/* * Copyright (C) 2002 Jeff Dike (jdike@karaya.com) * Licensed under the GPL */ #include "linux/config.h" #include "linux/sched.h" #include "linux/list.h" #include "linux/spinlock.h" #include "linux/slab.h" #include "linux/errno.h" #include "linux/mm.h" #include "asm/current.h" #include "asm/segment.h" #include "asm/mmu.h" #include "asm/pgalloc.h" #include "asm/pgtable.h" #include "os.h" #include "skas.h" extern int __syscall_stub_start; static int init_stub_pte(struct mm_struct *mm, unsigned long proc, unsigned long kernel) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; spin_lock(&mm->page_table_lock); pgd = pgd_offset(mm, proc); pud = pud_alloc(mm, pgd, proc); if (!pud) goto out; pmd = pmd_alloc(mm, pud, proc); if (!pmd) goto out_pmd; pte = pte_alloc_map(mm, pmd, proc); if (!pte) goto out_pte; /* There's an interaction between the skas0 stub pages, stack * randomization, and the BUG at the end of exit_mmap. exit_mmap * checks that the number of page tables freed is the same as had * been allocated. If the stack is on the last page table page, * then the stack pte page will be freed, and if not, it won't. To * avoid having to know where the stack is, or if the process mapped * something at the top of its address space for some other reason, * we set TASK_SIZE to end at the start of the last page table. * This keeps exit_mmap off the last page, but introduces a leak * of that page. So, we hang onto it here and free it in * destroy_context_skas. */ mm->context.skas.last_page_table = pmd_page_kernel(*pmd); *pte = mk_pte(virt_to_page(kernel), __pgprot(_PAGE_PRESENT)); *pte = pte_mkexec(*pte); *pte = pte_wrprotect(*pte); spin_unlock(&mm->page_table_lock); return(0); out_pmd: pud_free(pud); out_pte: pmd_free(pmd); out: spin_unlock(&mm->page_table_lock); return(-ENOMEM); } int init_new_context_skas(struct task_struct *task, struct mm_struct *mm) { struct mm_struct *cur_mm = current->mm; struct mm_id *cur_mm_id = &cur_mm->context.skas.id; struct mm_id *mm_id = &mm->context.skas.id; unsigned long stack = 0; int from, ret = -ENOMEM; if(!proc_mm || !ptrace_faultinfo){ stack = get_zeroed_page(GFP_KERNEL); if(stack == 0) goto out; /* This zeros the entry that pgd_alloc didn't, needed since * we are about to reinitialize it, and want mm.nr_ptes to * be accurate. */ mm->pgd[USER_PTRS_PER_PGD] = __pgd(0); ret = init_stub_pte(mm, CONFIG_STUB_CODE, (unsigned long) &__syscall_stub_start); if(ret) goto out_free; ret = init_stub_pte(mm, CONFIG_STUB_DATA, stack); if(ret) goto out_free; mm->nr_ptes--; } mm_id->stack = stack; if(proc_mm){ if((cur_mm != NULL) && (cur_mm != &init_mm)) from = cur_mm_id->u.mm_fd; else from = -1; ret = new_mm(from, stack); if(ret < 0){ printk("init_new_context_skas - new_mm failed, " "errno = %d\n", ret); goto out_free; } mm_id->u.mm_fd = ret; } else { if((cur_mm != NULL) && (cur_mm != &init_mm)) mm_id->u.pid = copy_context_skas0(stack, cur_mm_id->u.pid); else mm_id->u.pid = start_userspace(stack); } return 0; out_free: if(mm_id->stack != 0) free_page(mm_id->stack); out: return ret; } void destroy_context_skas(struct mm_struct *mm) { struct mmu_context_skas *mmu = &mm->context.skas; if(proc_mm) os_close_file(mmu->id.u.mm_fd); else os_kill_ptraced_process(mmu->id.u.pid, 1); if(!proc_mm || !ptrace_faultinfo){ free_page(mmu->id.stack); free_page(mmu->last_page_table); } }