check HT */ for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) ht += ath10k_check_single_mask(mask->control[band].ht_mcs[i]); if (ht > 1) return false; /* check VHT */ for (i = 0; i < NL80211_VHT_NSS_MAX; i++) vht += ath10k_check_single_mask(mask->control[band].vht_mcs[i]); if (vht > 1) return false; /* Currently we support only one fixed_rate */ if ((legacy + ht + vht) != 1) return false; if (ht) *preamble = WMI_RATE_PREAMBLE_HT; else if (vht) *preamble = WMI_RATE_PREAMBLE_VHT; return true; } static bool ath10k_bitrate_mask_rate(struct ath10k *ar, const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, u8 *fixed_rate, u8 *fixed_nss) { u8 rate = 0, pream = 0, nss = 0, i; enum wmi_rate_preamble preamble; /* Check if single rate correct */ if (!ath10k_bitrate_mask_correct(mask, band, &preamble)) return false; pream = preamble; switch (preamble) { case WMI_RATE_PREAMBLE_CCK: case WMI_RATE_PREAMBLE_OFDM: i = ffs(mask->control[band].legacy) - 1; if (band == IEEE80211_BAND_2GHZ && i < 4) pream = WMI_RATE_PREAMBLE_CCK; if (band == IEEE80211_BAND_5GHZ) i += 4; if (i >= ARRAY_SIZE(cck_ofdm_rate)) return false; rate = cck_ofdm_rate[i]; break; case WMI_RATE_PREAMBLE_HT: for (i = 0; i < IEEE80211_HT_MCS_MASK_LEN; i++) if (mask->control[band].ht_mcs[i]) break; if (i == IEEE80211_HT_MCS_MASK_LEN) return false; rate = ffs(mask->control[band].ht_mcs[i]) - 1; nss = i; break; case WMI_RATE_PREAMBLE_VHT: for (i = 0; i < NL80211_VHT_NSS_MAX; i++) if (mask->control[band].vht_mcs[i]) break; if (i == NL80211_VHT_NSS_MAX) return false; rate = ffs(mask->control[band].vht_mcs[i]) - 1; nss = i; break; } *fixed_nss = nss + 1; nss <<= 4; pream <<= 6; ath10k_dbg(ar, ATH10K_DBG_MAC, "mac fixed rate pream 0x%02x nss 0x%02x rate 0x%02x\n", pream, nss, rate); *fixed_rate = pream | nss | rate; return true; } static bool ath10k_get_fixed_rate_nss(struct ath10k *ar, const struct cfg80211_bitrate_mask *mask, enum ieee80211_band band, u8 *fixed_rate, u8 *fixed_nss) { /* First check full NSS mask, if we can simply limit NSS */ if (ath10k_bitrate_mask_nss(mask, band, fixed_nss)) return true; /* Next Check single rate is set */ return ath10k_bitrate_mask_rate(ar, mask, band, fixed_rate, fixed_nss); } static int ath10k_set_fixed_rate_param(struct ath10k_vif *arvif, u8 fixed_rate, u8 fixed_nss, u8 force_sgi) { struct ath10k *ar = arvif->ar; u32 vdev_param; int ret = 0; mutex_lock(&ar->conf_mutex); if (arvif->fixed_rate == fixed_rate && arvif->fixed_nss == fixed_nss && arvif->force_sgi == force_sgi) goto exit; if (fixed_rate == WMI_FIXED_RATE_NONE) ath10k_dbg(ar, ATH10K_DBG_MAC, "mac disable fixed bitrate mask\n"); if (force_sgi) ath10k_dbg(ar, ATH10K_DBG_MAC, "mac force sgi\n"); vdev_param = ar->wmi.vdev_param->fixed_rate; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, fixed_rate); if (ret) { ath10k_warn(ar, "failed to set fixed rate param 0x%02x: %d\n", fixed_rate, ret); ret = -EINVAL; goto exit; } arvif->fixed_rate = fixed_rate; vdev_param = ar->wmi.vdev_param->nss; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, fixed_nss); if (ret) { ath10k_warn(ar, "failed to set fixed nss param %d: %d\n", fixed_nss, ret); ret = -EINVAL; goto exit; } arvif->fixed_nss = fixed_nss; vdev_param = ar->wmi.vdev_param->sgi; ret = ath10k_wmi_vdev_set_param(ar, arvif->vdev_id, vdev_param, force_sgi); if (ret) { ath10k_warn(ar, "failed to set sgi param %d: %d\n", force_sgi, ret); ret = -EINVAL; goto exit; } arvif->force_sgi = force_sgi; exit: mutex_unlock(&ar->conf_mutex); return ret; } static int ath10k_set_bitrate_mask(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const struct cfg80211_bitrate_mask *mask) { struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); struct ath10k *ar = arvif->ar; enum ieee80211_band band = ar->hw->conf.chandef.chan->band; u8 fixed_rate = WMI_FIXED_RATE_NONE; u8 fixed_nss = ar->num_rf_chains; u8 force_sgi; if (ar->cfg_tx_chainmask) fixed_nss = get_nss_from_chainmask(ar->cfg_tx_chainmask); force_sgi = mask->control[band].gi; if (force_sgi == NL80211_TXRATE_FORCE_LGI) return -EINVAL; if (!ath10k_default_bitrate_mask(ar, band, mask)) { if (!ath10k_get_fixed_rate_nss(ar, mask, band, &fixed_rate, &fixed_nss)) return -EINVAL; } if (fixed_rate == WMI_FIXED_RATE_NONE && force_sgi) { ath10k_warn(ar, "failed to force SGI usage for default rate settings\n"); return -EINVAL; } return ath10k_set_fixed_rate_param(arvif, fixed_rate, fixed_nss, force_sgi); } static void ath10k_sta_rc_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_sta *sta, u32 changed) { struct ath10k *ar = hw->priv; struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; u32 bw, smps; spin_lock_bh(&ar->data_lock); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac sta rc update for %pM changed %08x bw %d nss %d smps %d\n", sta->addr, changed, sta->bandwidth, sta->rx_nss, sta->smps_mode); if (changed & IEEE80211_RC_BW_CHANGED) { bw = WMI_PEER_CHWIDTH_20MHZ; switch (sta->bandwidth) { case IEEE80211_STA_RX_BW_20: bw = WMI_PEER_CHWIDTH_20MHZ; break; case IEEE80211_STA_RX_BW_40: bw = WMI_PEER_CHWIDTH_40MHZ; break; case IEEE80211_STA_RX_BW_80: bw = WMI_PEER_CHWIDTH_80MHZ; break; case IEEE80211_STA_RX_BW_160: ath10k_warn(ar, "Invalid bandwith %d in rc update for %pM\n", sta->bandwidth, sta->addr); bw = WMI_PEER_CHWIDTH_20MHZ; break; } arsta->bw = bw; } if (changed & IEEE80211_RC_NSS_CHANGED) arsta->nss = sta->rx_nss; if (changed & IEEE80211_RC_SMPS_CHANGED) { smps = WMI_PEER_SMPS_PS_NONE; switch (sta->smps_mode) { case IEEE80211_SMPS_AUTOMATIC: case IEEE80211_SMPS_OFF: smps = WMI_PEER_SMPS_PS_NONE; break; case IEEE80211_SMPS_STATIC: smps = WMI_PEER_SMPS_STATIC; break; case IEEE80211_SMPS_DYNAMIC: smps = WMI_PEER_SMPS_DYNAMIC; break; case IEEE80211_SMPS_NUM_MODES: ath10k_warn(ar, "Invalid smps %d in sta rc update for %pM\n", sta->smps_mode, sta->addr); smps = WMI_PEER_SMPS_PS_NONE; break; } arsta->smps = smps; } arsta->changed |= changed; spin_unlock_bh(&ar->data_lock); ieee80211_queue_work(hw, &arsta->update_wk); } static u64 ath10k_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { /* * FIXME: Return 0 for time being. Need to figure out whether FW * has the API to fetch 64-bit local TSF */ return 0; } static int ath10k_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, enum ieee80211_ampdu_mlme_action action, struct ieee80211_sta *sta, u16 tid, u16 *ssn, u8 buf_size) { struct ath10k *ar = hw->priv; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); ath10k_dbg(ar, ATH10K_DBG_MAC, "mac ampdu vdev_id %i sta %pM tid %hu action %d\n", arvif->vdev_id, sta->addr, tid, action); switch (action) { case IEEE80211_AMPDU_RX_START: case IEEE80211_AMPDU_RX_STOP: /* HTT AddBa/DelBa events trigger mac80211 Rx BA session * creation/removal. Do we need to verify this? */ return 0; case IEEE80211_AMPDU_TX_START: case IEEE80211_AMPDU_TX_STOP_CONT: case IEEE80211_AMPDU_TX_STOP_FLUSH: case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT: case IEEE80211_AMPDU_TX_OPERATIONAL: /* Firmware offloads Tx aggregation entirely so deny mac80211 * Tx aggregation requests. */ return -EOPNOTSUPP; } return -EINVAL; } static const struct ieee80211_ops ath10k_ops = { .tx = ath10k_tx, .start = ath10k_start, .stop = ath10k_stop, .config = ath10k_config, .add_interface = ath10k_add_interface, .remove_interface = ath10k_remove_interface, .configure_filter = ath10k_configure_filter, .bss_info_changed = ath10k_bss_info_changed, .hw_scan = ath10k_hw_scan, .cancel_hw_scan = ath10k_cancel_hw_scan, .set_key = ath10k_set_key, .sta_state = ath10k_sta_state, .conf_tx = ath10k_conf_tx, .remain_on_channel = ath10k_remain_on_channel, .cancel_remain_on_channel = ath10k_cancel_remain_on_channel, .set_rts_threshold = ath10k_set_rts_threshold, .set_frag_threshold = ath10k_set_frag_threshold, .flush = ath10k_flush, .tx_last_beacon = ath10k_tx_last_beacon, .set_antenna = ath10k_set_antenna, .get_antenna = ath10k_get_antenna, .reconfig_complete = ath10k_reconfig_complete, .get_survey = ath10k_get_survey, .set_bitrate_mask = ath10k_set_bitrate_mask, .sta_rc_update = ath10k_sta_rc_update, .get_tsf = ath10k_get_tsf, .ampdu_action = ath10k_ampdu_action, .get_et_sset_count = ath10k_debug_get_et_sset_count, .get_et_stats = ath10k_debug_get_et_stats, .get_et_strings = ath10k_debug_get_et_strings, CFG80211_TESTMODE_CMD(ath10k_tm_cmd) #ifdef CONFIG_PM .suspend = ath10k_suspend, .resume = ath10k_resume, #endif }; #define RATETAB_ENT(_rate, _rateid, _flags) { \ .bitrate = (_rate), \ .flags = (_flags), \ .hw_value = (_rateid), \ } #define CHAN2G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_2GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } #define CHAN5G(_channel, _freq, _flags) { \ .band = IEEE80211_BAND_5GHZ, \ .hw_value = (_channel), \ .center_freq = (_freq), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 30, \ } static const struct ieee80211_channel ath10k_2ghz_channels[] = { CHAN2G(1, 2412, 0), CHAN2G(2, 2417, 0), CHAN2G(3, 2422, 0), CHAN2G(4, 2427, 0), CHAN2G(5, 2432, 0), CHAN2G(6, 2437, 0), CHAN2G(7, 2442, 0), CHAN2G(8, 2447, 0), CHAN2G(9, 2452, 0), CHAN2G(10, 2457, 0), CHAN2G(11, 2462, 0), CHAN2G(12, 2467, 0), CHAN2G(13, 2472, 0), CHAN2G(14, 2484, 0), }; static const struct ieee80211_channel ath10k_5ghz_channels[] = { CHAN5G(36, 5180, 0), CHAN5G(40, 5200, 0), CHAN5G(44, 5220, 0), CHAN5G(48, 5240, 0), CHAN5G(52, 5260, 0), CHAN5G(56, 5280, 0), CHAN5G(60, 5300, 0), CHAN5G(64, 5320, 0), CHAN5G(100, 5500, 0), CHAN5G(104, 5520, 0), CHAN5G(108, 5540, 0), CHAN5G(112, 5560, 0), CHAN5G(116, 5580, 0), CHAN5G(120, 5600, 0), CHAN5G(124, 5620, 0), CHAN5G(128, 5640, 0), CHAN5G(132, 5660, 0), CHAN5G(136, 5680, 0), CHAN5G(140, 5700, 0), CHAN5G(149, 5745, 0), CHAN5G(153, 5765, 0), CHAN5G(157, 5785, 0), CHAN5G(161, 5805, 0), CHAN5G(165, 5825, 0), }; static struct ieee80211_rate ath10k_rates[] = { /* CCK */ RATETAB_ENT(10, 0x82, 0), RATETAB_ENT(20, 0x84, 0), RATETAB_ENT(55, 0x8b, 0), RATETAB_ENT(110, 0x96, 0), /* OFDM */ RATETAB_ENT(60, 0x0c, 0), RATETAB_ENT(90, 0x12, 0), RATETAB_ENT(120, 0x18, 0), RATETAB_ENT(180, 0x24, 0), RATETAB_ENT(240, 0x30, 0), RATETAB_ENT(360, 0x48, 0), RATETAB_ENT(480, 0x60, 0), RATETAB_ENT(540, 0x6c, 0), }; #define ath10k_a_rates (ath10k_rates + 4) #define ath10k_a_rates_size (ARRAY_SIZE(ath10k_rates) - 4) #define ath10k_g_rates (ath10k_rates + 0) #define ath10k_g_rates_size (ARRAY_SIZE(ath10k_rates)) struct ath10k *ath10k_mac_create(size_t priv_size) { struct ieee80211_hw *hw; struct ath10k *ar; hw = ieee80211_alloc_hw(sizeof(struct ath10k) + priv_size, &ath10k_ops); if (!hw) return NULL; ar = hw->priv; ar->hw = hw; return ar; } void ath10k_mac_destroy(struct ath10k *ar) { ieee80211_free_hw(ar->hw); } static const struct ieee80211_iface_limit ath10k_if_limits[] = { { .max = 8, .types = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_P2P_CLIENT) }, { .max = 3, .types = BIT(NL80211_IFTYPE_P2P_GO) }, { .max = 7, .types = BIT(NL80211_IFTYPE_AP) }, }; static const struct ieee80211_iface_limit ath10k_10x_if_limits[] = { { .max = 8, .types = BIT(NL80211_IFTYPE_AP) }, }; static const struct ieee80211_iface_combination ath10k_if_comb[] = { { .limits = ath10k_if_limits, .n_limits = ARRAY_SIZE(ath10k_if_limits), .max_interfaces = 8, .num_different_channels = 1, .beacon_int_infra_match = true, }, }; static const struct ieee80211_iface_combination ath10k_10x_if_comb[] = { { .limits = ath10k_10x_if_limits, .n_limits = ARRAY_SIZE(ath10k_10x_if_limits), .max_interfaces = 8, .num_different_channels = 1, .beacon_int_infra_match = true, #ifdef CONFIG_ATH10K_DFS_CERTIFIED .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) | BIT(NL80211_CHAN_WIDTH_20) | BIT(NL80211_CHAN_WIDTH_40) | BIT(NL80211_CHAN_WIDTH_80), #endif }, }; static struct ieee80211_sta_vht_cap ath10k_create_vht_cap(struct ath10k *ar) { struct ieee80211_sta_vht_cap vht_cap = {0}; u16 mcs_map; int i; vht_cap.vht_supported = 1; vht_cap.cap = ar->vht_cap_info; mcs_map = 0; for (i = 0; i < 8; i++) { if (i < ar->num_rf_chains) mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << (i*2); else mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << (i*2); } vht_cap.vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap.vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); return vht_cap; } static struct ieee80211_sta_ht_cap ath10k_get_ht_cap(struct ath10k *ar) { int i; struct ieee80211_sta_ht_cap ht_cap = {0}; if (!(ar->ht_cap_info & WMI_HT_CAP_ENABLED)) return ht_cap; ht_cap.ht_supported = 1; ht_cap.ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_cap.ampdu_density = IEEE80211_HT_MPDU_DENSITY_8; ht_cap.cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40; ht_cap.cap |= IEEE80211_HT_CAP_DSSSCCK40; ht_cap.cap |= WLAN_HT_CAP_SM_PS_STATIC << IEEE80211_HT_CAP_SM_PS_SHIFT; if (ar->ht_cap_info & WMI_HT_CAP_HT20_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_20; if (ar->ht_cap_info & WMI_HT_CAP_HT40_SGI) ht_cap.cap |= IEEE80211_HT_CAP_SGI_40; if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) { u32 smps; smps = WLAN_HT_CAP_SM_PS_DYNAMIC; smps <<= IEEE80211_HT_CAP_SM_PS_SHIFT; ht_cap.cap |= smps; } if (ar->ht_cap_info & WMI_HT_CAP_TX_STBC) ht_cap.cap |= IEEE80211_HT_CAP_TX_STBC; if (ar->ht_cap_info & WMI_HT_CAP_RX_STBC) { u32 stbc; stbc = ar->ht_cap_info; stbc &= WMI_HT_CAP_RX_STBC; stbc >>= WMI_HT_CAP_RX_STBC_MASK_SHIFT; stbc <<= IEEE80211_HT_CAP_RX_STBC_SHIFT; stbc &= IEEE80211_HT_CAP_RX_STBC; ht_cap.cap |= stbc; } if (ar->ht_cap_info & WMI_HT_CAP_LDPC) ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING; if (ar->ht_cap_info & WMI_HT_CAP_L_SIG_TXOP_PROT) ht_cap.cap |= IEEE80211_HT_CAP_LSIG_TXOP_PROT; /* max AMSDU is implicitly taken from vht_cap_info */ if (ar->vht_cap_info & WMI_VHT_CAP_MAX_MPDU_LEN_MASK) ht_cap.cap |= IEEE80211_HT_CAP_MAX_AMSDU; for (i = 0; i < ar->num_rf_chains; i++) ht_cap.mcs.rx_mask[i] = 0xFF; ht_cap.mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED; return ht_cap; } static void ath10k_get_arvif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct ath10k_vif_iter *arvif_iter = data; struct ath10k_vif *arvif = ath10k_vif_to_arvif(vif); if (arvif->vdev_id == arvif_iter->vdev_id) arvif_iter->arvif = arvif; } struct ath10k_vif *ath10k_get_arvif(struct ath10k *ar, u32 vdev_id) { struct ath10k_vif_iter arvif_iter; u32 flags; memset(&arvif_iter, 0, sizeof(struct ath10k_vif_iter)); arvif_iter.vdev_id = vdev_id; flags = IEEE80211_IFACE_ITER_RESUME_ALL; ieee80211_iterate_active_interfaces_atomic(ar->hw, flags, ath10k_get_arvif_iter, &arvif_iter); if (!arvif_iter.arvif) { ath10k_warn(ar, "No VIF found for vdev %d\n", vdev_id); return NULL; } return arvif_iter.arvif; } int ath10k_mac_register(struct ath10k *ar) { struct ieee80211_supported_band *band; struct ieee80211_sta_vht_cap vht_cap; struct ieee80211_sta_ht_cap ht_cap; void *channels; int ret; SET_IEEE80211_PERM_ADDR(ar->hw, ar->mac_addr); SET_IEEE80211_DEV(ar->hw, ar->dev); ht_cap = ath10k_get_ht_cap(ar); vht_cap = ath10k_create_vht_cap(ar); if (ar->phy_capability & WHAL_WLAN_11G_CAPABILITY) { channels = kmemdup(ath10k_2ghz_channels, sizeof(ath10k_2ghz_channels), GFP_KERNEL); if (!channels) { ret = -ENOMEM; goto err_free; } band = &ar->mac.sbands[IEEE80211_BAND_2GHZ]; band->n_channels = ARRAY_SIZE(ath10k_2ghz_channels); band->channels = channels; band->n_bitrates = ath10k_g_rates_size; band->bitrates = ath10k_g_rates; band->ht_cap = ht_cap; /* vht is not supported in 2.4 GHz */ ar->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = band; } if (ar->phy_capability & WHAL_WLAN_11A_CAPABILITY) { channels = kmemdup(ath10k_5ghz_channels, sizeof(ath10k_5ghz_channels), GFP_KERNEL); if (!channels) { ret = -ENOMEM; goto err_free; } band = &ar->mac.sbands[IEEE80211_BAND_5GHZ]; band->n_channels = ARRAY_SIZE(ath10k_5ghz_channels); band->channels = channels; band->n_bitrates = ath10k_a_rates_size; band->bitrates = ath10k_a_rates; band->ht_cap = ht_cap; band->vht_cap = vht_cap; ar->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = band; } ar->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP); ar->hw->wiphy->available_antennas_rx = ar->supp_rx_chainmask; ar->hw->wiphy->available_antennas_tx = ar->supp_tx_chainmask; if (!test_bit(ATH10K_FW_FEATURE_NO_P2P, ar->fw_features)) ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO); ar->hw->flags = IEEE80211_HW_SIGNAL_DBM | IEEE80211_HW_SUPPORTS_PS | IEEE80211_HW_SUPPORTS_DYNAMIC_PS | IEEE80211_HW_MFP_CAPABLE | IEEE80211_HW_REPORTS_TX_ACK_STATUS | IEEE80211_HW_HAS_RATE_CONTROL | IEEE80211_HW_AP_LINK_PS | IEEE80211_HW_SPECTRUM_MGMT; ar->hw->wiphy->features |= NL80211_FEATURE_STATIC_SMPS; if (ar->ht_cap_info & WMI_HT_CAP_DYNAMIC_SMPS) ar->hw->wiphy->features |= NL80211_FEATURE_DYNAMIC_SMPS; if (ar->ht_cap_info & WMI_HT_CAP_ENABLED) { ar->hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION; ar->hw->flags |= IEEE80211_HW_TX_AMPDU_SETUP_IN_HW; } ar->hw->wiphy->max_scan_ssids = WLAN_SCAN_PARAMS_MAX_SSID; ar->hw->wiphy->max_scan_ie_len = WLAN_SCAN_PARAMS_MAX_IE_LEN; ar->hw->vif_data_size = sizeof(struct ath10k_vif); ar->hw->sta_data_size = sizeof(struct ath10k_sta); ar->hw->max_listen_interval = ATH10K_MAX_HW_LISTEN_INTERVAL; ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL; ar->hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH; ar->hw->wiphy->max_remain_on_channel_duration = 5000; ar->hw->wiphy->flags |= WIPHY_FLAG_AP_UAPSD; ar->hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE; /* * on LL hardware queues are managed entirely by the FW * so we only advertise to mac we can do the queues thing */ ar->hw->queues = 4; if (test_bit(ATH10K_FW_FEATURE_WMI_10X, ar->fw_features)) { ar->hw->wiphy->iface_combinations = ath10k_10x_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_10x_if_comb); } else { ar->hw->wiphy->iface_combinations = ath10k_if_comb; ar->hw->wiphy->n_iface_combinations = ARRAY_SIZE(ath10k_if_comb); ar->hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_ADHOC); } ar->hw->netdev_features = NETIF_F_HW_CSUM; if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED)) { /* Init ath dfs pattern detector */ ar->ath_common.debug_mask = ATH_DBG_DFS; ar->dfs_detector = dfs_pattern_detector_init(&ar->ath_common, NL80211_DFS_UNSET); if (!ar->dfs_detector) ath10k_warn(ar, "failed to initialise DFS pattern detector\n"); } ret = ath_regd_init(&ar->ath_common.regulatory, ar->hw->wiphy, ath10k_reg_notifier); if (ret) { ath10k_err(ar, "failed to initialise regulatory: %i\n", ret); goto err_free; } ret = ieee80211_register_hw(ar->hw); if (ret) { ath10k_err(ar, "failed to register ieee80211: %d\n", ret); goto err_free; } if (!ath_is_world_regd(&ar->ath_common.regulatory)) { ret = regulatory_hint(ar->hw->wiphy, ar->ath_common.regulatory.alpha2); if (ret) goto err_unregister; } return 0; err_unregister: ieee80211_unregister_hw(ar->hw); err_free: kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels); return ret; } void ath10k_mac_unregister(struct ath10k *ar) { ieee80211_unregister_hw(ar->hw); if (config_enabled(CONFIG_ATH10K_DFS_CERTIFIED) && ar->dfs_detector) ar->dfs_detector->exit(ar->dfs_detector); kfree(ar->mac.sbands[IEEE80211_BAND_2GHZ].channels); kfree(ar->mac.sbands[IEEE80211_BAND_5GHZ].channels); SET_IEEE80211_DEV(ar->hw, NULL); }